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Abstract

Salmonella enterica serovar Enteritidis is one of the most  frequent causes of  Salmonellosis

globally  and  is  commonly  transmitted  from  animals  to  humans  by  the  consumption  of

contaminated foodstuffs. Herein, we detail  the development and application of a hierarchical

machine learning model to rapidly identify and trace the geographical source of  S. Enteritidis

infections from whole genome sequencing data. 2,313 S. Enteritidis genomes collected by the

UKHSA between 2014-2019 were used to train a ‘local classifier per node’ hierarchical classifier

to attribute  isolates  to 4 continents,  11 sub-regions and 38 countries (53 classes).  Highest

classification accuracy was achieved at the continental level followed by the sub-regional and

country levels (macro F1: 0.954, 0.718, 0.661 respectively). A number of countries commonly

visited by UK travellers were predicted with high accuracy (hF1: >0.9). Longitudinal analysis and

validation with publicly accessible international samples indicated that predictions were robust to

prospective external datasets. The hierarchical machine learning framework provides granular

geographical  source  prediction  directly  from  sequencing  reads  in  <4  minutes  per  sample,

facilitating rapid outbreak resolution and real-time genomic epidemiology.
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Introduction

Diarrhoeal disease is the most common illnesses caused by contaminated food, with 550 million

people falling ill each year, including 220 million children under the age of 5 years (WHO 2022).

High  disease-burden  foodborne  pathogens  represent  a  major  public  health  concern,

necessitating real-time epidemiological monitoring and follow-up. Outbreak investigations are

often confounded by the complexity of the international food-trade networks which distributes

zoonotic  food-borne  pathogens  across  the  globe  (Gould  et  al.  2017).  Understanding  the

contributing  factors,  whether  they  be  environmental,  geographical  or  zoonotic  is  critical  for

designing  public  health  intervention  strategies  to  combat  and  prevent  food-borne  pathogen

outbreaks (Pires et al. 2009).

In many developed nations, Salmonella enterica serovar Enteritidis is the most common cause

of  diarrhoeal  disease  (UKHSA 2021) and represents a significant  economic  and healthcare

burden (Daniel et al. 2020). In the UK, nationwide vaccination and monitoring programmes have

been responsible for a precipitous drop in detectable Salmonella from local animal products and

a concurrent drop in human infection rates  (Surveillance, Zoonoses, Epidemiology and Risk

Food  and  Farming Group 2007;  Tam et  al.  2012).  However,  recent  studies  have identified

imported foodstuffs  (McLauchlin et al. 2019; Somorin, Odeyemi, and Ateba 2021) and foreign

travel (PHE 2017) as more pertinent Salmonella infection risks.

Whole  genome  sequencing  (WGS)  has  become  a  powerful  tool  for  untangling  complex

networks of  pathogen dissemination by providing high-resolution sub-typing for  transmission

tracing as well as detailed information on antimicrobial and virulence status (Allard et al. 2018).

Since 2014, the UK Health Security Agency (UKHSA) has routinely applied WGS to all clinically

identified cases of Salmonella in the UK alongside collecting detailed metadata, such as patient

recent foreign travel (Ashton et al. 2016). This programme has been instrumental in identifying

various international outbreaks, such as the largest known salmonellosis outbreak in Europe

where,  between 2015 and 2018  S. Enteritidis-contaminated eggs resulted in 1,209 reported

cases  across  16  countries  (Dallman  et  al.  2016;  Pijnacker  et  al.  2019).  This  approach  to

inferring geographical  source from pathogen genomes has historically required phylogenetic

population structure analysis which requires significant bioinformatic skills, is computationally

expensive  and  scales  poorly  with  the  increasingly  vast  collections  of  bacterial  genomes

available  for  analysis  (Cowley  et  al.  2016,  Dallman  et  al.  2016).  Furthermore,  due  to  the

resources involved,  this  type of  investigation  is  often only  undertaken in  exceptional  cases

representing a threat to public health.
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In  order  to  promote rapid outbreak responses,  novel  methods are required to translate the

increasing  volumes  of  pathogen  genomes  generated  by  surveillance  programmes  into

immediate and actionable information for epidemiologists.  S. Enteritidis represents a desirable

initial target for such tools due to its large public health burden. WGS provides high-resolution

information  about  pathogen  strain  relatedness  and,  by  association,  contains  contextualised

information on geographical or host origin. In the case of S. Enteritidis, which has a population

structure observably stratified by geographical source (Li et al. 2021, Feasey et al. 2016), there

is potential for genomics to provide key information for successful epidemiological follow-up,

namely the likely country of origin of an infectious strain, and an opportunity to rapidly enact

intervention strategies.  Herein we present the first  implementation of a hierarchical machine

learning  (hML)  classifier  for  geographical  source  attribution  of  S. Enteritidis  genomes.  We

applied this model to the UKHSA’s large and uniquely detailed genomic database of clinical S.

Enteritidis  isolates  collected between January  2014-April  2019.  Using  these data,  we have

generated  a  fully  automated  analysis  pipeline  with  which  to  monitor  imported cases  of  S.

