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Abstract The unprecedented and overwhelming SARS-CoV-2 virus and COVID-
19 disease significantly challenged our way of life, society and the economy. Many
questions emerge, a critical one being how to quantify the challenges, realities,
intervention effect and influence of the pandemic. With the massive effort that
has been in relation to modeling COVID-19, what COVID-19 issues have been
modeled? What and how well have epidemiology, AI, data science, machine learn-
ing, deep learning, mathematics and social science characterized the COVID-19
epidemic? what are the gaps and opportunities of quantifying the pandemic? Such
questions involve a wide body of knowledge and literature, which are unclear but
important for present and future health crisis quantification. Here, we provide a
comprehensive review of the challenges, tasks, methods, progress, gaps and op-
portunities in relation to modeling COVID-19 processes, data, mitigation and
impact. With a research landscape of COVID-19 modeling, we further catego-
rize, summarize, compare and discuss the related methods and the progress which
has been made in modeling COVID-19 epidemic transmission processes and dy-
namics, case identification and tracing, infection diagnosis and medical treatments,
non-pharmaceutical interventions and their effects, drug and vaccine development,
psychological, economic and social influence and impact, and misinformation, etc.
The review shows how modeling methods such as mathematical and statistical
models, domain-driven modeling by epidemiological compartmental models, med-
ical and biomedical analysis, AI and data science, in particular shallow and deep
machine learning, simulation modeling, social science methods and hybrid model-
ing have addressed the COVID-19 challenges, what gaps exist and what research
directions can be followed for a better future.

1 Introduction

The novel coronavirus (SARS-CoV-2) which causes the COVID-19 disease resulted
in not only a global health crisis, but also a global economic and social crisis.
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Its evolution and influence on the entire world has been profound, overwhelm-
ing, unprecedented, and unanticipated. COVID-19 has triggered and has continu-
ously motivated extensive research on its understanding, management, and control.
COVID-19 research has been conducted by scientists and researchers from a wide
variety of disciplines from almost every country and region in the world [44].

The COVID-19 research landscape is immense, however one critical area is
modeling COVID-19. COVID-19 modeling aims to quantify, characterize, process,
analyze, predict and simulate COVID-19 characteristics and its induced problems,
issues and challenges and to extract evidence, insights or indications to under-
stand and manage them. These involve broad problem domains, in particular, in
characterizing the intricate nature of COVID-19 and discovering insights for virus
containment, disease treatment, drug and vaccine development, and mitigating its
broad socioeconomic impact. COVID-19 modeling also involves various disciplines
and research areas, including but not limited to statistical modeling, epidemic and
health modeling, data-driven analytics and learning, in both shallow and deep,
specific and comprehensive manners.

Although many reviews and surveys have emerged increasingly in the liter-
ature, particularly those on the applications of AI, machine learning, and deep
learning to COVID-19, it is unclear as to what such comprehensive COVID-19
modeling looks like. This motivates this review of the global reaction to model-
ing COVID-19. Specifically, instigated and informed by our systematic analysis
of how global scientists have responded to tackling COVID-19 [44], this paper
makes the first attempt to provide a comprehensive and systematic overview of
cross-disciplinary and cross-domain research on COVID-19 modeling.

Here, we introduce our review objectives, the research questions to be ex-
plored in this review, the review methods, some findings, and the contributions
and limitations of this comprehensive review. Fig. 1 shows the meta-synthetic and
meta-analytical (MsMa) review method applied in this review. MsMa is built on
PRISMA and the NLP-based literature extraction and analysis in our other work
on global literature analysis [44]. Interested readers can refer to [44] for more infor-
mation about reference search, processing, analysis, modeling problem screening,
and modeling method screening. The method of representative reference selection
is explained in Section 1.2.

Fig. 1 The flowchart of meta-synthetic and meta-analytical (MsMa) review of COVID-19
modeling problems and methods in this review, building on PRISMA and NLP-based literature
analysis in [44].
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1.1 Review Objectives and Questions

In this review, we address a wide spectrum of major problems and aspects as-
sociated with the SARS-CoV-2 virus and the COVID-19 disease covering coron-
avirus evolution and identification, epidemic transmission, COVID-19 disease and
infection diagnosis, medical treatment, biomedical analysis, non-pharmaceutical
interventions, coronavirus resurgence and mutation, and the influence and impact
of the virus and disease. However, we are not motivated to review every research
area in relation to all these problems and aspects. Instead, we focus on COVID-19
modeling, i.e., how are the above problems and aspects quantified, processed, or
analyzed.

1.1.1 Review objectives

Specifically, we aim to achieve the following objectives by conducting this review:

– generating a comprehensive picture of the major problems and challenges re-
lated to the COVID-19 disease;

– understanding the major characteristics and complexities of the data associated
with COVID-19;

– generating a conceptual map of the research issues and techniques mostly con-
cerned in modeling COVID-19;

– identifying and summarizing the main techniques and methods in each major
modeling discipline for modeling COVID-19;

– identifying and summarizing the main methods in model-based (e.g., mathe-
matical and statistical), domain-driven (e.g., epidemic and medical), and data-
driven (e.g., shallow and deep learning) modeling of COVID-19;

– identifying and summarizing the influence and impact of COVID-19 on mental,
economic and social aspects;

– identifying and comparing the strengths and weaknesses of major modeling
methods in terms of their reported performance in modeling COVID-19;

– identifying the gaps and opportunities for further research on modeling
COVID-19 and other similar global crises.

In contrast to the existing reviews and surveys such as [145,56], this review
aims to be:

– more comprehensive than the other references by covering cross-disciplinary
problems and techniques for modeling COVID-19;

– analytics and learning-focused where we show statistical machine learning,
model-based machine learning, deep learning, and other AI and data science
techniques have been widely applied in modeling COVID-19;

– specific to modeling COVID-19, the domain-specific research on its epidemi-
ology, medicine, vaccine, biology and pathology etc. is excluded; in addition,
classic typical methods applied in these areas but have not been widely used
in COVID-19 research are also excluded;

– unique in critical analysis and summarizing the challenges of the COVID-19
disease, data and modeling by model-, domain- and data-driven approaches;

– structural and critical by categorizing, comparing, criticizing and generaliz-
ing typical modeling methods in different disciplines and areas for modeling
COVID-19; and
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– insightful by extracting conclusive and contrastive (to other epidemics) findings
about the virus and disease.

1.1.2 Research questions

To address the above objectives, we identify useful indications, trends and oppor-
tunities in relation to the following research questions so that we can generate a
comprehensive but also concrete picture of the state-of-the-art research on mod-
eling COVID-19.

– What are the main characteristics and challenges of the SARS-CoV-2 virus
and the COVID-19 disease which make it difficult to model COVID-19?

– What does coronavirus data look like and what are the main characteristics
and challenges which make COVID-19 data difficult to model and different
from other sources of data?

– What are the main objectives of modeling COVID-19?
– What does the COVID-19 modeling landscape look like?
– What are the global research patterns and trends in relation to modeling

COVID-19?
– What are the major modeling methods and how do they perform in each major

modeling discipline, including mathematical modeling, data-driven learning,
and domain-driven modeling?

– Where are the gaps in the domain-driven, model-driven and data-driven meth-
ods in modeling COVID-19?

– What influence and impact has COVID-19 had and how are these modeled?
– What lessons can we learn from analyzing the literature on modeling COVID-

19?
– What are the knowledge (i.e., addressed but not well) and understanding (yet

to be addressed) gaps in modeling COVID-19?

In addition, we are also interested in exploring answers to the following ques-
tions:

– What forms the research landscape of COVID-19 modeling, i.e., what major
COVID-19 problems have been modeled and what modeling techniques were
used to address the COVID-19 challenges?

– How well have AI and data science, specifically data analytics, shallow and
deep learning, deepened and broadened the understanding and management of
the COVID-19 pandemic?

– Where have AI and data science techniques played a part in modeling COVID-
19 problems?

– Where can AI and data science make new, more or better differences in con-
taining COVID-19?

1.2 Review Methods

Here, we discuss the review scope, the scope of the modeling methods, and the liter-
ature selected in this review. As shown in Fig 1, we utilize a MsMa review method.
Our broad experience and understanding of the COVID-19 pandemic and its re-
search prompt the aforementioned review objectives and research questions. They
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further determine the review scope. Informed by the multi-source global literature
search and processing and their natural language processing (NLP) analytical re-
sults in [44], systematic and comprehensive modeling problems and methods are
included in this review, aiming for a comprehensive landscape of COVID-19 mod-
eling. By scrutinizing and consolidating the modeling-oriented foci and indications
from the literature analysis and other reviews on COVID-19, the representative
modeling problems, methods and related references are then highlighted in this
work for review depth and illustrations.

1.2.1 Review scope

Different from the other surveys and reviews we have identified (such as [145,56])
in relation to COVID-19, addressing the aforementioned objectives determines the
scope of this review. An important guidance on scoping the COVID-19 issues and
modeling methods concerned in this review comes from our comprehensive litera-
ture analysis of how global scientists have responded to understanding COVID-19
[44].

Accordingly, we identify a broad COVID-19 problem space (as shown in Table
1) and obtain a comprehensive view of how these COVID-19 problems have been
modeled and by what respective modeling techniques (as illustrated in Fig. 5).
A comprehensive spectrum covers the coronavirus challenges, data issues, model-
ing techniques, gaps and opportunities in relation to modeling COVID-19. This
generates a more comprehensive understanding of the COVID-19 problems and
modeling methods than other reviews. However, we do not aim to cover every-
thing related to COVID-19. Instead, our selection of literature and methods is
centered on quantifying COVID-19.

Regarding the depth of the reviewed specific techniques, the broad-reaching
scope limits the space for detailing every aspect of the reviewed issues and modeling
methods. In each area, we select their representative issues and methods for specific
and detailed discussion. For each featured technique, we introduce one general and
advanced model/method to represent their family of methods by highlighting their
novel designs and mechanisms in handling COVID-19. Instead of detailing classic
methods well covered in the related literature, we highlight those more advanced
methods with great visibility in the literature and those with hybrid designs and
good performance.

1.2.2 Modeling methods

Since COVID-19 involves various problems and issues related to different domains
and disciplines, modeling COVID-19 also involves different disciplinary methods.
The literature analysis in [44] provides useful hints on the global modeling trends,
instigating our selection of the most commonly applied modeling techniques. Ac-
cordingly, this review covers a broad-reaching spectrum of modeling techniques
and representative progress made by computer scientists (in particular data mod-
elers, analysts and machine learners), medical analytics scientists (in particular,
epidemiological, biomedical and medical analysts), and quantitative social scien-
tists (particularly influence modeling) in quantifying COVID-19. We divide the
above modeling techniques into three categories:
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– data-driven modeling including analytics and learning methods;
– model-based modeling including mathematical and statistical models; and
– domain-driven modeling including representative compartmental models in epi-

demiology and social science methods for quantifying COVID-19 problems.

In particular, the review also concentrates on AI, data science and machine
learning techniques. We explore what and how shallow and deep data analytics
and machine learning methods have been applied to address the various issues and
problems of COVID-19.

By involving the above empirical aspects and trends of modeling COVID-19, we
consider those mostly representative modeling methods. They are categorized into
mathematical models, data-driven models, domain-driven models, social science
research, simulation methods, and their hybridization, as discussed in Sections 5
to 10.

1.2.3 Literature selection

We first predefine a list of keywords related to COVID-19 modeling, as listed in
Appendix 13. We then use these keywords combined with ‘COVID-19’ and two
other general combinations: ‘COVID-19 + review’, ‘COVID-19 + survey’, to search
for the candidate references. We follow the work in [44]1 to analyze and identify
those references related to COVID-19 modeling. This results in 43,921 publications
on COVID-19 modeling.

The references are then further processed to select a small number of the
mostly relevant, quality and representative manuscripts for the inclusion in this
paper. Inspired by the guidelines usually followed in health and medical reviews,
including the Systematic Reviewers and Meta-analysis (PRISMA) guideline, the
Health States Quality-Controlled data, and the general practices in computing
surveys, we utilize the MsMa approach shown in Fig. 1 to select the literature.
The selected references for this review reflect the following considerations:

– references mainly relevant to those representative modeling techniques high-
lighted in the findings of global scientists on containing COVID-19;

– references mainly relevant to typical COVID-19 problems and issues that have
been widely discussed in the global literature on containing COVID-19;

– references that were documented and mostly compliant with the general prac-
tices in the analytics and learning communities and in alignment with their
methodologies including data and feature selection, model documentation and
evaluation;

– publications appearing in quality peer-review venues to verify their quality
(i.e., preprints and publications in low-quality venues are generally excluded);
and

– references presenting interesting and representative results in comparison with
others.

Further, for the literature on each category of modeling techniques, the ‘rep-
resentativeness’ of the modeling techniques affects the references to be included:

1 Section 3.7 Extracting modeling publications [44], more information about the modeling
publications can be found in the global scientist response dataset in Kaggle: https://www.
kaggle.com/datasets/datascienceslab/covid19-global-scientists-response.
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– the usage intensity and frequencies of modeling techniques in addressing
COVID-19;

– the usefulness and results demonstrated by modeling techniques in understand-
ing or handling COVID-19; and

– the novelty of one technique in comparison with other similar methods in the
COVID-19 literature.

The above systematic and manual literature selection results in about 300
representative references kept in this paper. However, it is worthy of noting, our
reviewed techniques and results in this paper are not limited to these references.
In fact, the above empirical guidelines are further informed by the NLP-based
analysis of the references on modeling in our other literature analysis [44]. This
report informs the general trending patterns and dynamics of problems, issues and
techniques concerned by broad modeling communities in quantifying COVID-19.

Although the above guidelines screen the references cited in this paper, many
references are not cited because of space considerations. There are a huge number
of references available in the body of literature [44]. Much more work is required
to select more representative references from the some 50k literature related to
AI, data science and machine learning for COVID-19 in particular [44]. We refer
interested readers to the appendices in [44] for the metadata of these references
and the original sources from which we acquired the full references.

1.3 Some Findings

The most important finding of this review relates to the answers to and the ob-
servations and insights gained to the question what does the COVID-19 modeling
look like. It generates a relatively full body of knowledge and a comprehensive con-
ceptual spectrum of this research area: the reality and challenges of the COVID-
19 pandemic, data complexities, modeling complexities, the knowledge map of
COVID-19 modeling objectives and techniques, the knowledge gaps, and open
opportunities in modeling COVID-19. These make this review the most compre-
hensive and systematic in the COVID-19 literature [44].

Below, we summarize some high-to-low level observations and illustrate some
quantitative indications of the above major aspects from this review.

– COVID-19 problems and complexities: The research covers the full spectrum of
SARS-CoV-2 and COVID-19 problems and issues, including epidemic dynam-
ics and transmission, coronavirus and disease diagnosis, infection identification,
contact tracing, virus mutation, resurgence, medical diagnosis and treatment,
pharmaceutical interventions, pathological and biomedical analysis, drug and
vaccine development, non-pharmaceutical interventions, and socioeconomic in-
fluence and impact. The COVID-19 disease characteristics and complexities
include complex hidden epidemic attributes, high contagion, high mutation,
high proportion of asymptomatic-to-mild symptomatic infections, varied and
long incubation periods, ethnic sensitivity, and other high uncertainties, show-
ing significant differences between SARS-CoV-2 and other existing viruses and
epidemics.

– COVID-19 data and challenges: The literature involves comprehensive
COVID-19 data, including (1) core data such as daily confirmed, recovered
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and deceased cases, daily asymptomatic infections, pathological, clinical and
genomic results of virus and disease tests, genomic analysis, drug-target match-
ing, and patients’ demographics, healthcare activities, hospitalized informa-
tion, and public health services; (2) intervention and response data: such as
non-pharmaceutical intervention (NPI) policies and events, vaccination, wel-
fare and human service response, people’s responses, behaviors, public activi-
ties, mobility/transport, and business activities; (3) external data such as so-
cial media, Q/A, questionnaires, weather, environment, misinformation, and
news. This comprehensive COVID-19 data spectrum also involves almost all
the data complexities widely explored in modeling, analytics and learning, in-
cluding data uncertainty, dynamics, nonstationarity, data quality issues such as
incompleteness, inconsistency, inequality and incomparability, lack of ground
truth information, and limited and inconsistent daily reporting.

– COVID-19 modeling challenges: The COVID-19 complexities and their data
challenges bring about various modeling issues and challenges, including pro-
ducing a universal representation of the data genomics of COVID-19, involving
cross-disciplinary knowledge in creating a unified COVID-19 quantification,
enabling multi-objective and multi-task modeling of comprehensive problems,
modeling low-to-poor quality COVID data, modeling small and limited COVID
data, COVID learning with weak-to-no prior knowledge and ground truth,
modeling hierarchical and diverse forms of COVID heterogeneities, modeling
weak-to-hidden couplings and interactions between multi-source, multimodal
and external COVID data, disclosing hidden and unknown attributes and dy-
namics of the virus and disease over time, region, and context, and applying
overparameterized and pretrained deep neural networks on often small but
complex COVID data.

– COVID-19 modeling techniques: The COVID-19 modeling landscape is com-
prehensive and systematic and covers almost all modeling methods from a wide
disciplinary body of knowledge, including conventional mathematical and sta-
tistical modeling, simulation methods, epidemiological and epidemic modeling,
modern data-driven discovery, shallow and deep machine learning, evolutionary
computing methods, event and behavior modeling, and social science methods
such as psychological and economic analysis methods.

– COVID-19 disciplinary modeling : Of the 346k publications collected on
COVID-19, about 44k publications (and extra 7k preprints) are on model-
ing COVID-19 [44]. In these modeling publications, about 14%, 8% and 50%
of publications are from computer science, social science, and medical science,
respectively.

– COVID-19 mathematical and statistical modeling : There are about 25k ref-
erences on mathematical and statistical modeling, where regression models
including linear, logistic, Cox and Poisson regression are mostly applied, with
univariate, multivariate and Bayesian statistics ranking second. The COVID-19
problem keywords which are most frequently used are risk factor, healthcare,
anxiety, lockdown, vaccine, depression, stress, vaccination, distress, and mor-
tality rate.

– COVID-19 epidemic modeling : Compartmental models are involved in over
5.6k publications, with the most used models being susceptible-exposed-
infectious-removed (SEIR), susceptible–infectious–recovered (SIR), suscepti-
ble–infectious–recovered–dead (SIRD), and growth models. The COVID prob-
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lem keywords which are most used are lockdown, reproduction number, pol-
icy, intervention, vaccine and vaccination, healthcare, social distancing, control
measure, and transmission rate.

– COVID-19 medical and biomedical modeling : There are over 21k publications
from medical science, where the techniques which are most frequently applied
are regression models including logistic, linear and Cox regression, multivari-
ate statistics, simulation, statistical models, machine learning, artificial intelli-
gence, and Bayesian models. The COVID-19 problem keywords which are most
used are risk factor, healthcare, vaccine and vaccination, anxiety, depression,
stress, distress, screening, and CT.