Enteritidis. The hML model was structured to provide a granular and multi-level prediction of the

geographical origin of an S. Enteritidis genome and can do so in under 4 minutes directly from

raw sequencing reads.
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Results

Figure 1. Summary of  S. Enteritidis isolates collected by the UKHSA from UK clinical
patients  who  recently  reported  foreign  travel  between  2014-2019. A) Geographical
distribution  of  2313  S. Enteritis  isolates  by  reported  foreign  travel.  Variably  sized  points
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represent the number of samples per country. The map is coloured by region (Africa: yellow,
Americas: red, Asia: purple, Europe: blue). B) Maximum likelihood phylogenetic tree of 2313 S.
Enteritidis  isolates  with  bar  coloured  by  region  of  origin.  C) Kernel  density  plot  indicating
sampling density per region through time. D) Comparison of the consistency of sampling effort
of  the UKHSA to all  publicly  available  S.  Enteritidis  isolates  on NCBI  for  the same period.
Isolates were resampled to control for variable sample number per year and compared to a
uniform distribution using the Kolmogorov-Smirnov D statistic (NCBI = red,  UKHSA = blue).
Higher values indicate greater deviation from a uniform distribution. E) Relative risk per country
of acquiring S. Enteritidis infection when travelling. A risk score was generated by dividing the
proportion of UKHSA clinical isolates per country by the proportion of all UK travellers travelling
to that country as recorded by the Office of National Statistics (ONS). Only countries present in
both datasets were used to calculate proportions.

The  UKHSA  genomic  surveillance  programme  consistently  samples  S. Enteritidis

associated with international travel through time

Broad and unbiased surveillance by the UKHSA of all clinically reported S. Enteritidis cases in

the  UK  coupled  with  returning  traveller  data  has  provided  a  large  genomic  dataset

representative  of  S. Enteritidis  infections  in  the  UK  between  2014-2019  (Figure  1).  This

consisted of 10,223 isolates, of which 3,434 had matched recent reported travel data collected

as a part of the UKHSA’s ‘enhanced surveillance’ programme.

Recent travel was reported from 122 countries across 5 continents. A source of potential bias,

common to bacterial genomics analysis, is the over-representation of clonally related isolates

due to their increased prevalence during outbreaks (Feil and Spratt 2001; Ebel et al. 2016). A

single, random representative isolate per country was selected for each clone, defined as a 5-

SNP cluster by SNP Address, in order to reduce the influence of highly related clonal outbreaks

on the resulting ML model (Dallman et al.  2018). The 5-SNP cutoff is routinely used as the

definition of  an outbreak by the UKHSA for  genomic disease surveillance  (Chattaway et  al.

2019).  After  quality-filtering,  downsampling  and  removal  of  low  incidence  countries  (<10

isolates), 2,313 genomes from 38 countries from 4 continents were included in the final dataset

for ML (Figure 1A). 

Grouping these countries by geographic region and subregion using the UN M49 Standard for

Regional Codes provided a framework for a granular geographical analysis and an established

hierarchy comprised of countries/subregions/regions  (Statistics Division of the United Nations

Secretariat  2020).  Phylogenetic  analysis  indicated  that  the  dataset  displayed  a  strong

phylogeographical signal, with large clusters of isolates from geographically related countries

clustering together (Figure 1B). An interactive maximum likelihood phylogenetic tree is available
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in Microreact at https://microreact.org/project/kQEhcTy4ohcqN9bjcPUWLw-ukhsasenteritidishml

(Argimón et al. 2016).  S. Enteritidis infection rates in Europe and Asia were highly seasonal,

with significantly  increased infection during the summer months (Figure 1C).  This  was less

pronounced in travel to/from the Americas and Africa.

An  analysis  of  the  consistency  of  sampling  effort  over  time  identified  that  some  notable

countries in the dataset were comprised of samples collected predominantly during a single

year, such as Sri Lanka, Tunisia and Dominica, and others were missing data from one or more

years (Figure S1). However, a comparison of the UKHSA collection to a dataset of location/date

matched genomes from the NCBI  Pathogen Detection  Database identified  that  the UKHSA

dataset represented a significantly more consistent sampling effort which was less influenced by

sporadic outbreaks (Figure 1D).

The countries with the highest number of travel associated  S. Enteritidis cases were Turkey

(804), Spain (357), Egypt (343), Cuba (190) and the Dominican Republic (117) (Figure 1A).

Controlling for the volume of UK travellers as recorded by the Office of National Statistics over a

matched time period allowed for the identification of countries with disproportionate low- or high-

risk of  S. Enteritidis  infection after  travelling (Figure 1E)(Office of  National  Statistics 2020).

Travellers to Turkey and Egypt were at a disproportionately higher risk of S. Enteritidis infection

during this period. Conversely, travellers to France and Spain, two of the more popular travel

destinations for UK travellers, were very low-risk. This highlights that the dataset was a product

of the volume of UK-travel combined with a variable risk of infection per country. Consequently,

there was a large degree of class imbalance (i.e. different number of isolates per country) in the

dataset used for ML, in addition to low/absent sampling coverage of some parts of the globe.

However,  when  considering  larger  geographical  groupings  (i.e.  subregion/region)  these

imbalances were less pronounced or absent.
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Figure 2. Summary statistics showing model and resampling scheme selection, feature
selection and optimisation. A) Example schematic of a geographical hierarchy based upon
the UN M49  Standard  for  regional  codes.  B) Table  of  summary  statistics  for  the  ten  top-
performing co-optimised model  and resampling methods from a cohort  of  36  combinations,
sorted  by  hF1  (high-low).  Training  time  reported  in  final  column  in  seconds.  A black  box
indicates the top four models used for feature selection. C) Grouped bar chart comparing macro
F1 per hierarchical level for the ten top-performing model/resampled combinations. D) Table of
summary statistics for random forest feature selection applied to the four top-performing co-
optimised model and resampling methods. Black boxes indicate the optimal number of features
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per combination.  E) Grouped bar chart comparing macro F1 per hierarchical level for the four
top-performing co-optimised model and resampling methods after feature selection optimisation.
F) Summary statistics for the final  optimised Random Forest -  Random Oversampler model
(25,000 features selected).  ML Model  abbreviations:  Random Forest  (RF),  XGBoost  (XGB),
Extra Trees (ET), K-Nearest Neighbours (KNN). Resampler abbreviations: No Resampling (NA),
Random  Undersampler  (RUS),  Random  Oversampler  (ROS),  Balancing  Mean  (BM),
Hierarchical Mean (HM).

A novel hierarchical model provides real-time geographical source attribution prediction

directly from sequencing reads in under four minutes

Taking advantage of the hierarchical structure of geographical data, we designed a multi-level

hML classifier following a “Local Classifier per Node” framework (Silla and Freitas 2011). This

was made up of 15 individual multi-class classifiers, one per node (1 root, 4 regional, 11 sub-

regional).  In  total,  53  individual  classes (4  regions,  11 sub-regions and 38 countries)  were

predictable by the model.  Sample classification was performed using a top-down approach,

where  samples  are  first  classified  at  the  root  node  into  ‘regions’ (e.g.  Africa)  then,  if  the

predicted probability is greater than a minimum threshold value (0.5), samples are passed to the

appropriate regional node to be classified into a nested subset of ‘subregions’ (e.g. Northern

Africa) and finally passed to a subregional node where they are classified into a nested subset

of ‘countries’ (e.g. Egypt) (Figure 2A). Using this scheme no samples could be attributed to a

class  which  was  not  a  predicted  class  of  a  previous  classifier  (i.e.  Africa→Southern

Asia→France is not possible, but Africa→Northern Africa→Egypt is). Sample classification was

exclusive, disallowing multiple classifications on the same hierarchical level for a single sample.

For  rapid  and  minimal  sample  processing  and  to  provide  end-to-end  sample  classification

directly  from  the  sequencer,  the  model  was  trained  on  filtered  unitig  patterns  (presence-

absence) generated from quality controlled genomic short-read data files. Each local classifier

per node was trained using only data pertinent to that node (e.g. a local subregion classifier was

trained only on the data from its constituent countries). This end-to-end process, from FASTQ to

sample prediction, is available on GitHub (https://github.com/SionBayliss/HierarchicalML).

Due to the imbalanced nature of the real-world surveillance dataset, it was necessary to test a

range of classifier and resampler algorithms before selecting the top performing models (Figure

2B-C). The top 4 models subsequently underwent feature selection (Figure 2D-E) followed by

parameter  optimisation  using  the TPOT genetic  algorithm (Figure  2F).  The  optimised  hML

model produced a more accurate classification of the test dataset than a ‘flat’ classifier applied

to a similarly pre-processed dataset (macro F1: 0.61) (Table S1). Based on these comparisons,

the most desirable assessment metrics overall (i.e. high macro F1 at the country level, Figure

2E) were from feature selection by a Random Forest (RF) classifier (25,000 unitig patterns)
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before random oversampling to correct  for  class imbalance and final  classification using an

optimised RF model.  Assuming <100x read coverage,  the entire pipeline takes ~3.5 min to

classify a novel samples using the pre-optimised model.

Figure  3. Plots  summarising  test  results  from  hML  model  and  genetic  diversity  of
dataset. A) Diagrammatic representation of classification metrics of the hML classifier applied to
the test  dataset.  Links between classes/nodes in  the hierarchy are indicated by connecting
lines. Boxes represent individual classes in the ML model and are coloured by their hierarchical
F1 (hF1) scores. The top panel of each class box displays the class label, the bottom left panel
indicates the total number of samples for that class before the train/test split (75%/25%) and the
bottom right panel shows the class hF1 score calculated from the test dataset. Classes within
individual ‘regions’ (continents) were contained in a coloured background panel.  B) Bar plot of
genomic diversity per country. Genomic diversity was estimated as the number of 25 SNP single
linkage clusters divided by the total numbers of samples per class. Panels (A) and bars (B) were
coloured according to region (Africa: yellow, Americas: red, Asia: purple, Europe: blue).  
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Granular predictions are provided at a regional, subregional and individual country level

Classification  metrics  were  highest  at  the  regional  level  (macro  F1:  0.954),  but  less

discriminatory  at  the  sub-regional  (macro  F1:  0.718)  and  country  levels  (macro  F1:  0.661)

(Figure 3A). There was a moderate degree of variation in predictive accuracy between different

geographical  locations.  Africa  was  the most  consistent  accurately  classified  region,  with  all

country and subregional classes presenting a hF1 of >0.7. In The Americas, Latin American and

Caribbean countries showed very high classification metrics (hF1: >0.8), whereas samples for

the United States were consistently misclassified. All Asian classes were classified at moderate

to  high  accuracy  (hF1:  0.58-0.95).  Europe  was  generally  well  classified  (hF1:  >0.66),  but

contained  two  classes,  France  and  Italy,  which  were  classified  poorly  (hF1:  ~0.3).  Further

scrutiny of poorly performing classes showed a correlation between lack of training data and

lower prediction accuracy (Figure S2). This did not fully explain the observed results as some

countries  with a  similarly  low number  of  samples to poorly  predicted countries  (e.g.  Czech