– COVID-19 machine learning : Of the 44k modeling publications, over 8.5k
publications are on shallow and classic machine learning, where support vec-
tor machine (SVM), sentiment analysis, random forest, classification, decision
tree, clustering, natural language processing (NLP), artificial neural networks
(ANN) are the most reported techniques. The COVID-19 problem keywords
which are most used in these machine learning publications are healthcare, X-
ray, CT, lockdown, vaccine, tweets, policy, social media, lung and vaccination.
In contrast, over 4.5k references investigated deep learning methods, includ-
ing convolutional neural networks (CNNs), neural networks, transfer learn-
ing, long-short term memory (LSTM), ResNet, VGG, deep neural networks
(DNNs), recurrent neural networks (RNNs), and MobileNet. The COVID-19
problem keywords which are most frequently used are X-ray, CT, lung, screen-
ing, healthcare, monitoring, vaccine, RT-PCR, and lockdown.

– COVID-19 modeling tasks: On one hand, modeling tasks address almost all
COVID-19 problems and issues [44], including 4.4k publications related to
mental health, anxiety, depression and stress, 1.5k related to the second wave,
2k related to lockdown and social distancing, 2.4k related to vaccine and vac-
cination, 1.2k related to risk factors, and 3.3k on the prediction of COVID-19
spread, cases, and mortality, 5.5k on epidemic modeling, 5.6k on diagnosis
and identification, 2.8k on influence and impact, 3k on simulation, and 0.7k
on resurgence and mutation. On the other hand, the literature covers an over-
whelming number of analytical and learning tasks including roughly 1.3k on un-
supervised learning and clustering, 2.6k on classification, 0.2k on multi-source
and multi-modal data modeling and multi-task learning, and 3k on forecasting
and prediction.

– Epidemic attributes: as summarized in Section 3.2 on COVID-19 disease char-
acteristics, it is estimated that the reproduction number (probably larger than
3 in the original wave and over 2 in the resurgence after receiving vaccination)
is much higher than SARS and MERS, the incubation may last for an average
of 5 to even beyond 14 days, the asymptomatic infections may be much higher
than 20% with even up to 80% undocumented infections in some countries,
and some virus mutants may increase the transmission rate by more than 50%
over the original strain.

– COVID-19 learning performance2: As illustrated in Section 6.2, COVID-19
shallow learning references report an accuracy of over 90% in predicting

2 Note, here the quoted numerical results are illustrative, which may not represent the state-
of-the-art performance and are subject to specific conditions. Interested readers may refer to
[44] and specific references for more comprehensive information about how global scientists
have responded to model COVID-19.
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COVID-19 outbreaks, over 96% in disease diagnosis on clinical reports, over
98% in diagnosis on medical images, and close to 99% in diagnosis further in-
volving latent features with specific settings and data. As detailed in Sections
6.3 and 7.2, in the references on COVID-19 deep learning and medical imaging
analysis, DNN variants achieve significant prediction performance on COVID-
19 images and signals, e.g., an accuracy of over 92% on cough sound using
LSTM, over 99% on chest X-ray images using CNN and ImageNet variants,
and less than 5% MAE on real unlabelled lung CT images using attention and
gated U-Net.

– COVID-19 non-pharmaceutical intervention effect : As detailed in Section 8.1,
modeling the effect of COVID-19 interventions and policies, NPIs such as busi-
ness lockdowns, school closures, limiting gatherings, and social distancing were
shown to be crucial in containing virus outbreaks and reducing COVID-19
case numbers, e.g., reducing the reproduction number by 13%-42% individu-
ally or even 77% jointly using these control measures, and resulting in over
40% transmission reduction by restricting human mobility and interactions.

– COVID-19 mental, social and economic impact : In the literature, mental
health, anxiety, stress, and depression form the top concerns, showing the over-
whelming negative COVID-19 impact on public mental health. The pandemic
also had a significantly diverse impact on economic growth and the workforce
(e.g., over 20% estimated annual GDP loss in 2020), public health systems,
global supply chains, sociopolitical systems, and information disorder.

In addition, this review also identifies significant gaps and opportunities in
modeling COVID-19. On one hand, as detailed in Section 11.1, the review finds
various issues and limitations in the existing research, e.g., an insufficient, biased
and partial understanding of COVID-19 complexities and data challenges; a sim-
ple and direct application of modeling techniques on often simple data; the lack
of robust, generalizable and tailored designs and insights into the virus and dis-
ease nature and complexities. On the other hand, as discussed in Section 11.2, we
also identify various opportunities for AI, data science, and machine learning in
relation to COVID-19. Significant new opportunities include (1) studying rarely
to poorly addressed problems such as epidemiologically modeling mutated virus
attributes, complex interactions between core and external factors, and the influ-
ence of external factors on epidemic dynamics and NPI effect; (2) developing new
directions and methods such as hybridizing multiple sources of data or methods to
characterize the complex COVID systems; and (3) enabling novel AI, data science
and machine learning research on the large-scale simulation of the intricate evo-
lutionary mechanisms in COVID, discovering robust and actionable evidence to
dynamically personalize the control of a potential resurgence and balance economic
and mental recovery and virus containment.

1.4 Contributions and Limitations

We aim to make the first attempt at creating a comprehensive and concrete picture
of COVID-19 modeling.
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1.4.1 Contributions

COVID-19 has had a devastating impact on every aspect of life, however, there
is currently no research available on how global scientists have responded to this
unprecedented global crisis. Accordingly, to the best of our knowledge, this is
the first attempt to address this expectation3. It extracts the comprehensive and
structured research landscape of what problems and issues related to COVID-19
have been widely discussed in the literature, how the coronavirus and COVID-19
have been quantified in the broad disciplines, and what are the typical modeling
methods favored in the literature.

The review extracts various insights about modeling COVID-19 in terms of the
global trends, representative methods across disciplines, and typical performance
from those reported applications. It also incorporates much discussion on the top-
ics, methods, gaps, opportunities, and directions to tackle those issues which are
rarely or poorly addressed and areas which remain open in the broad research
landscape of modeling COVID-19.

The review is organized as follows. We start by categorizing the characteristics
and challenges of the COVID-19 disease, the data and the modeling in Section
3. A transdisciplinary landscape is formed to categorize and match both COVID-
19 modeling tasks and objectives and categorize the corresponding methods and
general frameworks in Section 4. The review then focuses on structuring, analyzing
and comparing the work on mathematical, data-driven (shallow and deep machine
learning), domain-driven (epidemic, medical and biomedical analyses) modeling
in Sections 5, 6 and 7, respectively. Section 8 further discusses the modeling on
the influence and impact of COVID-19, Section 9 reviews the work on COVID-19
simulations, and the related work on COVID-19 hybrid modeling is reviewed in
Section 10. Lastly, Section 11 discusses the significant gaps and opportunities in
modeling COVID-19.

1.4.2 Limitations

However, this review also presents the various limitations of the existing work and
highlights opportunities for further work and for the readers’ attention.

As discussed in Section 1.1, this review aims to be comprehensive, specific,
unique, structural, critical and insightful. Achieving this aim requires a broad
body of knowledge and an extensive volume of literature, consequently making the
review very comprehensive, somehow unfocused as in the topic-specific reviews,
and shallow in the sense it does not delve deeply into every reviewed area and
modeling technique.

We also do not verify the actionability and operationability of all the cited
methods and their results in terms of their epidemic, clinical, socioeconomic, or
other practical tests and applications, as in [230] and suggested in [73]. The ref-
erence selection is not centered on the practical applicability and test as in [230].
We thus do not enforce guidelines such as PRISMA in screening the references.
Further, we do not undertake our own quantitative evaluation and validation of
each method and reference cited in this review as in, for example, [295]. Hence, the

3 This review complements another literature analysis in [44], and together they are the only
initiatives to examine the research map from a cross-disciplinary and cross-domain perspective.
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performance reported in this review is from their publications directly by assuming
that this has been checked by their peer-review process.

This leaves a major deficit in the actionability of these review findings, i.e.,
whether and where these well-performing models and their reported results are
problematic (e.g., with methodological, design, setting, data or evaluation biases).
We thus refer interested readers to practical codes [73] and other practice-related
reviews [295,230] for their evaluation and suggestions of machine learning models
for COVID-19 diagnosis and practical tests.

In addition, we also direct the readers’ attention to the potential issue in the
fairness, bias, evaluation, accountability, transparency and interpretability of their
methodologies, designs, data manipulation, evaluation methods, and result presen-
tation. Interested readers can refer to the relevant discussions on statistical, AI,
data-driven, and machine learning methods and their reproducibility, actionabil-
ity, code of conduct, and regulation in practical tests and applications (e.g., [45,
191,40,174,204,73,42].

In addition, this review can also be further improved in various other as-
pects. (1) As the scope and capacity of the review is limited, we do not cover the
domain-specific literature on pure medical, biomedical and social science-oriented
topics and methods without involving modeling methods and without addressing
COVID-19. This thus filters out many well-recognized techniques in their domain-
specific communities, for instance, Markov chain Monte Carlo (MCMC)-based
Bayesian inference is widely appreciated in epidemiology, whereas here we only
introduce those techniques involving COVID-19. (2) There are over 50k references
applying or discussing the role of AI and data science in addressing COVID-19 by
researchers from medical, computer and social science communities [44]. It is not
possible to fully cover or highlight these in detail in this review. Instead, we collect,
categorize and summarize the representative and trending techniques and meth-
ods, and encourage interested readers to refer to the metadata of the categorized
references and even the sources where we crawled the literature in [44] and its ap-
pendix. (3) As discussed in the above, different from the narrowly-focused review
papers in the area which highlight specific techniques and their relevant references,
we categorize and formulate those mostly applied and novel modeling techniques
with interesting and good-performing results. We summarize their representative,
novel and generalizable formulations from each major family of modeling tech-
niques, which are expected to capture the typical and major frameworks, designs
and mechanisms of their methods. This also indicates that we neither introduce
all or most of the methods in each family nor present all details of the models.
(4) This review does not answer many important questions concerning modelers,
governments, policy-makers, and domain experts, e.g., what has the modeling dis-
closed to us about the nature of COVID-19 and whether the results reported in
the literature disclose the reality of COVID-19, which is complicated and requires
more purposeful reviews and modeling studies. (5) There are many challenging
problems yet to be informed or addressed by the existing modeling research, as
discussed in Section 11. (6) There are increasingly more and newer references in-
cluding preprints emerging online every day, which pose significant challenges to
instantly reflect the up-to-date important references and their contributions to
modeling COVID-19.
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2 Related Work

We briefly summarize the relevant reviews from general and modeling-related per-
spectives. The work on modeling COVID-19 is then reviewed in terms of the
general applications of AI and machine learning methods, specifically concerning
COVID-19 problems, specific modeling techniques, and practical issues of applying
machine learning in COVID-19 practice.

First, various reviews focus on generating a general overview and understand-
ing of various non-modeling-oriented, domain-specific (e.g., medical, health, bio-
logical, and social) areas of COVID-19. Examples are the review of COVID-19
characteristics [81], epidemiology [205], epidemiology, virology and pathogenesis
[277], serological tests [155], diagnosis [309], asymptomatic and presymptomatic
infection [34,142], long-term effects [164], non-pharmaceutical interventions [211],
mental health [299], and social media [260]. Readers interested in such areas may
refer to them for more information, however, they go beyond the scope and focus
of our review.

Second, few general reviews are available on the applications of broad AI, ma-
chine learning and quantification techniques in COVID-19. The review in [56] lists
and categorizes the applications of various AI techniques in COVID-19 detection,
diagnosis, virology, pathogenesis, drug and vaccine development, and coronavirus
transmission and prediction. The review in [43] provides a brief summary of the
challenges, global AI research, the modeling trends and gaps in combating COVID-
19. The report provided by AAAS [1] provides a brief summary of selective applica-
tions and the impact of AI in fighting COVID-19 in particular in the US. It briefly
discusses some AI applications and classifies them into five classes: forecasting,
diagnosis, containment and monitoring, drug development and treatments, and
social and medical management. The report then focuses on major ethical and
human rights frameworks and concerns in relation to medical AI applications in
fighting COVID-19. They involve autonomy, beneficence, nonmaleficence, justice,
privacy, confidentiality, equality, and non-discrimination and the legal, regulatory
and societal issues in their implementation and practice. However, none of these re-
views provide a comprehensive and detailed coverage, critical analysis, or technical
evaluation of broad AI for COVID-19.

Many reviews and surveys have emerged over time to discuss the applications
of specific AI and machine learning methods in fighting COVID-19. They typically
focus on specific topics and areas in modeling COVID-19. Examples are epidemic
and transmission forecasting [226], asymptomatic transmission [35], virus detec-
tion, spread prevention, and medical assistance [241], COVID-19 case prognosis,
analysis and tracking [228], diagnosis and prognosis prediction [295], imaging data
segmentation and diagnosis [242], and drug and vaccine development [132]. None
of them cover all aspects with review depth and width as in our review.

Most reviews focus on specific AI, machine learning, and modeling methods.
They include mathematical and statistical modeling [182], epidemiological model-
ing [205], general AI and machine learning methods [132,182,56,228], data science
[145], computational intelligence [261], computer vision and image processing [264,
242], and deep learning [312,121]. No reviews cover all methods from a systematic
perspective as in our review.

It is worth noting that almost all reviews focus on the summarization and
categorization of the related work on COVID-19. No work has yet been found
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on re-evaluating the results and performance reported in the literature. Instead,
few references focus on the meta-analysis of the documentation, validity, appli-
cability and bias etc. issues of AI and machine learning models and their results
for COVID-19 clinical practice by employing certain meta-analysis guidelines and
practical test criteria. In [230], the authors discussed various common pitfalls and
issues existing in the machine learning literature on COVID-19 detection and prog-
nosis. By applying the systematic reviews and meta-analyses (PRISMA) checklist
and the author’s full-text review of the few eligible selected references, the various
issues in most references were pointed out, in particular, those related to presen-
tation quality, detailed data, feature and model specifications for reproducibility,
validation, and the risk of bias. In [295], the authors reviewed and appraised the
validity and usefulness of predictive models for COVID-19 diagnosis and prognosis.
They identified that almost all models suffer from problems including poor and
nontransparent documentation, the risk of bias, and problematic performance,
therefore, they are invalid for direct and widespread clinical applications. It is
noted that such concerns may conflict with more optimistic opinions of AI and
machine learning for COVID-19 [266] and the widespread commercial and enter-
prise analytics [42]. Many identified issues and concerns could be substantially
addressed by enforcing the health practical guidelines and codes [73] and applying
actionable knowledge discovery methodologies and processes [45,39].

Overall, a major gap in these reviews is that they only paint a partial pic-
ture of what happened in their selected areas based on several references, specific
techniques, or particular review purposes. There are no comprehensive surveys or
critical analyses of the intricate challenges posed by the virus, the disease, the
data, and their modeling from a cross-disciplinary and cross-domain perspective.
Our review aims to address these issues.

3 COVID-19 Pandemic, Characteristics and Complexities

The COVID-19 pandemic is a complex physical-social-technical system which also
involves cyberspace [43]. Accordingly, COVID-19 modeling has to address the gen-
eral and domain-specific complexities, challenges and research questions in the con-
tinuum, take advantage of the advances in the related physical, social, technical
and cyber sciences, and involve domain-specific knowledge and factors.

Here, we briefly delineate the COVID-19 pandemic status and summarize the
main characteristics and challenges of the COVID-19 disease, the data challenges,
and the challenges in modeling COVID-19. Fig. 2 summarizes the major challenges
of COVID-19 in terms of the virus and disease, data, and modeling.

3.1 COVID-19 Pandemic

The coronavirus disease 2019, designated as COVID-19, is caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus4. SARS-CoV-2 and
COVID-19 have overwhelmingly shocked and shaken the entire world. After the
first outbreak in Wuhan China in Dec 2019, the disease spread rapidly across the

4 WHO Coronavirus (COVID-19) Dashboard: https://covid19.who.int/.
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Fig. 2 Three-dimensional COVID-19 complexity space: virus and disease, data, and modeling.

entire world in only two months due to its strong human-to-human transmission
ability. The World Health Organization (WHO) declared COVID-19 a pandemic
on 11 March 2020. To date, COVID-19 has infected more than 577M people with
6.4M confirmed to have lost their lives5. The continuously and iteratively mutative
infections have been even more serious, posing a severe threat to 228 countries and
territories. The coronavirus has experienced various generations of resurgences and
mutations, which continuously challenge pandemic containment, vaccination, and
treatments.

With the widespread-to-cluster infections and resurgences, continuously evolv-
ing and increasingly contagious mutations from Alpha, Beta, Gamma, Delta to
Omicron (currently the strain BA.5)6, and the slow, sparse and unbalanced roll-
outs of global vaccinations for global herd immunity, COVID-19 has continuously
and fundamentally transformed global public health, the economy and society
with an increasingly unprecedented impact on every aspect of life and the world.
COVID-19 has not only exerted an unprecedented pressure on global healthcare
systems, but also fundamentally challenged the relevant scientific research on un-
derstanding, modeling, diagnosing and controlling the virus and disease and its
huge impact. Many questions and challenges arise about COVID-19 in relation to
the nature of the coronavirus; the virus’ epidemic characteristics, transmission and

5 COVID-19 Coronavirus Pandemic: https://www.worldometers.info/coronavirus/\#
countries, accessed on 27 July 2022.

6 SARS-CoV-2 variants: https://www.who.int/activities/
tracking-SARS-CoV-2-variants.
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influence processes; the disease’s medical and genomic characteristics, dynamics
and evolution; and the pros and cons of existing containment, diagnosis, treatment
and precaution strategies.

Compared with the epidemics that have been defeated in recent decades, such
as the severe acute respiratory syndrome (SARS) and the Middle East respiratory
syndrome (MERS), SARS-CoV-2 and COVID-19 are much more complicated and
more transmissible from human to human and more uncertain, evolving, conta-
gious, and exceptional [195]. Its unique and exceptional uncertainty, transmission
and mutation form some of the key factors that make COVID-19 a continuous,
unprecedented and evolving pandemic. Another key challenge of COVID-19 is its
long incubation period (ranging from 1 to 14 days or even longer for its early
strains like Delta) and high asymptomatic proportion. In the incubation period,
infectious individuals are contagious but show no symptoms. Consequently, sus-
ceptible individuals may not be aware that they have been infected, hindering
their timely identification, contact tracing, and containment. Unfortunately, the
number of asymptomatic and mild symptomatic infections is significant over all
coronavirus strain-based infections. Asymptomatic infectives are a concerning hid-
den source of the widespread infection and resurgence of COVID-19 [142], making
it difficult-to-impossible to be absolutely clear about their source, diagnosis and
mitigation. This brief comparison poses challenging questions to be answered scien-
tifically, including how COVID-19 differs from other epidemic or endemic diseases,
what forms the realities of the asymptomatic phase and infection, what are more
effective methods to contain and treat the virus and disease, and how the virus
mutates and reacts to vaccines and the environment.