Republic, Pakistan) showed moderate classification accuracy. An analysis of genetic diversity

within classes indicated that at least two of the most poorly classified countries, France and the

United States, displayed both low numbers of samples and high genetic diversity (Figure 3B,

Figure S3). Samples from recent travel to France were particularly diverse, arising from multiple

highly diverse clades of S. Enteritidis. A range of countries which were commonly visited by UK

travellers,  such  as  Cuba,  Egypt,  Indonesia,  Jamaica,  Malta,  Spain,  Thailand,  Tunisia  and

Turkey, were were well predicted (hF1: >0.9).  

In  summary,  these results  suggest  that  the  optimised model  can attribute  the geographical

source of  S. Enteritidis isolates with high confidence at a regional level whilst also providing

more nuanced and granular predictions for a range of countries regularly visited by UK travellers

with a very high degree of accuracy.
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Figure 4. A longitudinal analysis of the predictive performance of hML models on 2313 S.
enteritidis samples. A) The hF1 scores of hML RF models trained on a subset of samples from
a 1-4 year moving window predicting the following year.  B) The micro F1 scores of hML RF
models trained on a subset of samples from a 1-3 year moving window predicting 1-5 years into
the future.  C) Regional hF1 scores of hML RF models trained on one-year sampling windows
predicting the following year. D) Regional hF1 scores of hierarchical models trained on two-year
sample windows predicting the following year.

Models demonstrate durability to future predictions with two years previous training data

proving sufficient signal for accurate subsequent year predictions

Bacterial population lineage composition is not expected to remain static through time, therefore

predictive models based on genomic data require periodic retraining. To understand the amount

of data required for accurate prospective prediction, we compared the outcomes of four yearly

window  sizes  (1,  2,  3  and  4  years)  for  the  prediction  of  subsequent  years  (Figure  4A).

Predictive  accuracy  and  consistency  of  prediction  of  the  subsequent  year  improved  on

increasing  window  size,  with  hF1  beginning  to  asymptote  after  two  years.  The  largest

improvement was observed between 1-2 years’ worth of data. A minor decrease in predictive

accuracy (micro F1:  ~0.05 per  year)  was observed for  each additional  year  into the future

(Figure 4B). A regional breakdown of the hF1 score indicated that a one-year window varied in

predictive accuracy per region per year (Figure 4C), but that a two-year window provided more

consistent and accurate predictions (Figure 4D). These results indicate that, should this model

be  instituted for  ML-enhanced  genomic  surveillance,  it  would  require  retraining  on  the  two
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previous years samples each year to provide an optimal trade-off between predictive accuracy

and training time.
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Figure 5. Hierarchical classification summaries for five additional validation datasets. A)
128 samples from an international outbreak which originated in Spain in 2015 (Inns et al. 2017)
B) 131 samples from a large-scale international outbreak which originated from Polish eggs
between 2015-2018 (Pijnacker et al. 2019). C) 35 samples from Poland uploaded to the NCBI
database between 2014-2019. D) 25 samples from South Africa uploaded to the NCBI database
between 2014-2019.  E) 48 samples from Singapore uploaded to the NCBI database between
2014-2019. The number of samples assigned per class are indicated for classes relevant to the
query dataset.  Class boxes are coloured by the proportion of  correctly/incorrectly  classified
samples (correct:  green, incorrect:  red).  Right-hand panel for A-E displays phylogenetic tree
indicating where validation data (red) and training data (blue) cluster for that class.

The optimised hML model provides accurate predictions in 4/5 validation datasets 

The  hML model  was  further  validated  by  application to  a  series  of  external,  independent

datasets  (Table  S4).  The  initial  datasets  were  from  two  UK-based,  well-characterised  and

epidemiologically-traced imported food outbreaks. Sample redundancy between validation and

training datasets was removed before comparison. A 2015 outbreak epidemiologically-traced to

eggs imported from Spain (Inns et al. 2017) was 100% correctly attributed to a Spanish origin

(Figure 5A). A multi-country outbreak originating from Polish egg farms (Pijnacker et al. 2019),

comprising of two distinct lineages each differing by 5 or fewer SNPs, was correctly attributed to

a  European  origin  (131/131  cases),  but  subsequently  misattributed  to  a  Southern  Europe

(131/131  cases),  Spanish  origin  (103/130)  (Figure  5B).  This  complex  outbreak  was  a

particularly difficult test case for the model, as it had been continuously causing cases in 16

European  countries  for  several  years  (2015-2018).  The  outbreak  cases  were  also

phylogenetically  distinct  from those associated with  travel  to  Poland in  the  UKHSA dataset

(Figure 5B). 

The model was further tested on datasets extracted from public databases. Three countries

from three  different  regions  were  identified  from the  NCBI  database  as  having  acceptable

sample numbers (>20), falling within the timeframe of the current model (2014-2019) and having

been sampled from a country included in the current model hierarchy (South Africa, Singapore

and Poland). The Polish dataset, sampled from poultry, was attributed to a European origin with

high accuracy (34/35, 97.1%), 19 of these were subsequently attributed to an East European

origin (19/35, 54.3%) or which 18 were attributed to Poland (18/35, 51.4%) (Figure 5C). The

remaining 15 samples were misclassified as having a Spanish origin (15/35, 42.9%). The South

African dataset of clinical cases, was correctly attributed to a South African origin with 100%

accuracy (25/25) (Figure 5D). The Singaporean dataset of primarily human cases was correctly

attributed to  South-East  Asia  (48/48)  with 91.7% of  samples  being correctly  attributed to  a
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Singaporean origin (44/48) and 4 samples being attributed to Indonesia (2), Malaysia (1) and

Thailand (1) (Figure 5E). 

Application of the hML model to independent validation datasets indicated that that the model

provides highly accurate and granular predictions for single-country outbreaks which occur over

short time-frames. A large-scale, long-term, multi-country outbreak was poorly predicted by the

model, most likely because many outbreak-associated isolates were mislabelled, but present in

the training dataset (i.e. not labelled as Poland). However, application of the hML model to a

range  of  other  independent  validation  datasets  provided  highly  accurate  and  granular

predictions.

Discussion

Outbreaks  caused  by  foodborne  pathogens,  where  rapid  response  times  are  essential  for

effective interventions, represent an epidemiological challenge for public health bodies as they

arise from complex interconnected global supply chains which include many potential sources of

infection. Our optimised hML model generates accurate predictions of the geographical origin of

S. Enteritidis genomes directly from raw read data in under 4 minutes per sample. The output of

this pipeline is a predicted probability per hierarchical level (i.e. region, sub-region and country

levels) allowing for granular source attribution alongside an assessment of confidence in the

prediction. The observed classification accuracy of the model was high, varying across both

hierarchical levels and individual classes (Figures 2-3). Accuracy was highest at the regional

level (macro F1: 0.954), which contained the highest number of samples for training and the

lowest  level  of  class  imbalance,  before dropping at  the subregional  (macro F1:  0.718)  and

country levels (macro F1: 0.661), both of which contained generally lower and more variable

numbers  of  samples,  increasing class  imbalance (Figure 3).  It  should  be noted that  these

macro values, being an average of the F1 score across all classes, were strongly influenced by

outliers representing a handful of classes with poor classification accuracy (e.g. United States,

France, US, Italy). Variation in classification accuracy was negatively associated with both low

sample number and increasing within-class genetic diversity (Figure S2-3), although this did not

fully  explain  the  variation  in  predictive  accuracy  observed  in  the  model,  suggesting  other

complex factors may be involved. Although variation in predictive accuracy was observed, a

number of commonly visited countries were predicted with extremely high predictive accuracy

(e.g.  Cuba,  Egypt,  Indonesia,  Jamaica,  Malta,  Spain,  Thailand,  Tunisia  and  Turkey)  which

would be of high utility for UK epidemiologists tracing foodborne outbreaks .
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Selection  and  optimisation  of  the  ML classifier  and  resampler  methods,  as  well  as  pre-

classification feature selection was performed in a stepwise manner to assess the impact of

each step on the resulting model. Ensemble classifiers outperformed other classifiers (Figure 2,

Table  S2).  Interestingly,  considering  the  large  variation  observed  in  some  nodes  of  the

hierarchy, class imbalance was not found to have a large impact on the resulting model. Two of

the top four best-performing classifier/resampler combinations included no resampling. These

were both ensemble classifiers, suggesting that these were better able to account for the high

dimensionality,  high  collinearity  and  variable  levels  of  class  imbalance  than  other  classifier

models. The resampling itself was observed to differentially impact on the various hierarchical

levels (Figure 2). The model required a sample to be classified at a higher hierarchical level

before passed to the next nested level (e.g. classified as European before being classes as

West/East/South European) which biased model selection towards favouring classifiers which

improved  regional  and  subregional  predictions.  It  should  be  noted  that  each

classifier/resampler/feature selection step was applied uniformly across the hierarchy prior to

parameter optimization, to allow for an assessment of individual steps on the resulting model.

An attractive, although less informative, approach for future retraining would be to optimise all

steps (classifier/resampler/feature selection)  on a per node basis  using an AutoML method,

such as the genetic algorithm used in the current work to optimise hyperparameters in the final

hML RF model (Olson et al. 2016). Validation using external datasets indicated that the model

robustly  predicted  the  majority  of  novel  samples,  but  was  less  effective  for  complex  multi-

country, multi-year outbreaks (Figure 5).

We  acknowledge  that  this  study  has  a  number  of  important  limitations.  Whilst  we  have

presented  evidence  that  the  hML model  can  robustly  predict  geographical  source  for  S.

Enteritidis, the COVID-19 pandemic has resulted in a vast disruption to international travel over

the past two years. The UKHSA is already seeing a return to pre-pandemic levels of imported

infection and expect the pattern of seasonality of imported  S. Enteritidis infections to return.