Specifically, to slow the pandemic and bring infections under control, most
governments implemented many NPIs during the outbreak. Typical NPIs include
social distancing, school and university closure, infective isolation or quarantine,
banning public events and travel, and business lockdown, etc. These interventions
unfortunately incur significant socioeconomic costs and have an adverse impact
on businesses. Their practical implementation and management have thus trig-
gered various debates including on the appropriate trade-off between epidemic
control and the negative impact introduced by NPIs and between strict mitigation
(COVID zero or zero COVID) and herd immunity over the virus evolution. It is
quantitatively unclear as to what makes a better trade-off, what are the best tim-
ing and appropriate extent of mitigation, what is the positive and negative impacts
of NPIs on pandemic control and socioeconomic wellness, and how has COVID-19
influenced other aspects of public life, work, mental and medical health, and the
economy on both individual and population (e.g., a city, country to the globe)
levels.

3.2 Coronavirus and COVID-19 Complexities

Containing and modeling COVID-19 is highly challenging because its epidemiolog-
ical, clinical and pathological characteristics are sophisticated, evolving and poorly
understood7 [112,115,205]. Despite common epidemic clinical symptoms like fever,
cough, tiredness and loss of taste or smell [124], SARS-CoV-2 and COVID-19 have

7 Coronavirus disease (COVID-19): https://www.who.int/health-topics/coronavirus.
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many other sophisticated characteristics [195] that make them more mysterious,
contagious and challenging for quantification, modeling and containment. We sum-
marize a few of these below.

High contagiousness and rapid spread. The high contagiousness of SARS-CoV-2
is one of the most important factors driving the COVID-19 pandemic. In epidemi-
ology, the reproduction number R0 denotes the transmission ability of an epidemic
or endemic. It is the expected number of cases directly generated by one case in
a population where all individuals are susceptible to infection [91]. If R0 > 1,
the epidemic will begin to transmit rapidly in the population, while R0 < 1 in-
dicates that the epidemic will gradually vanish and will not lead to a large-scale
outbreak. Different computational methods have estimated and produced varying
reproduction values of COVID-19 in different regions. For example, Sanche et al.
[235] report a median R0 value of 5.7 with a 95% confidence interval (CI) [3.8,
8.9] during the early stages of the epidemic in Wuhan China. Gatto et al. [92]
estimate a generalized reproduction value of 3.60 (95% CI: 3.49 to 3.84) using the
SEIR-like transmission model in Italy. de Souza et al. [70] report a value of 3.1
(95% CI: 2.4 to 5.5) in Brazil. The review finds that the R0 of COVID-19 may be
larger than 3.0 in the initial stage, higher than that of SARS (1.7-1.9) and MERS
(< 1) [213]. It is generally agreed in the literature that SARS-CoV-2 is more trans-
missible than the severe acute respiratory syndrome coronavirus (SARS-CoV) and
the Middle East respiratory syndrome coronavirus (MERS-CoV) although SARS-
CoV-2 shares 79% of the genomic sequence identity with SARS-CoV and 50% with
MERS-CoV [166,81,212,115].

A varying incubation period. The incubation period of COVID-19, also known
as the pre-symptomatic period, refers to the time from becoming infected by expo-
sure to the virus and symptom onset. For the early virus variants like Alpha and
Beta, a median incubation period of approximately 5 days was reported in [147],
which is similar to SARS. In [205], the mean incubation period was found to range
from 4 to 6 days, which is comparable to SARS (4.4 days) and MERS (5.5 days).
Although an average incubation period of 5-6 days is reported in the literature, the
actual incubation period may be as long as 14 days [195,308,147]. Unlike SARS
and MERS, COVID-19 infected individuals are already contagious during their
incubation periods. As it is likely that they are unaware of being infected and
have no-to-mild symptoms during this period, they may easily become unknown
sources of widespread transmission. This characteristic has informed screening and
control policies, e.g., mandatory 14-day quarantine and isolation, corresponding
to the longest predicted incubation time, for the ancestral strains. However, with
virus mutation, incubation periods vary and shorten over generations. Omicron
has an average of 3 days after hospital admission, in comparison to 4 days for the
Delta strains and 5-6 days for Alpha [248]. The widely varying COVID-19 incuba-
tion periods and their uncertainty in specific hotspots and with particular strains
make their source tracing, case identification and infection control very difficult.

A large proportion of asymptomatic, presymptomatic and undocumented infec-
tions. This shows that COVID-19 has a broad clinical spectrum which includes
asymptomatic, presymptomatic and mild illness [50,152,212,194]. Asymptomatic
and presymptomatic infections may not be screened and diagnosed before symp-
tom onset, leading to a large number of undocumented infections and the po-
tential risk of contact with infected individuals [142]. The review in [35] reports
that, of those who tested positive in the studies conducted in seven countries, the
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proportion of asymptomatic cases ranged from 6% to 41%. The study in [289]
reports that 23% of those infected were asymptomatic. Buitrago-Garcia et al. [34]
found that most people who were infected did not remain asymptomatic through-
out the course of infection, and only 20% of infections remained asymptomatic
during follow-up. In contrast, the study in [154] shows that a large percentage
(86%) of infections are undocumented, about 80% of documented cases are due
to transmission from undocumented cases, and the transmission rate of undoc-
umented infections is about 55% of that of documented cases. However, these
estimates require further larger-scale verification and study. The accurate propor-
tion of asymptomatic, presymptomatic and mild-symptomatic transmissions and
infections of different generations of coronaviruses remains unclear. It is also un-
clear whether the higher contagiousness of new variants like Delta and Omicron
is associated with their higher asymptomatic and presymptomatic transmissions
and how the asymptomatic, presymptomatic and mild-symptomatic transmissions
of new strains evolve over their mutation.

High mutation and high contagion with mysterious strains. The up-to-date
five major SARS-CoV-2 variants of concern are B.1.1.7 (labeled Alpha), B.1.351
(Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529 (Omicron)8. Research
shows their mutations likely result in increased transmissibility, immunity and
severity for most mutated lineages and mutations9 For example, Beta variants
have higher transmissibility (B.1.1.7 has approximately 50% increased transmis-
sion than the original variant) [220] and reproduction rate (B.1.1.7 has an increased
reproduction rate of 1-1.4) [273], challenging the vaccines and containment and
mitigation methods. The basic reproduction number (R0) of the variant B.1.617.2
(Delta) is between 3.2 and 8 [160]. The transmissibility of the Omicron variant
is about 3.2 times than that of Delta, and the doubling time is approximately
3 days [162]. Overall, the identified variants of concern generally have increased
transmissibility, increased detrimental change of epidemiology, and more severe
virulence and disease presentation (e.g., increased hospitalizations or deaths). In
general, they result in the decreased effectiveness of public health and social mea-
sures, reduced effectiveness of available diagnostics, vaccines and therapeutics,
increased diagnostic detection failures, and reduced neutralization by antibodies
and vaccine breakthrough generated during previous infection or vaccination1011.

Discussion. While the above observations summarize the most recent under-
standing of SARS-CoV-2 and COVID-19 complexities, it is also noted that our
knowledge about the nature of the coronavirus and its lineages and mutations
is still limited and nondeterministic. Without knowing its origins and with the
often limited and specific observation-based studies, there could be much misin-
formation and biased characterization of the virus and its evolution and impact
on transmissibility, immunity, and severity as well as on vaccination and the NPIs

8 Tracking SARS-CoV-2 variants: https://www.who.int/activities/
tracking-SARS-CoV-2-variants.

9 SARS-CoV-2 variants of concern: https://www.ecdc.europa.eu/en/covid-19/
variants-concern.
10 Tracking SARS-CoV-2 variants: https://www.who.int/en/activities/
tracking-SARS-CoV-2-variants/.
11 The effects of virus variants on COVID-19 vaccines: https://www.who.int/news-room/
feature-stories/detail/the-effects-of-virus-variants-on-covid-19-vaccines?gclid=
EAIaIQobChMIgbWS4v3I8QIVRNeWCh3B6wdHEAAYASAAEgLXBfD\_BwE/.
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required [232]. There is weak to no ground truth about the realities of infections,
symptoms shown in medical imaging, and appropriate mitigation and treatment
measures. There have been no joint global pathological, epidemiological, biomedi-
cal and socioeconomic studies which provide a deep and systematic understanding
of the COVID-19 virus and disease complexities, common knowledge, and ground
truth.

3.3 COVID-19 Data Complexities

COVID-19 involves multisource, multimodal, internal and external factors and
often small, sparse and quality-inconsistent data12 [145,44]. Typical data sources
and factors in relation to COVID-19 include but are not limited to:

– epidemiological factors (e.g., origin, incubation period, transmission rate, mor-
tality, morbidity, and high to least vulnerable population, etc.);

– daily new-infected-recovered-death case numbers, their reporting time and re-
gion of occurrences;

– clinical, pathological and genomic data (e.g., symptoms, medical facilities, hos-
pitalization records, medical history, medical imaging, pharmaceutical treat-
ments, gene and protein sequences);

– domain knowledge and precautionary guidelines from authorities on the virus
and disease;

– infective demographics (e.g., age, gender, race, cultural background, and habit);
– vaccination data (e.g., vaccine information, vaccination transactions, and vac-

cination effects);
– quarantine and mitigation measures and policies (e.g., social distancing and

border control) relating to communities and individuals;
– social activities and mobility of COVID-19 patients and infectives;
– seasonal and environmental factors (e.g., season, geographical location, tem-

perature, humidity, and wind speed);
– news, reports and social media discussions on coronavirus and COVID-19;
– social, economic, cultural, political etc. factors related to the COVID-19 im-

pact;
– mental, emotional, sentimental and psychological effects; and
– fake news, rumor and misinformation.

Such COVID-19 data are heterogeneously coded in character, text, number or
image; in unordered, temporal/sequential or spatial modes; in static or dynamic
forms; and with varied characteristics. Such data also present significant complex-
ities challenging the existing research on COVID-19 and direct applications of
modeling methods in COVID-19. The main characteristics of COVID-19 data are
summarized below.

Acyclic, small-size and short-range case numbers. The publicly available data
on COVID-19 case numbers are limited. Except in rare scenarios such as in the
US, most countries and regions report a short-range (2-3 months or even shorter

12 Coronavirus research and data: https://ourworldindata.org/coronavirus; CORD-19:
The Covid-19 Open Research Dataset: https://www.kaggle.com/allen-institute-for-ai/
CORD-19-research-challenge; and global COVID-19 publication data: https:
//datasciences.org/covid19-modeling/.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 26, 2022. ; https://doi.org/10.1101/2022.08.22.22279022doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.22.22279022
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 L. Cao and Q. Liu

such as for local hotspot-based outbreaks), low-granularity (typically daily), and
small-size (daily case numbers for a short period of time and a small population
of the outbreak clusters) record of core COVID-19 data. Such data are typically
acyclic without the obvious seasonal or periodical patterns as of influenza [65] and
recurrent dengue epidemics in tropical countries [265].

Problematic statistics of COVID-19 cases. The reported new-infected-
recovered-death case numbers are estimated to be much lower than their real
values in most countries and regions. This may be due to many reasons, such
as presymptomatic and asymptomatic infections, limited testing capability, non-
standard manual recording, different confirmation standards, an evolving under-
standing of the nature of the virus and disease, and other subjective factors. The
method of calculating case statistics may vary significantly from country to coun-
try. The actual figures in some countries and regions may even be unknown. No
clear differentiation is made between hotspot and country/region-based case re-
porting. Such gaps between the infection reality and what has been documented
may be more apparent in the first wave, in the early stage of outbreaks, and in
some countries and regions [172]. As result, the actual number of infections and
the number of regions affected by the COVID-19 pandemic may be much higher
than those publicly reported.

Lack of high-quality micro-level data. The number of COVID-19 cases, includ-
ing daily infected cases, daily new cases, daily recovery cases, and daily death
cases, are collected on a daily basis in most countries and regions, while daily
susceptible case numbers were also reported in China, including the first wave in
Wuhan. The macro-level and low-dimensional data are far from comprehensive for
inferring the complex transmission processes accurately. More fine-grained data
with various aspects of features and high dimensions are needed. For example,
during the initial phase of the Wuhan outbreak, the dissemination of SARS-CoV-
2 was primarily determined by human mobility in Wuhan. However, no empirical
evidence on the effect of key geographic factors on local epidemic transmission
was available [225]. The risk of COVID-19 death varies across various sociodemo-
graphic characteristics [76], including age, sex, civil status, individual disposable
income, region of residence, and country of birth. More specific data is required
to address the sociodemographic inequalities of those contracting the coronavirus.
To contain the spread of COVID-19, different governments propose and initiate a
series of similar-to-different NPIs. No quantitative evidence or systematic evalua-
tion analyzes how these measures precisely affect epidemic transmission, leading
to challenges in inferring NPI-based COVID-19 transmission and mitigation.

Data incompleteness, inconsistencies, inequality and incomparability. Typi-
cally, it is difficult to find all-round information about COVID-19 patients’ in-
fection source, their demographics, behaviors, social activities (including mobility
and in social media), clinical history, diagnoses and treatments, and reinfections.
COVID-19 public data also presents strong inconsistencies and inequalities across
reporting hotspots, countries and regions, their reporting and updating frequen-
cies and timelinesses, case confirmation standards and criteria, collection methods,
and stages and conditions of case confirmation [231]. Data from different countries
and areas may be unequal and incomparable due to their non-unified statistical
criteria, confirmation standards, sampling and coverage methods, health and med-
ical conditions and protocols. Other inconsistent areas include a patient’s race, life
habits, and mitigation policies enforced on them or their living areas.
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Lack of reliable data particularly in an initial outbreak. The spread of an epi-
demic in its initial phase can be regarded as transmission under perfect conditions.
In its initial phase, the intrinsic epidemiological characteristics of COVID-19, such
as reproduction rate, transmission rate, recovery rate, and mortality rate are closer
to their true values. However, such data are often insufficient and unreliable. For
example, the modeling results in [231] show a wide range of variations due to the
lack of reliable data, especially at the beginning of an outbreak.

Other issues. Comparing the public data available from different sources also
reveals other issues like potential noise, bias and manipulation in some reported
case data (e.g., due to their nonuniform statistic standards or manual statistical
mistakes), missing values (e.g., unreported on weekends and in the early stage of
outbreaks), different categorizations of cases and stages (e.g., some with susceptible
and asymptomatic case numbers), misinformation, and lack of information and
knowledge about the coronavirus resurgence and mutation.

Discussion. While increasing amounts of COVID-19 data are publicly avail-
able, they are in fact poor and limited in terms of quality, quantity, capability and
capacity to discover deep insights about the hidden nature of COVID-19, the in-
teractions between the virus and host and between them and external factors, and
the influence and impact of COVID-19 on their affiliated areas. It is fundamen-
tal to acquire substantially larger and better-quality multisource and multimodal
internal and external COVID-19 data. Meaningful and insightful COVID-19 mod-
eling can only be robustly conducted and evaluated on such data with the hope of
revealing intrinsic knowledge and insights about the disease and assisting effective
pandemic control.

3.4 COVID-19 Modeling Complexities

The coronavirus and COVID-19 not only present significant challenges to health
care, governments, society and the economy but also to the scientific and research
communities. The aforementioned challenges have instigated and reshaped the foci
of global scientific attention and agendas, and COVID-19 studies have emerged
as the most important and active research area of recent years. The scientific
research is comprehensive, spreading across almost every discipline from epidemi-
ology to psychology and fostering new research areas and topics such as coron-
avirus epidemiology and genomics. In particular, the growing volume and variety
of COVID-19 data form an intangible asset for evidence-based virus and disease
understanding, fostering increasingly intensive global research interest and activi-
ties in modeling various COVID-19 problems. COVID-19 modeling has emerged as
a major research direction in COVID-19 studies. It aims to quantitatively under-
stand and characterize the virus and disease characteristics, estimate and predict
COVID-19 transmission, and estimate cases, trends, intervention measures and
their effects, and estimate their impacts on social, economic, psychological and
political aspects. COVID-19 modeling plays an irreplaceable role in almost every
aspect of the fight against the COVID-19 pandemic. However, modeling COVID-19
is not a trivial task. Below, we highlight a few challenges in modeling COVID-19.

Modeling the COVID-19 characteristics, disease complexities, and data com-
plexities. First, the COVID-19 modeling challenges come from quantifying the
diversified and complicated COVID-19 characteristics, disease complexities, and
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data complexities, discussed in Sections 3.1, 3.2 and 3.3 respectively. The unique
characteristics and complexities of the COVID-19 disease and data discussed in
Sections 3.2 and 3.3 challenge the existing modeling methods including deep neu-
ral learning. Examples are generalized modeling of quality and quantity-limited
COVID-19 data from different countries and regions and over evolving time pe-
riods [269], robust modeling of short-range, small-size and incomplete-cycle data,
and high-capacity modeling of mixture distributions with exponential growth [71],
sub-exponential growth [172], discontinuous phase transition [269] and instant
changes in case developments. It is challenging to undertake sound, robust, bench-
markable, and practically useful modeling on various characteristics and complex-
ities of the multisource, multimodal and often poor-quality COVID-19 data.

Modeling the complexities of open complex COVID-19 ecosystems. The COVID-
19 pandemic forms essentially open complex ecosystems when cross-domain and
cross-disciplinary aspects are combined. Such ecosystems are associated with sig-
nificant system complexities [41,288]. Examples of system complexities are the
hidden nature, strong uncertainty, self-organization, dynamics and evolution of
the coronavirus, COVID-19 disease, and their continuous developments and muta-
tions; their sophisticated interactions and relations to environments and contexts;
the differentiated virus infections of individuals and communities in relation to
different ethnic backgrounds; and the significant emergence of consequences and
impacts on society and the economy in almost every part of the globe. However,
often the related aspects and systems are loosely coupled without tight, consistent
identification, connection, or structures as shown in a unified complex ecosystem. It
is often difficult to generate a complete and sufficient characterization of the above
complexities and intrinsic epidemiological attributes, transmission processes and
cause-effect relations in a loosely coupled dynamic COVID ecosystem. The pub-
licly available small, limited, low-quality and loosely-coupled COVID-19 data also
do not explicitly support the exploration of COVID ecosystems. COVID-19 mod-
eling has to ‘recover’ and ‘discover’ the hidden, implicit, inconsistent, and loose
couplings and relations when multisource, multimodal data are involved.

Modeling complex problems with limited-to-no domain knowledge and ground
truth. The weak-to-no firm knowledge and ground truth about COVID-19 and its
medical confirmation and annotations and the often poor-quality data limit the
capacity and richness of the problem hypotheses to be tested and modeled. It is not
surprising that rather simple and classic analytical and learning models are pre-
dominantly applied by medical and biological scientists to verify specific hypothe-
ses, e.g., various SIR models, time-series regression, and traditional machine learn-
ing methods [94,58,241]. Most AI and machine learning applications in COVID-19
also only involve simple methods and problem settings. Such simple applications
occupy the top-80 keyword-based methods in the 200k WHO-collected references
[44]. In contrast, statisticians and computer scientists tend to enforce overparame-
terized models, over-complicated hypotheses, or over-manipulated data, resulting
in highly specific settings and over- or under-fitting results lacking practical appli-
cability [169]. Without ground truth and domain knowledge, unsupervised mod-
eling, multi-aspect modeling, cross-disciplinary modeling, cross-domain modeling,
and multi-objective modeling become quite challenging.