However, there may be unquantified impacts on the global food network which could result in a

reduction in the prediction accuracy of the current model and would likely require retraining on

post-pandemic  data.  Furthermore,  the  dataset,  collected  as  part  of  the  UKHSA’s  national

genomic surveillance program, is a product of two factors; the countries to which UK residents

commonly travel and the variable likelihood of  S. Enteritidis infection whilst in these countries

(Figure 1). Both factors influence the geographical distribution of sampling locations present in

the dataset as well as the number of available samples per country. For example, of the 122

countries present in the initial dataset only 38 (31%) were present in sufficient quantities over
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the surveillance period to include in the model. The second factor influencing the composition of

the dataset is the variable risk of infection posed by the countries present in the dataset. Some

commonly visited countries posed only minor risk of infection (e.g. France) whilst others posed a

disproportionately high risk of infection on visiting (e.g. Turkey) (Figure 1E). Due to the complex

nature of both the global food supply chain and pathogen transmission dynamics it is likely that

these factors will cause misattribution in some cases; for instance, UK-travellers might travel to

country A and consume contaminated foodstuffs imported from country B which was absent

from the training data, and the model would then ‘correctly’ assign future cases to country A.

One might also imagine that country C, which is only rarely visited by UK-travellers, produces a

contaminated  foodstuff  and exports  it  to  country  D,  which is  often  visited  by  UK-travellers,

causing the model to misattribute a sample from country C to D. In these cases the model would

provide useful information on the origin of infection, but would not identify the true reservoir of

the pathogen. Evidence of this form of misattribution has been presented in the Polish eggs

outbreak dataset used for validation (Figure 5B). This outbreak represents a particularly difficult

attribution  problem as  many  of  the  contaminated  eggs  were  distributed  to  18  different  EU

countries during the sampling period used to train the model – allowing for the inclusion of

potentially  erroneous sample  labels  in  the training data and confounding the discriminatory

signal. This outbreak represents an important limitation of the current model and illustrates how

difficult multi-country outbreaks or long-established food network contamination pathways can

confound accurate classification. 

We have presented a conceptually simple hML model which is able to successfully predict the

geographical source of  infection for  a wide range of  popular  destinations frequented by UK

travellers. However, the basis of this work was a single dataset which, although exceptional in

breadth of sampling and metadata, compositionally reflects locations routinely visited by UK

travellers. A number of destinations were present in the dataset for which there is little to no data

present in public databases during a matching time period (e.g. Malta). This demonstrates the

additional  utility  provided by the collection of  recent  travel  information as part  of  a  national

surveillance programme to  generate consistent  geographical  coverage for  disease-sampling

over a much larger geographical  area.  One could imagine that  coordination between public

health bodies with complementary citizen travel preferences would allow for a small network of

national genomic surveillance initiatives to provide global coverage of gastrointestinal diseases

without the costly necessity of instituting a comprehensive global surveillance initiatives. If this

was coupled with a similar hML model to the one detailed here, then rapid and precise global

predictions of the source of gastrointestinal disease outbreaks could be achieved.
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This study provides a framework for future hML applications in the area of pathogen genomics.

Other  geographically  stratified  problems  which  might  benefit  from  a  hierarchical  approach

include  antimicrobial  resistance  in  Escherichia  coli  (Ingle  et  al.  2018),  transmission  of

Staphylococcus aureus in  hospital  networks  (Donker  et  al.  2017) and  application  to  other

serovars  of  Salmonella  enterica (Lupolova  et  al.  2017).  The  model  presented  herein  is

conceptually simple and does not incorporate temporal information, allow for multiple labels to

be assigned to samples or incorporate animal host/food source information, which may improve

prediction  of  multi-country  outbreaks  or  provide  additional  information  to  further  enhance

epidemiological follow-up (Lupolova et al. 2017; Zhang et al. 2019; Lupolova, Lycett, and Gally

2019). This work represents the first application of hML for the automation of genomics-based

geographical source attribution. The rapidity of predictions from raw sequencing data should

greatly  enhance epidemiologists’ ability  to  trace the source of  gastrointestinal  outbreaks by

condensing complex genetic data into understandable and actionable outputs.

Methods

Genome Collection and Processing

The  initial  dataset  consisted  of  10,223  S. Enteritidis  isolates  collected  and  sequenced  by

UKHSA between 2014-2019 as a part of their routine disease monitoring programme. Raw read

data was downloaded from the Short  Read Archive (Bioproject:  PRJNA248792)  (Table S3).

Reads  were  filtered  using  Trimmomatic  0.39,  residual  Illumina  adapter  sequences  were

removed, the first and last 3 base pairs in a read were trimmed, before a sliding window quality

trimming of 4 bases with a quality threshold of 20 was applied and reads of less than 36 bp

(after  trimming)  were  removed  (ILLUMINACLIP:PE_All.fasta:2:30:10:2:keepBothReads

SLIDINGWINDOW:4:20  LEADING:3  TRAILING:3  MINLEN:36)  (Bolger,  Lohse,  and  Usadel

2014).  The  coverage  of  the  resulting  file  was  estimated  against  the  size  of  S. Enteritidis

reference genome P12510 (Thomson et al. 2008) and downsampled to ~100x coverage using

in-house scripts. Musket 1.1 was applied for k-mer spectrum read correction using a k-mer size

of 31 bp. Unitigs were generated directly from filtered reads using bcalm 2.2.3 with a k-mer size

of 31 bp and a minimum k-mer abundance of 6 (estimated from data)  (Chikhi, Limasset, and

Medvedev 2016). 