Aiming for ambitious modeling objectives on low-quality, small COVID-19
data. As discussed in Section 4.2, many COVID-19 problems and objectives are
expected to be addressed in modeling COVID-19. However, the complexities of
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COVID-19 characteristics, diseases and data may significantly limit this potential.
Modelers have to carefully define learnable objectives, i.e., what can be learned
from the data, acquire the most essential and feasible data, or leverage data poverty
using more powerful modeling approaches. For example, when a model is trained on
a country’s case numbers, its application to other countries may produce unfair re-
sults because of data inequalities. Another example is how to combine multisource
but weakly connected data for multi-aspect analyses.

Characterizing complicated couplings, relations and interactions in weakly-
coupled multi-aspect COVID-19 systems. COVID-19 is affiliated with many per-
sonal, social, health, medical, political and other factors, dispersedly reflected in
explicitly or implicitly related multisource and cross-domain systems. The COVID-
19 pandemic consists of and evolves as a dynamic social-technical process and the
co-effects of multi-factor interplay. These multi-aspect factors are coupled strongly
or weakly, locally or globally, explicitly or implicitly, subjectively or objectively,
statically or dynamically, and essentially or accidentally during the virus and dis-
ease formation, development, influence, and evolution. Identifying and character-
izing such sophisticated factor couplings and interactions is very challenging as
they are not obvious or easily identifiable in their disperse observations. There-
fore, modeling the COVID-19 ecosystem requires in-depth and transdisciplinary
cooperation and collaborations between computer science, bioinformatics, virology,
sociology and other related disciplines. A single factor or aspect cannot disclose
the intrinsic and intricate nature of COVID-19, generate a complete picture of the
COVID system, and explain the dynamics of this pandemic.

Discussion. The COVID-19 characteristics, disease and data complexities in-
troduce significant challenges to their modeling. The challenges lie in the COVID
cyber-physical-social-technical ecosystem, the complicated epidemic transmission
mechanisms and processes, and the entanglement between epidemic factors (ob-
servations) and external objective (e.g., countermeasures) and subjective (e.g.,
people behavior changes) factors, etc. These determine that COVID-19 modeling
goes beyond the transfer, transform and applications of powerful existing models,
such as overparameterized deep neural networks, SIR variants, and hierarchical
Bayesian networks on the limited, weakly-coupled and small volume of COVID-19
data. Careful modeling mechanisms and designs are essential to address specific
COVID-19 characteristics and the complexities of the data and disease, avoid
under-/over-fitting, and focus on modeling the complexities in relation to the un-
derlying reality and insight. Complicating models does not necessarily contribute
to better or more actionable knowledge and intelligence about the COVID-19 dis-
ease and data [28,40,258].

The discussion here on the COVID-19 ecosystem complexities informs the se-
lection of the relevant modeling tasks and methods and their review in this paper.
Accordingly, in Section 7, we will discuss domain-driven COVID-19 modeling from
epidemic and medical and biomedical perspectives, while Section 9 will discuss
simulation modeling. Section 8 will review the research on social-domain-related
modeling. The mathematical modeling in Section 5 and data-driven modeling in
Section 6 will address various technical developments for modeling COVID-19.
These further lay the foundation of analyzing the gaps and directions of COVID-
19 modeling research in Section 11.
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4 COVID-19 Modeling Landscape

Here, we provide a brief summary and overview of the research on COVID-19
modeling. We start with an overview of the global research response to COVID-
19, then summarize the main objectives of modeling COVID-19 in the literature,
and further categorize the research on COVID-19 modeling. These research objec-
tives and categorizations provide structural answers to how the modeling research
addresses the aforementioned COVID-19 disease, problems, data and modeling
complexities. Lastly, we summarize some global trends of COVID-19 modeling.
These together form a high-level research landscape to categorize and connect the
comprehensive objectives and techniques of modeling COVID-19.

4.1 Global Research on COVID-19

The coronavirus and COVID-19 have inspired increasingly significant research ef-
fort globally and in every discipline. There have been about 647k global studies,
where about 524k are with full text, on the COVID-19 coronavirus disease col-
lected by WHO between 2019 and 202313. There are 553k articles, 67k preprints,
14k clinical trial registers, and 11k non-conventional documents collected from 124
resources, including Medline (293k), Scopus (53k), Web of Science (42k), ProQuest
Central (35k), EMBASE (32k), medRxiv (18k), ICTRP (14k), WHO COVID
(14k), and grey literature (11k). The top 10 publishing languages are English
(569k), Spanish (14k), Chinese (6.3k), German (6k), Portuguese (5.8k), French
(5.3k), Indonesian (4.7k), Russian (3.6k), Japanese (1.6k), and Italian (1.4k). Open
access publications play a fundamental role in communicating the results.

The WHO-collected-literature covers a broad list of subjects, including 123k
on COVID-19, 37k on coronavirus infections, 36k on viral pneumonia, 28k on the
pandemic, 24k on SARS-CoV-2, 6k on vaccines, 2k on infection control, 1.8k on
mental health, and 1.4 related to social media. The literature cover various types
of study, including 141k on prognostic study, 119k on risk factors, 106k on random
controlled trials, 60k on observational studies, 58k on diagnostic studies, 45k on
etiology studies, 45k on qualitative research, 42k on clinical practice guides, and
30k on controlled clinical trials. There are 29k references on reviews and about 9k
on systematic reviews.

In our literature review of how global scientists responded to COVID-1914 [44],
we collected 346k references from major databases including Web of Science, Sco-
pus, PubMed and PMC, the WHO collection on global research on COVID-19, and
ResearchGate, as well as medRxiv and arXiv between 1 Jan 2020 and 9 Mar 2022,
where about 51k are related to modeling COVID-19. About 176 first-authored
countries and regions have contributed to COVID-19 research. The literature in-
volves almost every discipline, from medical and biological science to computer
science, engineering, economics, environment, and policy. The broad disciplines re-
lated to medical and health sciences contributed about 186k, in comparison to 14k

13 COVID-19 global literature on coronavirus disease: https://search.bvsalud.org/
global-literature-on-novel-coronavirus-2019-ncov/, accessed on 29 July 2022.
14 The literature was informed by the COVID-19 Open Research Dataset (CORD-19)

from SemanticScholar https://ai2-semanticscholar-cord-19.s3-us-west-2.amazonaws.
com/historical_releases.html.
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by computer scientists, and 32k by social scientists. There has been a significant
monthly increase in the number of publications over 2021 to 2022 in comparison
with that in 2020.

In our collection [44], the top-10 first-authored countries are the US, China,
Italy, the UK, India, Spain, Canada, Germany, Brazil, and France. Fig. 3 shows
the publication distribution of the 175 first-authored countries.

Fig. 3 Global first-authored publication distribution

Further, the top keywords of global concern include pandemic (129k), patient
(105k), infection (73k), risk (55k), treatment (43k), hospital (36k), measure (34k),
symptom (32k), management (28k), and development (28k). Fig. 4 shows the word
cloud of the top-200 words appearing in all publications.

4.2 Objectives of COVID-19 Modeling

Here, we summarize the main problems and objectives of modeling COVID-19 in
the literature. The analysis of the WHO-collected literature [44] gives us a clear
indication of the top problem terms in over 346k global references and those 51k
modeling-focused ones. The keywords appearing most frequently in the 346k ref-
erences are pandemic, patient, infection, risk, treatment, hospital, measure, symp-
tom, management, development, outbreak, mortality, spread, healthcare, vaccine,
transmission, crisis, and lockdown. The top-ranked problem keywords appearing
in the 51k modeling publications include mental health, second wave, lockdown,
vaccine, anxiety, risk factor, vaccination, X-ray, public health, depression, treat-
ment, social media, and social distancing. In addition, the top keywords appearing
in the WHO collected literature also indicate the key foci on infection, viral, pan-
demics, SARS-CoV-2, vaccine, telemedicine, antibody, disease control, infection
control, mental health, quarantine, public health, healthcare, respiratory distress
syndrome, hospitalization, testing, lung, social media, and vaccination.
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Fig. 4 Global top-200 word cloud of all publications

The above keywords inform the key problems and objectives associated with
modeling COVID-19. By further clustering the problems appearing in modeling
publications, Table 1 categorizes and illustrates their representative modeling fac-
tors, modeling methods, and references. Below, we further elaborate on a few
objectives widely explored in the literature on modeling COVID-19.

Characterizing and predicting COVID-19 epidemic dynamics and transmission.
An important challenge is to understand the COVID-19 epidemic mechanisms,
transmission processes, and their dynamics. It is also important to infer their
epidemiological attributes and to understand how the coronavirus spreads spa-
tially, temporally, and socially [35,34]. In this regard, intensive COVID-19 mod-
eling research focuses on exploring the source and spectrum of the COVID-19
infection, identifying clinical and epidemiological characteristics, tracking trans-
mission routes, and forecasting case development trends and the peak values of
infected cases and disease transmission [35,34,22,50,293,294,95,125,184]. The re-
lated work aim to understand the characteristics and dynamics of the coronavirus
and COVID-19 disease to inform disease precaution, characterize the epidemiolog-
ical attributes of coronavirus and COVID-19 and their resulting infections, mor-
tality and patient statistics, quantifying the influence of virus containment and
mitigation campaigns on epidemic dynamics and virus transmission, and mea-
suring the influence of epidemic and infections on medical resource planning, etc.
Typical modeling methods include mathematical and statistical models such as lin-
ear and nonlinear regression models [22,321,184], compartmental models including
those incorporated with statistical settings and customization such as time and
age dependence, SIR with Markov chain Monte Carlo [321], simulation methods
[52,125], and network modeling [95,167].

Modeling the COVID-19 resurgence and mutation. SARS-CoV-2 has shown
strong and uncertain dynamics, evolution and mutations with various strains
emerging over time, including the recent increasingly infectious Omicron BA.5
[134]. Accordingly, most countries and regions have experienced multiple COVID-
19 waves and resurgences. Both mutations and resurgences are highly uncertain,
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Table 1 Problems and Objectives Associated with Modeling COVID-19.

Objectives Modeling factors Approaches References
Epidemic
dynamics and
transmission

Epidemiological factors (e.g., origins, incu-
bation period, transmission rate, morbid-
ity, mortality, and highly-to-least vulnerable
population), daily new-infected-recovered-
death case numbers, reporting time, mobil-
ity, the side information about population
and their demographics, etc.

Regression, com-
partmental models,
time/age-dependent
compartmental models,
probabilistic compart-
mental models, wavelet
transformation, simu-
lation methods, etc.

[94,290,
5,58,246,
321,209,
125,184,
167,77]

Diagnosis,
identification
and tracing

Clinical, pathological and genomic data
(symptoms, medical facilities, hospitaliza-
tion records, medical history, respiratory sig-
nals, medical imaging like CT and X-ray,
physical and chemical measures, gene se-
quences, and proteins), case number, infec-
tion details, patient demographics, mobility,
and contacts, etc.

Regression, statisti-
cal learning, shallow
learning (e.g., decision
trees, and random
forest), deep neural
networks, image and
signal processing meth-
ods, transfer learning,
etc.

[279,315,
60,18,63,
180,69,11,
183,110,
14]

Medical
treatment
and phar-
maceutical
interventions

Clinical measures, hospitalization records,
medical test records, drug selection, drug-
target interactions, pharmaceutical treat-
ments, ICU records, ventilator use, health-
care records, etc.

Classifiers, time-series
methods, deep neural
networks, information
fusion, etc.

[320,293,
20,156,
280,116]

Pathological
and biomedi-
cal analysis &
drug/vaccine
development

Genomic data, protein structures,
pathogenic data, drug records, protein-
disease interactions, drug-target interac-
tions, vaccine information, vaccination
transactions, antibody neutralization,
immunization response, viral mutation, etc.

Classifiers, outlier de-
tectors, genome anal-
ysis, protein analysis,
deep neural networks,
etc.

[132,8,20,
169,239,
317,227,
198,275,
296,233,
143]

Non-
pharmaceutical
intervention
and policies

Intervention, quarantine, mitigation and
transmission control measures and policies
on populations, communities and individ-
uals, epidemiological factors, daily new-
infected-recovered-death case numbers, re-
porting time, social activities, mobility, com-
munications, and change points

Regression, customized
compartmental models,
Bayesian hierarchical
models, stochastic
compartmental models,
etc.

[30,219,
5,94,257,
172,88,71,
144,311,
168]

Second wave
and resur-
gence

Daily new-infected-recovered-death
case numbers, reporting time, second
wave/resurgence information, NPIs includ-
ing quarantine and mitigation measures
and policies on populations, communities
and individuals, social activities, mobility,
seasonal and environmental factors (e.g.,
season, geographical location, temperature,
humidity, and wind speed), etc.

Compartmental mod-
els, simulation models,
stochastic and regres-
sive compartmental
models, epidemic
renormalisation group,
statistical models, etc.

[151,12,36,
163,206,
218]

Mental, so-
cioeconomic
influence and
impact

Quarantine and mitigation measures and
policies on populations, communities and in-
dividuals, domain knowledge and precau-
tion guidance from authorities, social activ-
ities, mobility, patient demographics (e.g.,
age, gender, racist, cultural background, and
habit), news, reports, social media senti-
ment, misinformation, vaccination, business
data, economic data, logistic data, trade
data, public health data, mental health data,
and clinical data, etc.

Statistical analysis,
qualitative methods
such as question-
naire methods, age-
structured SIR and
SEIR models, deep
neural networks (e.g.,
BERT and LSTM),
structural equation
models, simulation
models, etc.

[48,141,
274,53,
104,93,
136,271,
233,19,
106,243,
23]

although they seem to become more transmissible and infectious [160] but less fa-
tal [83,99]. The WHO-identified five major variants of concern which show higher
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transmissibility, contagion and complexities1516 [100,101]. However, as our cur-
rent understanding of the resurgence and mutation is still very limited, COVID-19
may become another epidemic disease which stays with humans for a long time.
More research is expected to quantify the resurgence conditions, control potential
resurgences after lifting certain restrictions and reactivating businesses and activ-
ities [163,206], distinguish the characteristics and containment measures between
waves and mutations [83,99], predict future resurgences and mutations [101,134],
and prepare for their responsive countermeasures [12]. Various modeling meth-
ods are applied, including mathematical and statistical models such as regression
models, ordinary differential equation and Bayesian inference [163], compartmen-
tal models [36,206], simulation models, and various AI techniques including NLP
and machine learning models [218].

Modeling the COVID-19 diagnosis, infection identification, and contact trac-
ing. COVID-19 and its virus mutations present strong transmission and repro-
duction rates, high contagion, sophisticated transmission routes, and unexpected
resurgences and cluster spreads. These make their diagnosis, infection identifica-
tion and contact tracing difficult. It thus becomes crucial to immediately identify
and confirm exposed cases and trace their origins and contacts to proactively
implement quarantine measures and contain their potential spread and outbreak
[189]. This is particularly important during the varying incubation periods and for
those strains that are associated with high presymtomatic, asymptomatic to mildly
symptomatic yet highly contagious infections. In addition to chemical and clinical
approaches, identifying COVID-19 by analyzing the biomedical images, genomic
sequences, symptoms, social activities, mobility, and media communications is also
essential [263].

Modeling the efficacy of medical treatment and pharmaceutical interventions.
The general practices of timely and proper COVID-19 medical treatments, drug
selection and pharmaceutical measures, ICU and ventilation play a fundamental
role in the mitigation of severe symptoms, and a reduction in the mortality rate
of both the original and increasingly mutating virus strains. However, the lack
of best practices and standardized protocols and specifications of medical and
pharmaceutical treatments on the increasingly evolving virus variants, unexpected
local and home clusters, and outbreaks in rural and disadvantaged areas affects
the globalized standard treatment and control of the virus. Medical treatment
may also be affected by the insufficient understanding of the couplings between
virus infection and patient’s demographics and ethnic context. The wide dispersal
of online misinformation of drug use and vaccination may also contribute to the
global imbalance in treating COVID-19. Research is required to select and discover
suitable drugs, analyze the drug-target interactions, and best match the patient’s
diagnosis and ethnic contexts with their suitable medical treatments to control
critical conditions and mortality and prioritize public health resources in a timely
manner. [320,293,20].

Modeling the effect and impact of non-pharmaceutical intervention and policies.
Various NPIs, such as travel bans, border control, business and school shutdowns,

15 Tracking SARS-CoV-2 variants: https://www.who.int/en/activities/
tracking-SARS-CoV-2-variants/.
16 The effects of virus variants on COVID-19 vaccines: https://www.who.int/news-room/
feature-stories/detail/the-effects-of-virus-variants-on-covid-19-vaccines?gclid=
EAIaIQobChMIgbWS4v3I8QIVRNeWCh3B6wdHEAAYASAAEgLXBfD_BwE/.
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public and private gathering restrictions, mask-wearing, and social distancing, are
often implemented to control the outbreak of COVID-19. NPIs are often combined
in different ways and at different enforcement levels to contain outbreaks. Their
easing and removal usually follows different policies, procedures and timeframes.
Such customized NPI applications result in inconsistencies across countries and
regions and different effects and impacts which are difficult to benchmark and
compare. Limited research results have been reported to verify the effects and
impacts of these control measures in different conditions and combinations on
containing the virus spread and case number development, the balance between
enforcement levels and containment results, and the response sensitivity of the re-
strictions in relation to the population’s ethnic context [257,71,30]. Robust results
from investigations of these aspects can greatly complement medical and health
treatments and inform public health policy-making on medication, business and
societal management during COVID-19 outbreaks.

Pathological and biomedical analyses for drug and vaccine development. To
develop drugs and vaccines for COVID-19, pathological and biomedical analyses
analyze pathological test results, gene sequences, protein sequences, physical and
chemical properties of SARS-CoV-2, the drug-target interaction and mapping,
and the effect of candidate drugs and vaccines on people with varied backgrounds
and conditions. Building on domain knowledge and techniques such as virology,
pathogenesis, genomics and proteomics, it is essential to conduct domain- and
data-driven analyses of drug-target interactions, identify the COVID-19 sensitive
genomic and protein structures, and select and develop COVID-19-matched drugs
and vaccines [132,143]. It is also important to diagnose and identify the interactions
and mapping between mutated virus strains and effective drugs and vaccines. [20,
227]. More research is needed on COVID-19 immunity responses, drug and vaccine
development, and mutation intervention. In addition, limited results are available
on the threshold and effects of various COVID-19 vaccines on different profiles of
people and the resulting effect of herd immunity [271].