Reads were mapped to S. Enteritidis reference genome P12510 and variants were called using

SNIPPY 4.6 with a minimum coverage of 10x and a mapping quality of 60 (Seemann n.d.). A

17

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 25, 2022. ; https://doi.org/10.1101/2022.08.23.22279111doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.23.22279111
http://creativecommons.org/licenses/by/4.0/


reduced alignment of variant sites was generated using snp-sites (Page et al. 2016) and passed

to IQ-Tree for phylogenetic reconstruction using a  GTR+I+G substitution model and ultra-fast

bootstrapping  (1000  bootstraps)  (Nguyen  et  al.  2015).  An  interactive  maximum  likelihood

phylogenetic  tree  is  available  in  Microreact  at

https://microreact.org/project/kQEhcTy4ohcqN9bjcPUWLw-ukhsasenteritidishml. 

Isolate Selection for Machine Learning

Of the initial 10,223 isolates, 3,434 had matched recent reported travel data, in the form of

‘country’ of  recent  travel  (within  28 days of  generating  symptoms),  provided by the clinical

laboratories on submission of the isolate. These isolates were selected as potential candidates

for ML model construction and testing. The 3434 initial isolates were subsequently filtered to

identify samples that had both consistent metadata and good sequence quality. The criteria for

inclusion  included:  a)  clear  and  uncontradictory  recent  travel  metadata,  unrecognised  or

nonexistent locations (e.g. Yugoslavia) were removed; b) reads that were not genetically distant

from the majority of isolates in the collection as measured by MASH distance; c) reads that had

>28x coverage of S. Enteritidis reference genome P12510; d) samples that did not have a total

unitig length greater than 5,250,000 bp; e) k-mers created from the reads that did not have a

singleton frequency of >0.5. A total of 220 samples were excluded due to these criteria. 

Further  dataset  reduction  was  performed  to  remove  genetically  identical,  or  near-identical,

isolates from the collection prior to processing for ML. SNP Address was used as a proxy for

genetic relatedness and a single example of each SNP Address (SNP5) was randomly selected

per country for further analysis. Samples were assigned to region and subregion based upon

the  UN  M49  Standard  for  regional  codes

(https://unstats.un.org/unsd/methodology/m49/overview)  [Accessed:  30  Nov  2021].  Recent

travel information which represented historically distinct subregions or autonomous subregions

of a larger country grouping (e.g. Hong Kong), were considered a part of the larger entity for the

purpose of classification. Any country with less than ten representative samples after filtering

were excluded from further analysis. The final sample collection after filtering contained  2313

samples (Table S3).

The relative risk of acquiring  S.  Enteritidis infection when travelling was estimated using the

ratio of the proportion of UKHSA clinical isolates reported as having recently travelled to each

country over the proportion of all  UK travellers travelling to that country as recorded by the

Office  of  National  Statistics  (Office  of  National  Statistics  2020).  The  data  used  for  this

comparison was date (year) and location (country) matched before proportions were calculated. 
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The  NCBI  Pathogen  Genome  database  was  interrogated  to  identify  S. Enteritidis  isolates

collected in countries present in the hML model over a matching time period [Accessed: 18 Nov

2021]. 2019 was excluded as UKHSA samples were only available for a relatively short duration

of the year (Jan-April).  Variation in isolate number collected each year was controlled for by

resampling with replacement (1000 samples). The resulting yearly sampling data was compared

to a uniform distribution using the Kolmogorov-Smirnov D statistic to quantify deviation from a

consistent sampling scheme for both the UKHSA and NBCI reference dataset.

Unitig Processing for ML

A coloured De Bruijn graph was constructed for the complete genome collection by passing the

unitigs for  individual  samples  to unitig  caller  v1.2.0 (https://github.com/johnlees/unitig-caller).

This identified 426,647 unique unitigs present in the 2313 genome collection. The resulting De

Brujin graph was then queried to establish the presence/absence of each unitig on a per sample

basis. Unitigs present/absent in only a single sample were removed. Unitigs which co-occurred

in the same subset of samples (i.e.  perfect  correlation) were clustered into a single feature

‘pattern’ for input into feature selection and ML model building algorithms. This reduced the input

from 426,647 unitig features into 94,865 pattern features. The dataset was split into 75%-25%

train-test ratio stratified by country for downstream applications.

Hierarchical Classifier Design

A class-prediction top-down hierarchical classifier framework was developed to be compatible

with any scikit-learn classifier which generates a per-sample predicted probability value. The

framework followed a Local Classifier per Node (LCN) approach as detailed in Silla and Freitas

2011  (Silla and Freitas 2011), wherein a multi-class classifier was fitted at each node of the

hierarchy  to  differentiate  between  the various  child  classes of  that  node.  The  geographical

hierarchy  used  as  the  basis  of  the  classifier  was  constructed  using  the  three  levels  of

geographical labels,  region->subregion->country, assigned by UN M49 Standard for regional

codes. At each node samples were relabelled according to the current hierarchical level (e.g.

Cuba and the United States would be labelled as Americas at the root/regional node) before

being passed to the classifier. Only samples in classes relevant to the current hierarchical node

classifier were included in the training data for each classifier (i.e. samples from countries which

were not a part of the region/subregion being trained were excluded).
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Hierarchical Classification Strategy

The hierarchical classifier  framework allowed for  flexible assignment of  samples to a single

unambiguous class  in  the  hierarchy  (i.e.  a  single  region/sub-region/country  or  unclassified).

Samples were first classified at the root (regional) node. A classification was assigned if the

predicted probabilities adhered to the threshold criteria, that the maximum probability value at

that node exceeds a threshold value (0.5). Only then would the sample be passed to the next

node in the hierarchy. This is not permissive of multiple, conflicting classifications. 

A range of hierarchical and non-hierarchical statistics were applied to aid model assessment.

Standard  non-hierarchical  statistics  were  generated  for  each  individual  classifier/node

(precision, recall,  micro/macro/weighted F1) as well  as their  hierarchical analogues (hP, hR,

hF1). These were calculated as described by Kiritchenko et al 2005 (Kiritchenko, Matwin, and

Famili 2005):

T̂ i

h P=
Σi|P̂ i|

Σi|P̂ i|
    

T̂ i

h R=
Σi|P̂i|

Σi|T̂ i|
   h F1=

2∗h P∗h R
hP+hR

 

where P̂i  is the set of predicted classes consisting of the most specific class (i.e. the lowest

level of the hierarchy) predicted for test example i plus all parent classes and T̂ i  is the set of

classes consisting of the most specific true class of test example i and all its ancestor classes.

Summations were calculated over all  test samples. Macro hF1 was calculated by taking the

average F1 of all classes of interest.

Feature Selection, Resampling, Model Testing and Optimisation

During  model  selection  various  combinations  of  classifier,  resampler  and  feature  selection

models were applied to the test-train dataset to assess their suitability for model building. These

were  assessed  based  on  a  combination  of  non-hierarchical  statistics  including  overall

micro/macro F1 and micro/macro F1 per hierarchical level. The implemented classifier models

included  K-Nearest  Neighbours,  Support  Vector,  Random  Forest,  Gaussian  Naive  Bayes,

XGBoost,  Extra Trees.  All  classifier  models were implemented using scikit-learn using a set

seed value and default  parameters  with  the exception  of  Random Forest,  Extra  Trees and

XGBoost classifiers which were run with n_estimators = 1000 and SVC which was run with

probability = True.
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The implemented resampling schemes included downsampling (smallest  class),  upsampling

(largest  class),  resampling  to  the  mean  count  of  all  classes  and  hierarchically  aware

implementation  for  the  previously  described  samplers.  Hierarchically  aware resampling  was

developed using in-house scripts to iteratively apply a resampler to each of the lowest levels of

the hierarchy (country) before passing the resampled data to higher levels in the hierarchy for

further resampling.

An all-vs-all comparison of classifier vs resampler models was used to identify the most suitable

combinations for further optimisation (Table S2). In all cases a fixed seed value was used for

comparison of models and resamplers. The top 4 combinations of classifier-resampler were

selected  for  feature  selection  comparison.  The  implemented  feature  selection  method  was

Random Forest using varying numbers of patterns as training data (Figure 2D).

The  final  classifier-resampler-selection  combination  was  passed  to  a  genetic  algorithm

framework (TPOT) to identify an approximation of optimal parameters from a wide range of

possible  combinations  (sklearn.ensemble.RandomForestClassifier':  'n_estimators':  [100,  500,

1000],  'criterion':  ['gini',  'entropy'],  'max_features':  np.array([0.05, 0.1 ,  0.15, 0.2 ,  0.25, 0.3 ,

0.35, 0.4 , 0.45, 0.5 , 0.55, 0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1. ]), 'min_samples_split':

range(2, 21), 'min_samples_leaf': range(1, 21), 'bootstrap': [True, False])  (Olson et al. 2016).

The TPOT genetic algorithm used the macro F1 score per node as the optimisation metric, was

run for 100 generations with a population size of 50 and stratified 3-fold cross validation of the

input database and was stopped if no model improvement was found for 10 generations. A ‘flat’

model was also trained and tested in the same manner for comparison, whereby a multiclass

Random  Forest  classifier  was  provided  with  a  randomly  oversampled  dataset  which  only

included ‘country’ class labels (i.e. region/subregion were ignored) (Table S1).

Validation Dataset Collection and Processing

Various public datasets were used as additional validation data including outbreaks described in

previous publications (Inns et al. 2017; Pijnacker et al. 2019) and samples from the 38 countries

included in this study identified from the NCBI Pathogen Genome database [Accessed: 18 Nov

2021].  In  the  case  of  samples  taken  from  previous  publications,  accession  numbers  were

identified from these manuscripts, samples downloaded and passed through the genome and

unitig processing pipelines described above. Additionally,  NCBI Pathogen Genome database

metadata was downloaded [Accessed: 18 Nov 2021] and filtered to return only samples which

had publicly accessible read files, country metadata from the 38 countries and were collected

between 2014-2018. Three representative countries were chosen to trial the model on (Poland,
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South  Africa  and  Singapore).  Read  data  was  downloaded  and  passed  through  the  unitig

processing pipeline as described above. The presence of unitigs generated from the UKHSA

collection  which  formed  the  basis  to  the  hML model  was  ascertained  using  unitig-counter

(https://github.com/johnlees/unitig-counter)  (Jaillard et al. 2018). The unitig features were then

converted into the patterns generated from the UKHSA collection as described above.

Data Availability

The final optimised hierarchical model as well as a pipeline for pre-processing raw read data to

unitigs/patterns for input is available from https://github.com/SionBayliss/HierarchicalML with a

short  description  and  tutorial  for  ease  of  use. This  end-to-end  process,  from  FASTQ  to

prediction, is open access and available to users. Short read sequencing data is available from

the Short Read Archive (Bioproject: PRJNA248792).
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