Modeling COVID-19 influence and impact. While the COVID-19 pandemic
has changed the world and has had a significant and overwhelming influence on
almost all aspects of our lives, society and the economy, quantifying its influence
and impact has been insufficiently studied. Various objectives may be related to
modeling the negative COVID-19 influence and impact, including (1) the eco-
nomic impact on growth and restructuring [291]; (2) the social impact on peo-
ple’s stress, psychology, emotions, behavior and mobility [207,299]; and (3) the
transformation of business processes and organizations, manufacturing, transport,
logistics, and globalization [272,238]. In addition, the COVID-19 pandemic also
triggers various transformations and new requirements, for example, (1) enhanc-
ing the wellbeing and resilience of individuals, families and society and work-life
balance [221]; (2) digitizing, virtualizing and transforming work, study, collabo-
ration, entertainment, and shopping [250]; (3) restructuring the supply-demand
relations and supply chains for better and immediate availability and to satisfy
emerging demand [72]; (4) promoting research and innovation on intervening in
global black-swan disasters such as on public health resources, transport and their
impacts [316]; and (5) enhancing the public trust and developments in pandemic
science, medicine, vaccination and hygiene [215]. Other impact modeling tasks in-
clude analyzing the relations between the COVID-19 containment effect and the
socioeconomic level (e.g., income level particularly in relation to lower-income and
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disadvantaged groups), healthcare capacity and quality, government crisis manage-
ment capabilities, citizen-government cooperation, and public health and hygiene
habits.

4.3 Categorization of COVID-19 Modeling

Many techniques have been involved in addressing the objectives detailed in Sec-
tion 4.2. The review of both the WHO-collected COVID-19 global literature on
coronavirus disease and our analysis of global references on COVID-19 modeling
[44] has resulted in the following categorization observations.

First, the COVID-19 modeling literature shows strong research features: (1)
involving multi-disciplinary techniques, including mathematics and statistics, epi-
demiology, broad AI and data science including shallow and deep learning, and
social science; (2) applying epidemiological methods to explore the COVID-19 pan-
demic problems; (3) involving domain-, model- and data-driven approaches from
various families of disciplines and research areas; (4) demonstrating case studies
and hypothesis tests with the results of particular methods highlighting specific
modeling settings, scenarios, or data.

Second, the main COVID-19 modeling techniques consist of epidemiological
modeling, mathematical and statistical modeling, artificial intelligence and data
science, and simulation modeling. They have been applied to understanding, char-
acterizing, simulating, analyzing, and predicting various COVID-19 problems and
issues. Accordingly, we categorize the research landscape of COVID-19 modeling
into six families: domain-driven modeling, mathematical and statistical modeling,
data-driven learning, influence and impact modeling, simulation modeling, and
hybrid methods in this review.

Further, Fig. 5 presents a research landscape of COVID-19 modeling. It sum-
marizes the transdisciplinary research on modeling COVID-19 into six categories of
modeling techniques and illustrates their representative modeling methods respec-
tively. It also lists the main problems and their further decomposition commonly
used in modeling COVID-19 linking to the modeling objectives in Section 4.2.
The landscape further connects the modeling problems to their respective model-
ing techniques. These form an overall research map of the research on modeling
COVID-19.

Lastly, below, we briefly summarize the main modeling tasks and methods
associated with each category of the modeling techniques in Fig. 5.

– COVID-19 mathematical and statistical modeling : developing and applying
mathematical and statistical models to estimate COVID-19 transmission pro-
cesses, symptom identification, disease diagnosis and treatment, sentiment
analysis, misinformation analysis, and resurgence and mutation, etc. Models
include time-series analysis such as regression models, and hazard and sur-
vival functions, and statistical models such as descriptive analytics, statistical
processes, latent factor models, temporal hierarchical Bayesian models, and
stochastic compartmental models.

– COVID-19 data-driven learning : developing and applying data-driven analytics
and learning methods to characterize, represent, classify, and predict COVID-
19 problems on COVID-19 data. Typical methods include classic (e.g., tree
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Fig. 5 The transdisciplinary research landscape of COVID-19 modeling: From right: coron-
avirus problems and modeling objectives, to the left: modeling techniques and their represen-
tative methods.

models such as random forests and decision trees, kernel methods such as sup-
port vector machines (SVMs), NLP and text analysis, and classic reinforcement
learning) and deep (e.g., deep neural networks, transfer learning, deep rein-
forcement learning, and variational deep neural models) analytics and learning
methods. Problems include case development, mortality and survival forecast-
ing, medical imaging analysis, NPI effect estimation, and genomic analysis.

– COVID-19 domain-driven modeling : developing and applying domain-specific
models by incorporating domain knowledge and factors for quantifying
COVID-19. Examples are epidemiological compartmental models to charac-
terize the COVID-19 epidemic transmission processes, dynamics, transmission
and risk; social science methods for estimating the influence of external factors
on COVID-19 epidemics, resurgence and mutation; and medical, pathologi-
cal and biomedical analyses for infection diagnosis, case identification, patient
risk and prognosis analysis, medical imaging-based diagnosis, pathological and
treatment analysis, and drug development.

– COVID-19 simulation modeling : developing and applying simulation models
to simulate the COVID-19 epidemic evolution and the effect of interventions
and policies on the COVID-19 epidemic. Examples are theories of complex
systems, agent-based simulation, discrete event analysis, evolutionary learning,
game theories, and Monte Carlo simulation.
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– COVID-19 influence and impact modeling : developing and applying methods to
estimate and forecast the influence and impact of SARS-COV-2 variations and
COVID-19 diseases, as well as their interventions, treatments and vaccination.
Areas influenced or impacted by these aspects include epidemic transmission
dynamics, virus containment, disease treatment, human psychological health,
behaviors and mobility, public resourcing (such as healthcare systems), social
systems, and the economy.

– COVID-19 hybrid modeling : hybridizing and ensembling multiple models to
tackle multiple coronavirus problems and objectives, multiple tasks, or multi-
source data, when those individual objectives, tasks, data or models cannot be
better addressed by single aspects or approaches.

It is worth mentioning that each of the above modeling techniques and their
corresponding methods may be applicable to address different and multiple coro-
navirus problems and modeling objectives, as shown in Fig. 5. In Sections 5 to
10, we review, categorize and comment on the progress of these six categories of
COVID-19 modeling. Our foci are not on their specific references, rather on (1)
introducing their typical representative techniques and methods, and (2) align-
ing the techniques with their typical applications in modeling diverse COVID-19
problems and issues. Each illustrated modeling technique is not from a specific ref-
erence, instead it aims for a representative approach usually integrating multiple
designs or addressing various issues.

4.4 Global Trends in COVID-19 Modeling

Here, we present a snapshot of the global trends in modeling COVID-19. As re-
ported in [44], of the 346k references published on COVID-19, over 51k are on
COVID-19 modeling. In those modeling publications classifiable to disciplines,
about 6k publications appeared in computer science venues. In contrast, over 21k
publications on modeling appeared in medical science venues.

In computer science, AI and data science techniques are mostly applied. In
particular, data-driven discovery [266,42,79], including both classic and deep ana-
lytical and machine learning methods are mostly applied. COVID-19 data science
plays a major role in COVID-19 modeling, aiming to discover valuable knowledge
and insights from various kinds of publicly available data, including daily cases,
texts, biomedical images, mobility, and environmental factors. As further illus-
trated in the following sections, almost every modeling technique has been applied
to COVID-19 in some way. For example, classic epidemic models were tailored
for COVID-19 to model its macroscopic transmission and predict the trends of
the spread of the virus. Generative models with Bayesian hierarchical structures
were applied to capture the effects of NPIs. Deep natural language processing ap-
proaches were adopted to understand the growth, reality and spread of COVID-19
and people’s reactions based on the textual data from social media. Modeling also
helps to understand and characterize every aspect of coronavirus and COVID-19
from its epidemiological characteristics to the underlying genomic reactions, virus
mutations, and drug and vaccine development.
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Below, we illustrate the trends of COVID-19 modeling in all modeling publi-
cations and in computer science and medical science respectively17. First, Fig. 6
shows the word cloud of the top-200 modeling keywords appearing in all modeling
publications. The results show that the modeling methods are diversified, covering
classic mathematical and statistical methods, epidemic modeling methods, simula-
tion, and classic machine learning methods. Regression models, machine learning,
simulation, linear regression, multivariate statistics, artificial intelligence, logistic
regression, statistical models, deep learning, and CNNs rank in the top keywords in
the literature on modeling COVID-19. This shows that classic regression methods
dominate the publications in modeling COVID-19, followed by statistical models
and machine learning. Deep learning has a strong presence in modeling COVID-
19, in particular, using the most fundamental network CNNs in comparison with
shallow machine learning models.

Fig. 6 Keyword cloud of all modeling publications

In contrast, Fig. 7 shows the word cloud of the top-200 modeling words ap-
pearing in modeling publications which belong to the computer science category.
The modeling publications from the computer science discipline mainly apply ma-
chine learning, deep learning, and AI methods, although mathematical models also
appear very frequently in the publications. Fig. 8 shows the word cloud of the top-
200 modeling keywords appearing in modeling publications which belong to the
medical science category. Although the top-200 keywords shown in Fig. 8 largely
overlap with those in the overall and computer science-based publications, publica-
tions related to medical science seem to favor classic mathematical and statistical
methods than modern methods such as deep learning and machine learning, and
their frequencies are also much higher than those in computer science.

17 More details are available in the full technical report on ‘How have global scientists re-
sponded to tackling COVID-19?’ [44] and in https://datasciences.org/covid19-modeling
on COVID-19 modeling [44]
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Fig. 7 Keyword cloud of modeling publications in computer science

Fig. 8 Keyword cloud of modeling publications in medical science

5 COVID-19 Mathematical Modeling

Mathematical and statistical models have been used extensively to estimate and
predict the transmission dynamics of coronavirus and COVID-19 and to reveal
the truth of the epidemic in a formal and quantitative manner. Accurate COVID-
19 mathematical modeling is indispensable for quantifying COVID-19 systems
and its epidemic forecasting and decision making. Here, we review two sets of
mathematical methods: time-series analysis and statistical modeling, which are
the most commonly applied in COVID-19 modeling references across the body of
literature.
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5.1 COVID-19 Time-series Analysis

Here, we first briefly introduce the time-series models commonly applied in
COVID-19 modeling. Then, we summarize the related work on applying such time-
series models to quantify COVID-19 problems.

5.1.1 Time-series models

We here briefly introduce two typical time-series models which have been predom-
inantly customized for modeling COVID-19: regression models, and hazard and
survival functions.

Typical regression models. Typical regression models such as logistic regres-
sion and auto-regressive integrated moving average (ARIMA) variants have been
widely used in epidemic and COVID-19 modeling. Logistic growth models estimate
the number of COVID-19 infected cases [283]. Assume a COVID-19 outbreak is
associated with a population of St with the infection rate β at time t, the growth
scale of infected case number It can be modeled by

∂tI = βIt(1− It/St) (1)

over time t. Accordingly, with historical COVID-19 cases at the bursting point
at time period T , an S-shaped curve will be derived to describe and forecast
the growth distributions of COVID-19 infections and the infected peak number
by adjusting the constant rate β (assuming it is constant; in the case where the
infection rate is evolving, we would have βt).

Although such logistic models can be widely seen in the COVID-19 modeling
literature, they are weak or even incapable of modeling the complex transmission
states and dynamics of a COVID-19 outbreak. Many other challenges, such as the
nonstationary characteristics discussed in Section 3.3 and the disease complexities
in Section 3.2, need to be better modeled by more sophisticated regression models
or other advanced methods.

Alternatively, ARIMA and its variants have been widely applied to model
the temporal movement of COVID-19 case numbers with more flexibility than
the logistic models. One example of applying ARIMA for modeling COVID-19 is
as follows. Given the number It of infected cases at time t, it can be modeled
by model ARIMA(p, d, q) which factorizes the number It into consecutive past
numbers {It−p, . . .} with errors ε:

It = α1It−1 + α2It−2 + · · ·+ αpIt−p + εt + θt−1εt−1 + · · ·+ θt−qεt−q + c (2)

over the number of time lags (order) of autoregression p, the order of moving
average q, the degree of differencing d, and time t with a constant c. It−p refers to
the infected cases at time t−p with weight αp, εt−q refers to the error between It−q
and It−q−1 with weight θt−q. Adjusting parameters like p, d and q can simulate
and capture some of the time-series characteristics. Examples are to model the
process and trend of the COVID-19 infection series by p and q, seasonality by
d, and volatile movement by the distribution of error terms. Similarly, ARIMA
models can be used to simulate and forecast the evolving number of recoveries and
deaths in relation to COVID-19.
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In addition, ARIMA and its variants can be integrated into other modeling
methods to characterize multiple aspects of the COVID-19 time-series. For exam-
ple, the wavelet decomposition of frequency-based nonstationary factors can model
the oscillatory error terms in the ARIMA-based modeling of COVID-19 infected
cases [48]). Another typical example is to combine the decision tree model with
regression to form a regression tree and identify mortality-sensitive COVID-19
factors [49].

Hazard and survival functions. Hazard functions and survival functions have
been used to model the mortality and survival (recovery) rates of patients using
time-to-event analysis. A hazard function models the mortality probability h(t|x)
of a COVID-19 patient with factor vector x (∈ Rd) of dying at discrete time t :

h(t|x) = p(T = t|T ≥ t; x) (3)

On the contrary, the survival function models the probability S(t|x) of surviving
until time t :

S(t|x) = P (T > t|x) (4)

In discrete time, S(t) =
∏t
t=1(1 − ht) where ht is the mortality probability at

time t. In continuous time, S(t|x) = 1 − F (t|x) where F (·) is the cumulative
distribution function until time t. For covariates x with their relations represented
by either a linear or nonlinear function f(·; δ) with parameters δ, the mortality
rate of COVID-19 can be modeled by a Cox proportional hazard model [224]:

h(t|x) = h0(t)exp(f(·; δ)) (5)

where h0(t) is the baseline hazard function, function f(·; δ) can be implemented by
a linear function such as a linear transform or a nonlinear function such as a deep
convolutional network. For example, in [237], f(·; δ) was implemented as a shallow
neural network with a leaky rectified linear unit-based activation of the input and
then another tangent transformation. In the case of time-varying covariates xt, the
above hazard, survival and transform functions should be time sensitive as well.

Other time-series models. In addition, other commonly used time-series models
include linear regression models such as ARIMA and GARCH [247,253], logistic
growth regression [283], Cox regression [237], multivariate and polynomial regres-
sion [6,55,105], generalized linear model and visual analysis [185], support vector
regression (SVR) [102,229], regression trees [49], hazard and survival functions
[237], and more modern LSTM networks [119]. In addition, temporal interpolation
methods such as best fit cubic, exponential decay and Lagrange interpolation, spa-
tial interpolation methods such as inverse distance weighting, smoothing methods
such as moving average, and spatio-temporal interpolation have also been applied
to fit and forecast COVID-19 case time-series. Typically, the performance of math-
ematical COVID-19 modeling is measured by metrics such as mean absolute error
(MAE), root mean square error (RMSE), the improvement percentage index (IP),
and symmetric mean absolute percentage error (sMAPE) in terms of certain levels
of confidence intervals.

5.1.2 COVID-19 time-series modeling

Time-series analysis comprises the most commonly used methods (about 13k ref-
erences appearing in the top-10 most commonly used modeling methods over the
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30k modeling publications) for COVID-19 modeling [44]. Regression models, lin-
ear regression, and logistic regression are most commonly applied in COVID-19
modeling. Many linear and nonlinear, univariate, bivariate and multivariate anal-
ysis methods have been intensively applied for the regression and trend forecasting
of new, susceptible, infectious, recovered and death case numbers of COVID-19.
Below, we illustrate a few tasks commonly addressed in the literature: COVID-19
epidemic distributions, case number and trend forecasting, COVID-19 factor and
risk analysis, and the correlation analysis between COVID-19 epidemic dynamics
and external factors.

Forecasting COVID-19 case number, trend and epidemic distributions.
Regression-centered time-series analysis has been widely applied to forecast case
number developments and trends. For example, Singh et al. [247] applied ARIMA
to predict the COVID-19 spread trajectories for the top 15 countries with con-
firmed cases and concluded that ARIMA with a weight to adjust the past case
numbers and the errors has the ability to correct model prediction and is better
than regression and exponential models. However, ARIMA lacks flexible support
for the volatility and in-between changes during the prediction periods [247]. Gu-
pal et al. [105] adopted polynomial regression to predict the number of confirmed
cases in India. Almeshal et al. [9] utilized logistic growth regression to fit the actual
infected cases and the growth of infections per day. Wang et al. [283] modeled the
cap value of the epidemic trend of COVID-19 case data using a logistic model.
With the cap value, they derived the epidemic curve by adapting time-series pre-
diction. To find the best regression model for case forecasting, Ribeiro et al. [229]
explored and compared the predictive capacity of the most widely used regression
models including ARIMA, cubist regression (CUBIST), random forest, ridge re-
gression, SVR, and stacking-ensemble learning models. They concluded that SVR
and stacking ensemble are the most suitable for short-term COVID-19 case fore-
casting in Brazil. In addition, linear regression with the Shannon diversity index
and Lloyd’s index are applied to analyze the relations between the meta-population
crowdedness in city and rural areas and the epidemic length and attack rate [225].

COVID-19-specific factor and risk analysis. Time-series analysis is also used
to (1) analyze the influence of specific and contextual factors on COVID-19 in-
fections and COVID-19 epidemic developments, including infection, transmission,
outbreak, hospitalization, and COVID-19 survival, mortality and recovery; and (2)
analyze the influence and impact of external and contextual factors of the COVID-
19 outbreak on the population, health, society and the economy, as well as case
developments and containment. For example, to investigate the potential risk fac-
tors associated with fatal outcomes from COVID-19, Schwab et al. [237] presented
an early warning system assessing COVID-19-related mortality risk with a vari-
ation of the Cox proportional hazard regression model. Chen et al. [57] adapted
the Cox regression model to analyze the clinical features and laboratory findings
of hospitalized patients. Charkraborty et al. [49] designed the wavelet transform
optimal regression tree (RT) model, which combines various factors including case
estimates, epidemiological characteristics and healthcare facilities to assess the
risk of COVID-19. The advantage of RT is that it has a built-in variable selection
mechanism from high dimensional variable space and can model arbitrary decision
boundaries.

Correlation analysis between COVID-19 epidemic dynamics and external fac-
tors. Much research has been conducted on analyzing the relationships between
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COVID-19 transmission and dynamics and external and contextual factors. For
example, Cox proportional hazard regression models are used to analyze high-risk
sociodemographic factors such as gender, individual income, education level, and
marital status that may be associated with a patient’s death [76]. Logistic regres-
sion models are applied to analyze the relations between COVID-19 (or SARI with
unknown aetiology) and socioeconomic status (per-capita income) [70]. To reveal
the impact of meteorological factors, Chen et al. [55] examined the relationships
between meteorological variables (i.e., temperature, humidity, wind speed, and vis-
ibility) and the severity of the outbreak indicated by the confirmed case numbers
using the polynomial regression method. Liu et al. [157] fit the generalized linear
models (GLM) with a negative binomial distribution to estimate the city-specific
effects of meteorological factors on confirmed case counts. In [216], Loess regression
does not show an obvious relation between the COVID-19 reproduction number,
weather factors (humidity and temperature), and human mobility. Lastly, linear
models including linear regression, Lasso regression, ridge regression, elastic net,
least angle regression, Lasso least angle regression, orthogonal matching pursuit,
Bayesian ridge, automatic relevance determination, passive aggressive regressor,
random sample consensus, TheilSen regressor, and Huber regressor are applied to
analyze the potential influence of weather conditions on the spread of coronavirus
[173].

Discussion. Time-series methods excel at characterizing sequential transmis-
sion processes and temporal case movements and trends of short and small COVID-
19 case data. However, they lack the capability to involve other multi-source, multi-
modal factors and heterogeneous external factors. Their capacity in disclosing deep
insights into why case numbers evolve in a certain way and how to intervene in
the infection, treatment and recovery is also limited.

5.2 COVID-19 Statistical Modeling

Statistical learning, in particular Bayesian modeling, plays a critical role in stochas-
tic epidemic and infectious disease modeling [29]. Typically, generative stochastic
processes are assumed to model epidemic contagion for epidemic modeling [10,
202]. In contrast to compartmental models (Section 7.1), statistical models incor-
porate prior knowledge about an epidemic disease. Their results have confidence
levels corresponding to distinct assumptions (i.e., possible mitigation strategies),
which better interpret and more flexibly model COVID-19 complexities. Below,
we summarize typical statistical models and their applications in COVID-19 sta-
tistical modeling.

5.2.1 Statistical models

Typical statistical methods include descriptive analytics, Bayesian hierarchical
models, probabilistic compartmental models, and probabilistic deep learning en-
compassing shallow to deep analytics. Below, we introduce some common statis-
tical settings and their corresponding statistical models in both frequentist and
Bayesian families that are often applied in COVID-19 statistical modeling.

Hierarchical Bayesian modeling. Taking a stochastic (vs. deterministic) state
transition assumption, various statistical processes can be assumed to simulate
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and estimate the state-specific counts (case numbers) and the probability of state
transitions (e.g., between infections and deaths) during the COVID-19 spread.
The stochastic processes and states (e.g., its infection and mortality) of a COVID-
19 outbreak are influenced by various explicit and latent factors. Examples of
explicit (observable) factors include a person’s demographics (e.g., age and race),
health conditions (e.g., disease history and hygienic conditions), social activities
(e.g., working environment and social contacts), and containment actions (e.g.,
quarantined or not) taken on each person. Latent factors may include a person’s
psychological attitude toward cooperation (or conflict) with containment, health
resilience strength to coronavirus, and the containment influence on the outcome
(e.g., infected or deceased).

Fig. 9(a) illustrates a general graphical model of the temporal hierarchical
Bayesian modeling of COVID-19 case numbers for estimation and forecasting.
The reported case number Yt (e.g., death toll or infected cases) at time t can be
estimated by ỹt, which is inferred from the documented (declared) infections iKt
and removed (e.g., recovered and deceased) rate κt. The documented infection
number iKt is inferred from infected population it and test rate ρt. it is inferred
from exposed population et and infection rate βt, et is determined by its exposed
rate εt. Further, we assume the removed rate κt is influenced by various medical
treatments α, determined by auxiliary variables including socioeconomic condition
λ2, the treatment effectiveness ψ, and the public health quality ω. Infection rate
βt is determined by NPIs ζ, which is further influenced by the NPI execution rate
τ and the socioeconomic factor λ1. The priors of the corresponding parameters
are a, b, c, d1, d2, f , g, h and j, which may follow specific assumptions.

For the statistical settings and hypotheses, typical statistical distributions of
COVID-19 state-specific counts are applied to (1) infection modeling, e.g., by as-
suming a Bernoulli process (B(n, ε) with the probability ε of exposure to infec-
tions over n contacts) and then a Poisson process at points of infections with
exponentially-distributed infectious periods (Pois(β) with rate β referring to the
infection rate within the infectious period); (2) mortality modeling, e.g., by assum-
ing a negative binomial distribution (NB(µ, σ)) or a Poisson distribution (Pois(γ))
with rate γ parameterized on mortality rate γD and population N). Further, basic
reproduction number R0 may be estimated by Nεβ/(β+ γ), the infections will be
under control if R0 is less than a given threshold (e.g., 1).

The above hierarchical statistical model in Fig. 9(a) captures a general frame-
work of COVID-19 statistical modeling. It can be customized to estimate and
forecast COVID-19 case numbers in terms of specific hypotheses, settings, and
conditions. For example, Fig. 9(b) shows the graphic model for the hierarchical
model proposed in [88] to estimate death number D from its inferred variable
d̃t and inferred from auxiliary variable ψ. The inferred death number d̃t is sam-
pled from the basic reproduction number R0 with a normally-distributed prior
Normal(2.4, |κ|) parameterized by its variance variable κ and the probability of
infected death π determined by two Gamma priors. In addition, d̃t is also influ-
enced by the number of new infections c with two latent variables, the distribution
rate of the exponential distribution τ and the daily serial interval g, and a variable
α as a parameter of the reproduction rate. Fig. 9(b) also shows the prior distribu-
tions of the auxiliary variables, for example, assuming the variable describing the
time from infection to death τ following an exponential prior Exponential(0.03).
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(a) A general graphical model of
statistical COVID-19 modeling

(b) The graphic model for the method proposed
in [88]

Fig. 9 A general and a specific hierarchical Bayesian model for COVID-19.

The hierarchical statistical model in Fig. 9(b) to estimate the death number can
be described by the following equations.

The standard deviation: κ ∼ Normal(0, 0.5) (6a)

The initial reproduction number: R0,m ∼ Normal(2.4, |κ|) (6b)

The intervention impact: αk ∼ Gamma(0.5, 1) (6c)

The time-varying reproduction number:Rt,m = R0,mexp(−
6∑
k=1

αkIk,t,m) (6d)

The distribution rate: τ ∼ Exponential(0.03) (6e)

Six sequential-daily infections: c1,m, ..., c6,m ∼ Exponential(τ) (6f)

The daily serial interval: g ∼ Gamma(6.5, 0.62) (6g)

The number of infections: ct,m = Rt,m

t−1∑
τ=0

cτ,mgt−τ (6h)

The time from infection to death: πm ∼ ifrm(Gamma(5.1, 0.86) (6i)

+ Gamma(18.8, 0.45))

The variance latent variable: ψ ∼ Normal+(0, 5) (6j)

The expected number of deaths: dt =
t−1∑
τ=0

cτ,mπt−τ,m (6k)

The observed daily deaths: Dt ∼ Negative Binomial(dt,m, dt,m (6l)

+
d2
t,m

ψ
)

Other statistical models. Another major set of COVID-19 statistical model-
ing incorporates statistical hypotheses and settings into epidemic models such as
compartmental models to approximate some state distributions or estimate some
parameters. A typical application reformulates SIR-based models as a system of
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stochastic differential equations, e.g., by assuming the Gamma-distributed prob-
ability density of exposed E and infected I states in Section 7.1. In addition,
modeling the influence of mitigation strategies on the COVID-19 case numbers
(including asymptomatic infections) is also a typical statistical modeling problem
[158] (this model also expands the general framework in Fig. 9(a)).

5.2.2 COVID-19 statistical analysis

The COVID-19 pandemic has proven to be highly complex and uncertain. Sta-
tistical or probabilistic modeling naturally captures the uncertainties around epi-
demics better than other models. Statistical models have been widely applied
to COVID-19 modeling. Typical tasks include (1) simulating and validating the
state distributions and transitions of COVID-19 infected individuals over time;
(2) modeling latent and random factors affiliated with the COVID-19 epidemic
processes, movements and interactions; (3) forecasting short-to-long-term trans-
mission dynamics; (4) evaluating the effect of NPIs; and (5) estimating the impact
of COVID-19 such as on socioeconomic aspects. Below, we summarize the relevant
applications of descriptive analytics, Bayesian statistical modeling, and stochastic
compartmental modeling of the COVID-19 epidemic statistics, epidemic processes,
and the influence of external factors such as NPIs on the epidemic. Table 2 further
summarizes such applications of COVID-19 statistical modeling.

COVID-19 descriptive analytics. Descriptive analytics serve as the entrance to
COVID-19 statistical analysis and are typically seen in non-modeling-focused ref-
erences and communities. Typically, simple statistics such as the mean, deviation,
trend and change of COVID-19 case numbers are calculated and compared. For
example, the statistics of asymptomatic infectives are reported in [142]. In [22],
change point analysis detects a change of the exponential rise of infected cases and
the Pearson’s correlation between the change and lockdown implemented across
risky zones. In addition, case statistics can be calculated in terms of specific sce-
narios, e.g., a population’s mobility [118] or workplace [15].

Bayesian statistical modeling of COVID-19 epidemic processes. Bayesian mod-
els have been favored by epidemiologists and health researchers for their capability
of estimating uncertainty and involving factor dependence and prior knowledge
[32], for example, modeling conventional epidemic contagion [10,202]. In Bayesian
analysis, MCMC has been particularly focused and widely applied in stochastic
epidemic modeling [107]. MCMC is capable of simulating and estimating health
and epidemic processes with a strong stochastic Markovian assumption, approx-
imate model fitting, and parameter inference to complex settings. In COVID-19,
Bayesian analysis and MCMC have been applied to model its stochastic epidemic
processes, specific factors that may influence the COVID-19 epidemic process,
causality, partially observed data (e.g., under-reported infections or deaths), and
other uncertainties. For example, Niehus et al. [191] applied a Bayesian statistical
model to estimate the relative capacity of detecting imported cases of COVID-
19 by assuming the observed case count to follow a Poisson distribution and the
expected case count to be linearly proportional to daily air travel volume. To cap-
ture the complex relations in the COVID-19 pandemic, the causal relationships
in the coronavirus transmission process are modeled by hierarchical Bayesian dis-
tributions [191,88]. In [82], a partially observable pure birth process following the
continuous-time Markov population process assumes a binomial distribution of
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partial observations of infected cases and estimates the future actual values of
infections and the unreported percentage of infections in the population.

Bayesian statistical modeling of external factors on influencing the COVID-
19 epidemic. Another important application is to model the influence of external
factors on the COVID-19 epidemic dynamics. For example, Flaxman et al. [88]
inferred the impact of NPIs including case isolation, educational institution clo-
sure, banning mass gatherings, public events and social distancing (including local
and national lockdowns) in 11 European countries. They estimated the course of
COVID-19 by back-calculating the infections from observed deaths and fitting a
semi-mechanistic Bayesian hierarchical model with an infection-to-onset distribu-
tion and an onset-to-death distribution. In addition, with case numbers, especially
deaths, their model also jointly estimates the effect sizes of interventions.

Stochastic compartmental modeling of the COVID-19 epidemic. Stochastic
compartmental models integrate statistical modeling with compartmental mod-
els (see Section 7.1). They can simulate the stochastic hypotheses of specific as-
pects (e.g., probability of a state-based population or of a state transition) of the
COVID-19 epidemiological process and the stochastic influence of external inter-
ventions on the COVID-19 epidemic process. Such probabilistic compartmental
models integrate the transmission mechanisms of epidemics with the characteris-
tics of observed case data [321,71,197,109]. For example, in [278], a COVID-19
transmission tree is sampled from the genomic data with MCMC-based Bayesian
inference under an epidemiological model. The parameters of the offspring dis-
tribution in this transmission tree are then inferred. The model thus infers the
person-to-person transmission in an early outbreak. Based on the probabilistic
compartmental modeling, Zhou et al. [321] developed a semiparametric Bayesian
probabilistic extension of the classical SIR model, called BaySIR. It involves time-
varying epidemiological parameters to infer the COVID-19 transmission dynamics
by considering the undocumented and documented infections and estimates the
disease transmission rate by a Gaussian process prior and the removal rate by a
gamma prior. To estimate the all-cause mortality effect of the COVID-19 pan-
demic, Kontis et al. [139] applied an ensemble of 16 statistical models (autoregres-
sive with holiday and seasonal terms) on the vital statistics data for a comparable
quantification of the weekly mortality effects of the first wave of COVID-19 and an
estimation of the expected deaths in the absence of the pandemic. Other similar
stochastic SIR models can also be found in the COVID-19 literature. Examples are
assuming a Poisson time-dependent process on infection and reproduction [113], a
beta distribution of infected and removed cases [281], and a Poisson distribution
of susceptible, exposed, documented infected and undocumented infected popula-
tions in a city [154].

Statistical influence modeling of COVID-19 interventions and policies. Apart
from modeling the COVID-19 transmission dynamics or forecasting case counts,
Bayesian statistical models are also applied in other areas, e.g., to estimate the
state transition distributions by applying certain assumptions such as of the
susceptible-to-infected (i.e., the infection rate) or infected-to-death (mortality
rate) transition. For example, Cheng et al. [59] used a Bayesian dynamic item-
response theory model to produce a statistically valid index for tracking the gov-
ernment response to COVID-19 policies. Dehning et al. [71] combined the estab-
lished SIR model with Bayesian parameter inference using MCMC sampling to
analyze the time dependence of the effective growth rate of new infections and to
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reveal the effectiveness of interventions. With the inferred central epidemiological
parameters, they sample from the parameter distribution to evolve the SIR model
equations and thus forecast future disease development. In [281], a basic SIR model
is incorporated with different types of time-varying quarantine strategies, such as
government-imposed mass isolation policies and micro-inspection measures at the
community level, to establish a method of calibrating the cases of under-reported
infections.

Discussion. Statistical modeling and a Bayesian statistical framework offer
various advantages in modeling COVID-19 uncertainties [158]. They can elicit
informative priors for hidden parameters that are difficult to estimate due to
the lack of data reflecting the clinical characteristics of COVID-19, offer coher-
ent uncertainty quantification of parameter estimates, and capture nonlinear and
non-monotonic relationships without the need for specific parametric assump-
tions [321]. Compared with compartmental models, statistical models usually con-
verge at different confidence levels for different assumptions (i.e., possible mitiga-
tion strategies), providing better interpretability and flexibility for characterizing
the COVID-19 characteristics and complexities discussed in Section 3. However,
the related work on deep and comprehensive COVID-19 statistical modeling is still
limited in terms of addressing COVID-19-specific characteristics and complexities.
Open issues and opportunities include modeling asymptomatic effect, the cou-
plings between mitigation measures and case numbers, and the time-evolving and
nonstationary case movement of COVID-19 clusters.

Table 2 Summary and Examples of COVID-19 Mathematical and Statistical Learning.

Objectives Approaches Data References
Infection
diagnosis

Descriptive analytics, Bayesian mod-
els, continuous-time Markov processes

Case numbers, demographics,
biomedical test, medical imag-
ing, sensor data, etc.

[33,82,142,
191,263]

Transmission
processes

Bayesian inference, stochastic com-
partmental models, state-space mod-
els, MCMC

Case numbers, demographics,
genomic data, external factors,
etc.

[109,113,
154,197,
278,321]

Medical treat-
ment

Descriptive analytics, Bayesian mod-
els

Health/medical data, case
numbers, etc.

[139]

NPI evalua-
tion

Bayesian models, temporal and hier-
archical Bayesian models, stochastic
compartmental models, compartmen-
tal models with Bayesian inference

NPI policies, case numbers, ex-
ternal data (e.g., social activi-
ties), etc.

[5,30,59,71,
88]

Sentiment
and emotion
impact

Descriptive analytics, latent models
for sentiment/topic modeling, time-
series analysis like regression variants

Questionnaire data, social me-
dia data, external factors like
wellbeing, etc.

[207,221,
267,299]

Social, eco-
nomic and
workforce
influence

Descriptive analytics, time-series
analysis, numerical methods, stochas-
tic compartmental models

Case numbers, data related to
economy, trade, supply chain,
logistics, social activities,
workforce, technology, trans-
port, mobility, sustainability
and public resources, etc.

[15,72,118,
140,130,
153,89,250,
272,274]

Misinformation Descriptive analytics, time-series
models, numerical methods, statisti-
cal language models

Fact data, online texts, social
media, case numbers, etc.

[4,150,232]
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6 COVID-19 Data-driven Learning

Here, we review the related work on data-driven discovery in COVID-19. Data-
driven COVID-19 modeling covers classic (shallow) and deep machine learning
methods and various AI and data science techniques on COVID-19 problems and
data. They discover interesting knowledge and insights by characterizing, repre-
senting, analyzing, classifying and predicting COVID-19 problems.

6.1 Shallow and Deep Learning

Both classic (shallow) machine learning models and deep neural networks have
been intensively applied in modeling COVID-19, as shown by the commonly used
keywords in the literature [44] (also see Figs. 6, 7 and 8). Below, we summarize
the relevant machine learning models customized for COVID-19 modeling.

Shallow learning models. Classic (shallow) machine learning methods have been
intensively applied in COVID-19 classification, prediction and simulation, as shown
in [44]. Typical shallow learning methods include artificial neural networks (ANN),
SVM, decision trees, Markov chain models, random forest, reinforcement learning,
and transfer learning. These tools are easy to understand and implement and are
more applicable than other sophisticated methods (e.g., deep models and com-
plex compartmental models) for the often-small COVID-19 data. They are well
explained in the relevant literature (e.g., [56]). Interested readers can refer to them
and other textbooks for technical details [122,25,42].

Though different machine learning methods may be built on their respective
learning paradigms [42], and therefore differ from each other, their main learning
tasks and processes for modeling COVID-19 are actually similar. They (1) select
discriminative features x, (2) design a model f (e.g., a random forest classifier)
to predict the target y: ỹ(x) = f(θ,x,b) with parameters θ and bias term b, and
then (3) optimize the model to fit the COVID-19 data by defining and optimizing
an objective function L =θ (y − ỹ(x)) for the goodness of fit between expected ỹ
and actual y target (e.g., infective or diseased case numbers).

COVID-19 deep sequential interaction modeling. As discussed in Section 3.3,
COVID-19 involves various sources of data. COVID-19 case numbers including
infected and death cases are temporal. External factors such as NPIs, vaccina-
tion, mobility and environmental factors may be temporal and sequential as well.
The case series and external factors interact with each other over time. A critical
challenge in modeling COVID-19 (see Section 3.4) is to model the temporal and
sequential interactions between multiple series over time. Few deep models serve
this purpose, thus we highlight this important matter here.

Typical approaches for COVID-19 deep sequential interaction modeling can
be characterized by a general deep interaction and prediction framework as fol-
lows. They model (1) temporal dependencies over sequential case (x, which may
consist of categories of case numbers s, i and r or their rates) evolution, (2) the
interactions and influence between external containment actions (a, which may
consist of various control measures such as masking and social distancing) and
case developments, and (3) the influence of personal context (c, which may consist
of demographic, health circumstances and symptomatic features on COVID-19 in-
fections) over time t. As COVID-19 case developments are sequential, stochastic
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and influenced by many external factors, such a framework can combine (1) au-
toencoders for representing the influence of unknown and stochastic asymptomatic
and unreported case dynamics on reported numbers x; (2) RNNs for capturing
the sequential evolution of case numbers, control measures and personal context;
and (3) the contextual attention network for capturing the exterior containment
strategies applied on case control. These DNN networks jointly model complex in-
teractions between various sources of underlying and control factors in COVID-19
sequential developments.

Fig. 10 A time-varying case-action-context neural interaction network for COVID-19 deep
sequential modeling.

Fig. 10 illustrates a deep sequential case-action-context interaction network
for implementing the above framework. The formulation of the key variables and
their interactions are shown below. In practice, networks h can be based on an
LSTM, RNN, Transformer or other deep networks. The gating function unit g
can be implemented by a gated recurrent unit (GRU) or other gating functions
to determine the influence of control actions/context on case number movement.
The transformation from the input case vector x to the action a and context c
adjusted case representation e through network qθ can be treated as an encoder.
The estimation (reconstruction) of xt from e by network pϕ is a decoding or
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prediction process.

hxt ∼ hx(xt,W
x
t ,b

x
t |hxt−1) (7a)

hct ∼ hc(ct,Wc
t ,b

c
t) (7b)

hat ∼ ha(at,W
a
t ,b

a
t ) (7c)

gxt ∼ g(xt,ht) (7d)

et ∼ qθ(et|et−1,h
x
t ,h

x
t−1,g

x
t ,g

c
t ,g

a
t ) (7e)

x̃t ∼ pϕ(x̃t|et,hxt ) (7f)

The interaction and prediction network for COVID-19 in Fig. 10 can be imple-
mented in terms of an autoencoder (where q and p refer to encoding and decoding
networks, e.g., [119]) or LSTM/RNN-based prediction (with q for representation
and p for estimating the next input, e.g., [240]) framework. Accordingly, the ob-
jective function can be defined in terms of the discrepancy J between xt and x̃t
(i.e., θ,ϕJ (xt, x̃t)) or the KL-divergence (D) with loss L (where ht and ht−1 refer
to the representations of input x interacting with actions a under the context c
through gating g integration).

L(θ, ϕ; xt) ∼ −D(qθ(et|ht,ht−1)||pϕ(et)) + Eqθ (et|ht,ht−1)[logpϕ(ht,ht−1|et)]
(8)

Other deep learning models. Deep learning [96] as represented by DNNs serves
as a more advanced approach to modeling COVID-19, typically favored by com-
puting researchers. Pretrained DNNs are widely applied in modeling COVID-19
data, in particular, X-ray medical images, texts, news, and social media. Numer-
ous references can be found in the literature [44] which apply DNNs in addressing
various COVID-19 problems, in particular, medical imaging and textual data.
Typical DNNs applied in COVID-19 modeling include (1) convolutional neural
networks (CNNs) and their extensions such as ImageNet and ResNet in particular
for COVID-19 images; (2) sequential networks such as LSTM, recurrent neural
networks (RNNs), memory networks, Transformer and their variants for COVID-
19 case series; (3) textual neural networks such as BIRT, Transformer and their
variants for COVID-19 texts and news; (4) unsupervised neural networks such
as autoencoders and generative adversarial networks (GANs) for COVID-19 case
estimation; and (5) other neural learning mechanisms such as attention networks
for incorporating contextual factors.

6.2 COVID-19 Shallow Learning

Here, COVID-19 shallow learning refers to applying general analytics methods
and classic machine learning models in the analytics and modeling of COVID-19
problems and data. In the literature, about 8.5k of 44k modeling references are on
COVID-19 shallow learning, which forms the second most commonly used set of
modeling methods. COVID-19 shallow learning has been widely applied in study-
ing broad-reaching COVID-19 problems by medical, biomedical, computing and
social scientists [241,182,228,242,145,304]. The analytics and learning methods
most applied include ANN, tree models such as decision trees and random for-
est, clustering methods, classification methods, kernel methods like SVM, transfer
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learning, federated learning, NLP and text mining methods. In addition, evolution-
ary computing like genetic algorithms and fuzzy set, and reinforcement learning
have also been involved in COVID-19.

Shallow learning methods have been applied to address various COVID-19
problems and tasks. Examples are COVID-19 outbreak, case forecasting, medical
diagnostics, contact tracing, risk, transmission, uncertainty, anomalies, complex-
ities, classification, variation, prediction, and drug development [44]. Below, we
briefly illustrate their applications in several common COVID-19 problems and
tasks: COVID-19 outbreak prediction and risk assessment, COVID-19 diagnosis
on clinical attributes, COVID-19 diagnosis on respiratory data, COVID-19 di-
agnosis on medical imaging, COVID-19 diagnosis on latent features, modeling
the influence of external factors on COVID-19, and COVID-19 drug and vaccine
development. Table 3 further summarizes and illustrates various applications of
COVID-19 shallow learning.

Machine learning for COVID-19 outbreak prediction and risk assessment. Typ-
ical classifiers like ANN, SVM, decision trees, random forest, regression trees, least
absolute shrinkage and selection operator (LASSO), and self-organizing maps have
been applied to forecast COVID-19 spread and outbreak and their coverage, pat-
terns, growth, and trends; estimate and forecast the confirmed, recovered and
death case numbers, and the transmission and mortality rates; and cluster infected
cases and groups, etc. For example, in [128], logistic regression, decision trees, ran-
dom forest and SVM are applied to estimate the growth trend and containment
sign on the data consisting of factors about health infrastructure, environment,
intervention policies and infection cases with accuracy between 76.2% and 92.9%.
Evolutionary computing such as genetic algorithms, particle swarm optimization,
and gray wolf optimizer forecast COVID-19 infections [190,234,261].

Machine learning for COVID-19 diagnosis on clinical attributes. The machine
learning of COVID-19 clinical reports such as blood test results is applied to as-
sist in COVID-19 diagnosis. For example, in [135], clinical attributes and patient
demographic data were extracted by term frequency/inverse document frequency
(TF/IDF), bag of words (BOW) and report length from textual clinical reports.
The extracted features were then classified in terms of COVID, acute respira-
tory distress syndrome (ARDS), SARS, and both COVID and ARDS by SVM,
multinomial naıve Bayes, logistic regression, decision trees, random forest, bag-
ging, Adaboost, and stochastic gradient boosting. It reports an accuracy of 96.2%
using multinomial naıve Bayes and logistic regression. In [31], hematochemical val-
ues were extracted from routine blood exam-based clinical attributes, which were
then classified into positive or negative COVID-19 infections by decision trees,
extremely randomized trees, KNN, logistic regression, naive Bayes, random forest,
and SVM. It reports an accuracy of 82% to 86%. The work in [31] applied decision
tree to identify and explain suspicious COVID-19 cases.

Machine learning for COVID-19 diagnosis on respiratory data. Machine learn-
ing is applied to COVID-19 patient respiratory data, such as lung ultrasound waves
and breathing and coughing signals, to extract respiratory behavioral patterns and
anomalies. For example, logistic regression, gradient boosting trees and SVMs were
used to distinguish COVID-19 infections from asthmatic or healthy people with
80% AUC on the Android app-based collection of coughs and breathing sounds
and symptoms in [33].
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Machine learning for COVID-19 diagnosis on medical imaging. A very inten-
sive application of classic machine learning methods is to screen COVID-19 infec-
tions on CT, chest X-ray (CXR) or PET images. For example, in [51], the majority
voting-based ensemble of SVM, decision trees, KNN, naive Bayes, and ANN was
applied to classify normal, pneumonia and COVID-19-infected patients on CXR
images. It reports an accuracy of 98% and AUC of 97.7%. In [85], the simple ap-
plications of SVM, naive Bayes, random forest, and JRip on CT images screen
COVID-19 diseases. It reports 96.07% accuracy by naive Bayes combined with
random forest and JRip, in comparison with 94.11% by CNN.

Machine learning for COVID-19 diagnosis on latent features. Shallow learn-
ers have also been applied to detect and diagnose COVID-19 infections on latent
features learned by shallow to deep representation models on COVID-19 medical
images. For example, in [127], ANN-based latent representation learning captures
latent features from gray, texture, histogram, number, intensity, surface and vol-
ume features in CT images. Classifiers including SVM, logistic regression, Gaus-
sian naive Bayes, KNN, and ANN then differentiate COVID-19 infections from
community-acquired pneumonia with 95.5% accuracy reported. In [199], latent fea-
tures were extracted from CXR and CT images to form a gray level co-occurrence
matrix (GLCM), local binary gray level co-occurrence matrix (LBGLCM), gray
level-run length matrix (GLRLM), and segmentation-based fractal texture analy-
sis (SFTA)-based features. These features were then oversampled by the synthetic
minority over-sampling technique (SMOTE) and further selected by a stacked
autoencoder (sAE) and principal component analysis (PCA), before SVM was
applied to achieve 94.23% accuracy.

Modeling the influence of external factors on COVID-19. Various machine
learning tasks have been undertaken to analyze the relation and influence of ex-
ternal and contextual factors on COVID-19 epidemic attributes. For example, en-
semble methods including random forest, extra trees regressor, AdaBoost, gradient
boosting regressor, extreme gradient boosting (XGBoost), light gradient boosting
machine (LightGBM), CatBoost regressor, kernel ridge, SVM, KNN, MLP, and
decision trees were used to estimate the potential association between COVID-19
mortality and weather data in [173].

Machine learning-driven COVID-19 drug and vaccine development. Machine
learning methods have also been applied to analyze the drug-target interactions,
drug selection, and the effectiveness of drugs and vaccines on containing COVID-
19. For example, machine learning methods including XGBoost, random forest,
MLP, SVM and logistic regression were used to screen thousands of hypotheti-
cal antibody sequences and select nine stable antibodies that potentially inhibit
SARS-CoV-2 in [169,132].

6.3 COVID-19 Deep Learning

Deep learning has been intensively applied to modeling COVID-19 as discussed
in Section 6.1. As reported in [44], about 4.6k of 4k modeling publications are
associated with deep learning of COVID-19 [110,121]. Typical applications involve
COVID-19 data on daily infection case numbers, health and clinic records, hospital
transactions, medical imaging, respiratory signals, genomic and protein sequences,
and exterior data such as infective demographics, social media communications,
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news and textual information, etc. Below, we first discuss the broad deep COVID-
19 learning, and then illustrate two of the most commonly used applications of
deep learning for COVID-19 epidemic forecasting and image analysis.

Broad deep COVID-19 learning. By reviewing the related literature, we sum-
marize and highlight the following typical application areas of COVID-19 deep
learning.

– Characterizing the symptoms of coronavirus infections and COVID-19 , e.g., by
pretrained neural networks, e.g., [236]; with more discussion in Section 7.2.1;

– Analyzing health and medical records, blood sample-based test reports, and
respiratory sounds and signals for COVID-19 diagnosis and treatment, e.g., by
CNN, LSTM, and GRU [228]; with more discussion in Section 7.2.2;

– Analyzing medical imaging for COVID-19 diagnosis, quarantine and treatment,
e.g., by CNNs such as ImageNet and ResNet, GANs, and their mutations [121,
228]; with more discussion in Section 7.2.3;

– Analyzing COVID-19 genomic and protein sequences and interactions, e.g., by
RNNs, CNNs and their variants, for drug and vaccine development, infection
source tracing, and virus structure and evolution analysis; with more details
in Section 7.2.4;

– Repurposing and developing COVID-19 drugs and vaccines, e.g., by generative
autoencoders, generative tensorial reinforcement learning, and GANs [317] for
generative chemistry discovery;

– Analyzing the COVID-19 impact on sentiment and emotion, e.g., by RNN,
Transformer-based NLP neural models, and their derivatives [78];

– Characterizing the COVID-19 infodemic, e.g., by NLP and text mining includ-
ing misinformation identification [93,243,178,19], enhancing epidemic model-
ing using social media data [137], and analyzing COVID-19 research progress
and topic evolution [316];

– Other tasks such as analyzing the influence and effect of countermeasures, e.g.,
the effect of quarantine policies on outbreak using DNNs; with more discussion
in Section 8.

Further, Table 3 illustrates some typical applications of deep learning methods
for modeling COVID-19.

Deep learning of the COVID-19 epidemic. Deep neural networks have been
intensively applied to characterize and forecast COVID-19 epidemic outbreak, dy-
namics and transmission. Examples are predicting the peak confirmed numbers
and peak occurrence dates, forecasting daily confirmed, diseased and recovered
case numbers, and forecasting the next N -day (e.g., N = {7, 14, 10, 30, 60 days})
infected, confirmed, recovered and death case numbers or their transmis-
sion/mortality rates. In such problems, short-range temporal dependencies in
case numbers can be modeled by LSTM, stacked LSTM, bi-LSTM, convolutional
LSTM-like RNNs, and GRU [74,240]. Other work models the transmission dynam-
ics and predicts the daily COVID-19 infections using a variational autoencoder
(VAE), encoder-decoder LSTM, LSTM with encoder and Transformer [138], mod-
ified autoencoder [210], GAN and their variants. In [312], a comparative analysis
shows that VAE outperforms simple RNN, LSTM, BiLSTM and GRU in forecast-
ing COVID-19 new and recovered cases. In addition, DNNs are also used to track
the COVID-19 outbreak, predict the outbreak size by encoding quarantine policies
as the strength function in a deep neural network, estimate global transmission
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dynamics using a modified autoencoder [117], predict epidemic size and lasting
time, and combine medical information with local weather data to predict the risk
level of a country using a shallow LSTM model [203].

Deep learning of COVID-19 medical imaging. COVID-19 medical imaging anal-
ysis is an area mostly explored by deep learning methods. Typical COVID-19
data includes CXR, CT, ultrasound, and multimodal data. Problems related to
COVID-19 medical imaging analysis include diagnosing and detecting COVID-19
and differentiating COVID-19 infections from viral and bacterial pneumonia in
COVID-19 images, such as lung ultrasound images, CT and CXR images; lo-
calizing and segmenting COVID infections; representing what the coronavirus
infection on the lungs looks like; and visualizing COVID infections. DNNs ap-
plied on COVID-19 ultrasound imaging include LSTM, VGG variants, LSTM
and CNN combinations, and CNNs. Deep models applied on CXR images in-
clude various CNNs, such as AlexNet, CheXNet, COVIDX-Net, DenseNet201,
DenseNet121, GoogleNet, InceptionV3, InceptionResNetV2 (Inception-ResNet-
V2), MobileNetV2, NASNet, ResNetV2, ResNet18, ResNet50, ResNet101, Shuf-
fleNet, SqueezeNet, VGG16, VGG19, Xception, and XceptionNet. For example,
the COVID-Net [279] pretrained on ImageNet detects COVID-19 on CXR images
and achieves 93.3% test accuracy. In [259], MobileNetV2 and SqueezeNet extract
features from CXR images, which are then processed by social mimic optimization
to classify coronavirus, pneumonia, and normal images with 99.27% accuracy by
SVM. More discussion on COVID-19 deep learning can be found in Section 7.2 for
COVID-19 medical and biomedical analysis.

Discussions. Most existing studies on shallow and deep COVID-19 modeling
directly apply existing shallow machine learning methods and pretrained deep
neural networks on COVID-19 data, as shown in reviews like [156,239,279]. Our
literature review also shows that DNNs have been widely applied to COVID-19
modeling. However, they are unnecessarily applicable to any possibilities and do
not always significantly outperform shallow models such as time-series forecasters
and shallow machine learners. In fact, sometimes, deep models may even lose their
advantage over traditional modelers such as ensembles, as shown in Table 3, and
Table 6. This may be caused by the often small but complex COVID-19 data, as
discussed in Section 3.3, making deep models incapable of sufficient fitting.

7 COVID-19 Domain-driven Modeling

To address the physical-technical nature of COVID-19, here, we focus on the two
most relevant physical-technical domains of COVID-19: epidemic modeling, and
medical and biomedical analysis.

7.1 COVID-19 Epidemic Modeling

Epidemic modeling is a research area intensively studied for modeling the epidemic
systems, infection, transmission and dynamics of infectious diseases, typically by
combining epidemiology and mathematical modeling. Here, we introduce the rel-
evant epidemiological compartment models and their applications in modeling
COVID-19.
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Table 3 Summary and Examples of COVID-19 Shallow and Deep Learninga.

Objectives Approaches Data References
COVID-19
transmission
& exter-
nal factor
impact on
transmission

Shallow learners like SVM, ANN, decision tree,
random forest and ensemble methods; evolu-
tionary computing methods such as particle
swarm optimization; DNN variants such as
LSTM, GRU, VAE, GAN and BiLSTM, etc.

Epidemic case numbers, ex-
ternal data such as meteoro-
logical data, environmental
data (e.g., humidity), social
activity, and mobility data,
etc.

[128,190,
234,261,
74,240,138,
210,312]

COVID-19 in-
fection diag-
nosis

Shallow learners; CNN and RNN variants
like LSTM and GRU; pretrained CNN-based
image nets like ResNet, MobileNetV2, and
SqueezeNet; and text analysis models

Pathological and clinical
records, respiratory signals
(e.g. coughing and breath-
ing signals and patterns
in ultrasound or thermal
video), computed tomogra-
phy (CT), and CXR images,
etc.

[31,31,33,
51,85,259,
262,123,
135,171,
301]

COVID-19
mortality
and survival
analysis

Shallow learners like SVM, ANN, decision
tree, regression tree, and random forest; en-
semble methods like XGBoost; CNNs, pre-
trained CNN-based image nets, RNN variants
like LSTM and GRU

Medical imaging including
CT and CXR images, clin-
ical records, patient demo-
graphics, case numbers, ex-
ternal data, etc.

[237,49,
237,74,240,
313]

COVID-
19 medical
treatment

Shallow machine learning methods, and DNNs,
etc.

Health and medical records,
pharmaceutical treatments,
ICU data, etc.

[320,293,
20]

COVID-19
genomic and
protein anal-
ysis, drug
and vaccine
development

Shallow classifiers like SVM and ensembles,
frequent pattern and sequence analysis meth-
ods, CNN variants, RNN variants, attention
networks, GAN, autoencoders, reinforcement
learning, NLP models like Transformer, etc.

Genomic data, proteomic
data, drug-target interac-
tions, molecular reactions,
etc.

[132,177,
20,317,176,
187,8]

COVID-19
resurgence
and mutation

Shallow learners like linear discriminant, SVM,
KNN and subspace discriminant, classifiers
combined with compartmental models, DNN
variants, sequence analysisb, etc.

Resurgence case numbers,
virus strain genome and pro-
tein sequences, NPI data,
external data, etc.

[227,12]

COVID-19
NPI evalua-
tion

Various Bayesian modelsc, compartmental
models combined with classifiers or estimators,
DNNsb, etc.

Case numbers, NPI policies,
external data, etc.

[84,92]

COVID-19
sentimental
and emotional
impact

NLP models like LDA and topic models, DNN
variants like BERT and Transformer variants,
etc.

Social media data, news
feeds, Q/A data, external
factors, etc.

[78,286,
188,181]

COVID-19
socioeco-
nomic influ-
ence

Relation (e.g., correlation and causality)
analysisb, topic modeling by NLP models

Social, economic and work-
force activities, case num-
bers, etc.

[316,26]

COVID-19
misinforma-
tion analysis

Classic NLP models, correlation analysis, shal-
low learners, outlier detectors, DNN variants
like BERT and Transformer mutations

Social media, online texts,
Q/A data, news feeds, etc.

[178,150]

a See Table 6 for deep COVID-19 medical imaging analysis; b such methods are applicable,
however, not much work has been reported in the literature; c See Table 2 for the NPI effect

modeling.

7.1.1 Epidemiological compartmental models

Epidemiological modeling [10,202,245,32,107] portrays the state-space, interac-
tion processes and dynamics of an epidemic in terms of its macroscopic population,
states and behaviors. Compartmental models [58,201,158] have been widely used
in characterizing COVID-19 epidemiology by incorporating epidemic knowledge
and compartmental hypotheses into imitating the multi-state COVID-19 pop-
ulation transitions. An individual in the COVID-19 epidemic sits at one state
(compartment) at a time-point and may transit this state to another at a state
transmission rate. The individuals of the closed population are respectively labeled
per their compartments and migrate across compartments during the COVID-19
epidemic process, which are modeled by (ordinary) differential equations.
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Fig. 11 A general framework of COVID-19 epidemiological compartmental modeling. The
COVID-19 epidemiological process can be categorized into four major states: susceptible (S),
exposed/incubating (E), infective (I) and removed (R), and other optional states. A circle
denotes the initial states, a diamond denotes the optional states, and a double circle denotes
the final states. Blue indicates the noninfectious states, red for the infectious states, and green
for the states with patients removed or to be removed from the infection. The thick lines denote
the main states and state transition paths while the thin lines are minor ones which may be
ignored in modeling.

By consolidating various COVID-19 epidemiological characteristics and hy-
potheses, Fig. 11 illustrates a general and typical COVID-19 state-space and
evolution compartmental system with major (thick) and minor (thin) states and
state transition paths. This compartmental modeling framework decomposes the
COVID-19 epidemic process into four major sequential states: Susceptible (S),
Exposed (E), Infective (I), and Removed (R).

– Susceptible (S): Individuals (S) are susceptible to infection under free (uncon-
tained or unrestrained, SF at uncontained rate θF ) or contained (restrained,
SF̄ at containment rate θF̄ ) conditions at a respective transmission rate αF or
αF̄ ;

– Exposed (E): Free or contained susceptibles are exposed to infection from those
who are infected but in the incubation period (which could be as long as 14
days), and may be noninfectious and free (EF ) or infectious and contained
(EF̄ ) at a respective exposure rate εF or εF̄ ;

– Infective (I): Those exposed become infectious and may be detected (regis-
tered/documented and known to medical authorities, IK) or undetected (unre-
ported/undocumented and unknown to medical management, IK̄); also, some
initially undetected infectives may be further detected and converted to de-
tected infectives at rate βK̄K ; some documented infectives may be symptomatic
and quarantined (Q) at quarantine rate βQ while others may be asymptomatic
and unquarantined (Q̄) at unquarantined rate βQ̄; there may be some rare cases
(at rate βC) who carry the virus and infection for a long time with or without
symptoms, called lasting carriers (C); in addition, some initially asymptomatic

cases may transfer to symptomatic and quarantined at rate βQ̄Q ;

– Removed (R): Unquarantined infectives may recover (R) at recovery rate γQ̄R or

die (D) at mortality rate γQ̄D respectively; at rate γQR or γQD for the quarantined

infectives; and at rate γK̄R or γK̄D for unknown/undetected infectives; some
quarantined infectives may present acute symptoms even with life threats,
who are then hospitalized (H) at rate γQH or even further ventilated (V) at rate
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γHV ; hospitalized infectives may recover or die at rate γHR or γHD , and at rate
γVR or γVD for ventilated.

As noted in Fig. 11, this general epidemic modeling framework further de-
composes the SEIR states into specific conditional states: noninfectious and free
exposed state (EF ) vs infectious and contained state (EF̄ ), detected infectious
state (IK) vs undetected infectious state (IK̄)quarantined infective state (Q) vs
unquarantined infective state (Q̄). The framework also incorporates a few optional
states: carriers (C), recovery (R), deceased (D), hospitalized (H), or ventilated
(V ).

In practice, the above comprehensive COVID-19 state-space system is often
instantiated into specific SEIR models in the literature, where not all states are
characterizable by their available data. Accordingly, the focus in COVID-19 epi-
demic modeling is on those main epidemiological compartments and their tran-
sitions when the corresponding data is available. Examples are the susceptible,
exposed, infectious (which consists of both detected and undetected), recovered,
and diseased states [58].

Below, we illustrate the general COVID-19 epidemic modeling framework in
Fig. 11 in terms of the differential equations with states S, E, I, Q, Q̄, R and D,
which are the main states of a closed COVID-19 population. Here, (1) S, E, I,
Q, Q̄, R and D represent the fraction of the population at each state; (2) S and
E are impacted by containment measures at the containment rate θ and I at θI
who are contained and recovered; and (3) the state transitions take place at their
respective rates.

∂tS = −αSI − θS (9a)

∂tE = αSI − εE − θE (9b)

∂tI = εE − βQI − βQ̄I − θII (9c)

∂tQ = βQI + βQ̄QQ̄− γ
Q
DD − γ

Q
RR (9d)

∂tQ̄ = βQ̄I − β
Q̄
QQ̄− γ

Q̄
R Q̄− γ

Q̄
DQ̄ (9e)

∂tR = γQRR+ γQ̄R Q̄+ θS + θE + θII (9f)

∂tD = γQDQ+ γQ̄DQ̄ (9g)

S + E + I +Q+ Q̄+R+D = 1 (9h)

Both the COVID-19 epidemic framework in Fig. 11 and the above differen-
tial equations can be further customized and connected to many compartmental
models in the literature [44,305,58].

7.1.2 COVID-19 epidemiological modeling

Here, building on the above discussion on epidemic modeling in Section 7.1.1, we
summarize and discuss the related work on the major tasks of COVID-19 epidemio-
logical modeling, and highlight the related work on modeling COVID-19 epidemic
transmission processes, dynamics, external factor influence, and resurgence and
mutation.
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COVID-19 epidemiological modeling tasks. Epidemiological models dominate
COVID-19 modeling (about 5.5k publications of the 4k reported in the literature
analysis [44]). Epidemic researchers and computing scientists expand or hybridize
epidemic models with other modeling methods such as statistical modeling and
machine learning for a more powerful characterization of COVID-19 complexities.
In general, COVID-19 compartmental modeling aims to address several epidemi-
ological problems: (1) quantifying the growth (spread) of COVID-19 and its case
number movements at different epidemiological states to forecast case numbers in
the next days or periods; (2) quantifying the basic reproduction rate R0 that in-
forms the contagion and transmission level and control strategies for COVID-19;
(3) quantifying the sensitivity and effect of control measures on COVID-19 in-
fection containment and case movements; and (4) quantifying the sensitivity and
effect of strategies for COVID-19 herd immunity and mass vaccination.

Accordingly, various compartmental models have been customized to cater for
specific assumptions, settings and conditions in modeling COVID-19, as discussed
in Section 7.1.2. To address the above objective (1), with historical case numbers
of a country or region and the initial settings of hyperparameters, epidemic mod-
eling can estimate the parameters and further predict numbers over time, e.g.,
the number of infections and deaths in a country or city. Regarding (2), with the
state-space shown in Fig. 11, by resolving their differential equations, we can first
obtain the population projection matrix A corresponding to all states and their
transition probabilities. The projection matrix A can be converted to a state tran-
sition matrix T , where each element Tij is the probability of an individual transfer
from state i at time t to state j at time j+ 1, and a fertility (reproductive) matrix
F , where an element Fij refers to the reproduced number of i-state offsprings of an
individual at state j, i.e., A = T + F . Further, we can calculate the fundamental
matrix N : N = (I−T )−1 with the identity matrix I to represent the expected time
spent in each state and the time to death. Then, we can obtain another matrix R:
R = FN with each entry referring to the expected lifetime production number of
i-state offspring by an individual at stage j [47,245]. Its dominant eigenvalue is the
net reproduction rate R0. With regard to (3), since control measures such as social
distancing and lockdown may influence the growth of case numbers and reproduc-
tion and transmission rates, we can analyze the sensitivity of adjusting related
parameters on the case numbers and rates. To explore the opportunities for herd
immunity and mass vaccination in (4), the herd immunity rate and vaccination
rate are expected to be greater than 1− 1

R0
to eradicate the disease.

These major objectives may be further connected to other COVID-19 model-
ing tasks, applying epidemiological modeling to modeling COVID-19 transmission
(which is also the most explored area) and resurgence and mutation (which is a
recent challenge).

Modeling COVID-19 epidemic transmission processes. The studies on modeling
COVID-19 epidemic transmission mainly focus on evaluating the epidemiological
attributes (e.g., infection rate, recovery rate, mortality, reproduction number, etc.),
predicting the infection and death counts, and revealing the transmission, spread
and outbreak trends under experimental or real-world scenarios [201,158]. As il-
lustrated in Table 4, various compartmental models are available to characterize
COVID-19. For example, the SIDARTHE compartmental model considers eight
stages of infection: susceptible (S), infected (I), diagnosed (D), ailing (A), recog-
nized (R), threatened (T ), healed (H) and extinct (E) to predict the course of
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the epidemic and to plan an effective control strategy [94]. In [172], a new com-
partment is introduced to the classic SIR model to quantify those who are symp-
tomatic, quarantined infected. Further, a stochastic SHARUCD model framework
contains seven compartments: susceptible (S), severe cases prone to hospitaliza-
tion (H), mild, sub-clinical or asymptomatic (A), recovered (R), patients admitted
to intensive care units (U), and the recorded cumulative positive cases (C), which
include all new positive cases for each class of H, A, U , R, and deceased (D) [5].
In addition, several models involve new compartments to represent asymptomatic
features to mild symptoms [5,290] and undocumented cases [154]. For the recent
Omicron variant, Khan et al. [134] separate the infected compartment as asymp-
tomatic individuals Iα, symptomatic individuals Is, infected with Omicron variant
Io since people infected with Omicron may further infect other people, so it does
not matter whether they have been vaccinated or not.

Modeling the COVID-19 epidemic dynamics, transmission, and risk. Classic
compartmental models typically assume constant transmission and recovery rates
between state transitions for the past epidemic and infectious diseases. This as-
sumption has been taken in many SIR variants tailored for COVID-19, which, how-
ever, cannot capture the COVID-19 disease characteristics in Section 3.2. To cater
for COVID-19-specific characteristics, especially when mitigation measures are in-
volved, the classic SIR [131] and SEIR models [13], which were applied to modeling
other epidemics like measles and Ebola, have to be tailored for COVID-19. Since
COVID-19 transmission may involve more states, especially with interventions,
SIR and SEIR models have been extended by adding customized compartments
such as quarantined, protected, asymptomatic and immune [94,290,5,172].

Accordingly, to capture the evolving COVID-19 epidemiological attributes in-
cluding time-variant infection, mortality and recovery rates, time-dependent com-
partmental models have been proposed. For example, a time-dependent SIR model
adapts the change of infectious disease control and prevention laws as city lock-
downs and traffic halt are imposed, reflected in the control parameters infection
rate β and recovery rate γ, which are modeled as time-variant variables [58]. Dy-
namical modeling is also considered in temporal SIR models with temporal sus-
ceptible, insusceptible, exposed, infectious, quarantined, recovered and closed (or
death) cases in [209]. In [305], an early-stage study of a dynamic SEIR model es-
timates the epidemic peak and size, and an LSTM further forecasts its trend after
taking into account public monitoring and detection policies. In [97], a multi-
strain, stochastic, compartmental epidemic model identifies the relative transmis-
sibility and immune escape of the Omicron variant with respect to both naturally
acquired immunity and vaccines.

Modeling the COVID-19 resurgence and mutation. Our current understand-
ing of the COVID-19 resurgence and mutation is still very limited. The reported
British, South African, Indian, and other newly emergent mutations of coron-
avirus exhibit higher contagion and complexities [100,101]. COVID-19 may indeed
become another epidemic disease which remains with humans for a long time.
Quantifying the virus mutation and disease resurgence conditions, forecasting and
controlling their potential resurgences and future waves after lifting certain miti-
gation restrictions and reactivating businesses and social activities are important
modeling tasks [163,206]. Other tasks include distinguishing the epidemiological
characteristics, age sensitivity, and intervention and containment measures be-
tween waves [99], comparing the epidemiological wave patterns between countries
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experiencing mutations and resurgences, comparing COVID-19 wave patterns with
influenza wave patterns [83], predicting resurgences and mutations (e.g., by esti-
mating the daily confirmed case growth when relaxing interstate movement, mo-
bility and contact restrictions and social distancing by SEIR-expanded modeling),
and preparing countermeasures for future waves [12].

Limited research results are available in the literature on the above broad is-
sues. For example, a comparative analysis in [27] shows the differences in the sec-
ond COVID-19 wave in Italy and the strategies taken in implementing facemasks,
social distancing, business closures and reopenings. In [37], building on fitting the
first wave data, an epidemic renormalisation group approach further simulates
the dynamics of disease transmission and spread across European countries over
weeks by modeling the European border control effects and social distancing in
each country. In [151], an SIR model estimates the scenarios of incurring a po-
tential second wave in China and the potential case fatality rate if containment
measures such as travel bans and viral reintroduction from overseas importation
are relaxed for certain durations in a population with a certain epidemic effect size
and cumulative count after the first wave. In [206], an SEIR model incorporates
social distancing to model the mechanism (closure releasing) of forming the second
wave, the epidemiological conditions (ranges of transmission rate and the inverse
of the average infectious duration) for triggering the second and third waves, and
the socioeconomic (economic loss due to lockdown) and intervention (novel so-
cial behavior spread) factors on case numbers. In [163], a revised stochastic SEIR
model estimates different resurgence scenarios reflected on infections when apply-
ing time-decaying immunity, lockdown release, or increasing the implementation
of social distancing and other individual NPIs.

Modeling the influence of external factors including NPIs on the COVID-19
epidemic. COVID-19 epidemic dynamics reflect the time-varying states, state tran-
sition rates, and their vulnerability to contextual and external factors such as a
person’s ethnicity, public health conditions, and social contacts and networking
[159]. To depict the influence of external factors, compartmental models can in-
volve relevant side information (e.g., NPIs, demographic features such as age strat-
ification and heterogeneity, and social activities such as population mobility) in
the state transitions of COVID-19 population during outbreak. For example, an
age-sensitive SIR model in [60] integrates known age-interaction contact patterns
into the examination of potential effects of age-heterogeneous mitigation on an
epidemic in a COVID-19-like parameter regime. An age-structured SIR model in-
volves social contact matrices and Bayesian imputation in [246]. An age-structured
SEIRD model identifies no significant susceptibility difference between age groups
in [193]. More discussion on modeling the NPI effect on COVID-19 transmission
and the epidemic is in Section 8.1.

In addition, environmental factors, especially humidity and temperature, may
also affect COVID-19 virus survival and the epidemic’s transmission [298,282].
For example, in [68], variational mode decomposition decomposes COVID-19 case
time-series into multiple components and then a Bayesian regression neural net-
work, cubist regression, KNN, quantile random forest, and support vector regres-
sion (SVR) are combined to forecast six-day-ahead case movements by involving
climatic exogenous variables.

Discussion. COVID-19 compartmental models excel at modeling epidemio-
logical hypotheses, processes and factors with domain knowledge and interpreta-
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tion of infectious diseases. Table 4 illustrates various applications of COVID-19
epidemic modeling. The existing models often assume constant state-space tran-
sitions, capture average behaviors and their contagion of a closed population, and
are sensitive to initial states and parameters. Challenges and opportunities ex-
ist in expanding their traditional frameworks to address the specific COVID-19
complexities and challenges in Section 3. Examples are time-varying, non-IID dy-
namics, and complex couplings between interior and exterior factors related to
COVID-19 populations, management groups, and contexts. Other important is-
sues include understanding how vaccination and specific vaccines affect coronavirus
mutation, discovering the relationships between interior and exterior factors during
their interactions with the COVID-19 ecosystem, and how internal and external
COVID-19 factors jointly affect resurgence and mutations.

Table 4 Summary and Examples of COVID-19 Epidemiological Modeling.

Objectives Factors and Settings Data References
COVID-19
epidemic
transition
and spread

SIR variants like SIDARTHE with eight phases:
susceptible, infected, diagnosed, ailing, recognized,
threatened, healed and extinct as well as severe
symptoms; variational mode decomposition with
shallow regressors, etc.

Case numbers,
reporting informa-
tion, demograph-
ics, test results,
external data, etc.

[94,68]

COVID-19
epidemic
dynamics

Time-dependent compartment transmissions, time-
varying state transition rates

Case numbers,
reporting informa-
tion, etc.

[58,209]

COVID-19
asymp-
tomatic
transmis-
sion

Asymptomatic to mild symptoms, differing mild
and asymptomatic from severe infections, undoc-
umented cases, epidemiological interventions with
serological tests, age-dependent and asymptomatic
settings, etc.

Case numbers,
reporting in-
formation, test
results, symptoms,
demographics, etc.

[290,5,154,
17,158,290]

External
factor in-
fluence on
COVID-19
epidemic

Age-sensitive or age-structured SIR models such as
SEIRD and with social contacts, public monitoring
and detection policies, ethnicity, public health con-
ditions, social contacts, environmental factors

Case numbers,
demographics,
health conditions,
social activities,
environmental
factors, etc.

[60,246,
193,305,
159,298,
282]

COVID-
19 NPI
influence

Lockdown, social distancing, quarantine, symp-
tomatic and quarantined infected cases, self-
protection, etc.

Case numbers,
NPIs, health
conditions, test
results, demo-
graphics, etc.

[5,58,172,
209]

COVID-19
resurgence

Second waves, wave difference, reopening business
and social activities, time-decaying immunity, eas-
ing lockdown and social distancing, age sensitivity,
NPI implementation information, travel ban, and
virus importation

Case numbers,
multi-wave data,
NPIs, and external
data, etc.

[12,83,99,
206,163,12,
151]

COVID-
19 herd
immunity

Compartmental model for simulating ‘shield immu-
nity’ in a population

Case numbers,
serological tests,
etc.

[290]

7.2 COVID-19 Medical and Biomedical Analyses

COVID-19 medical and biomedical analyses reveal the intrinsic and intricate char-
acteristics, patterns and outliernesses of SARS-CoV-2 viruses and COVID-19 dis-
eases. A wide range of research issues have been explored, including but not limited
to: COVID-19 infection diagnosis, prognosis and treatment, virology and patho-
genesis analysis, potential therapeutics development (e.g., drug repurposing and
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vaccine development), genomic similarity analysis and sourcing, and contact trac-
ing. In this section, we summarize the medical and biomedical modeling of COVID-
19 infection diagnosis and case identification, risk and prognosis analysis, medical
imaging analysis, pathological and treatment analysis, and drug development.

7.2.1 COVID-19 infection diagnosis, test and case identification

COVID-19 and its coronavirus strains such as Delta and Omicron have shown
high transmission and reproduction rates, high contagion, and sophisticated and
unclear transmission routes. It is crucial to identify and confirm exposed cases,
test infections, identify infected virus variant types, and trace their origins and
contacts as early as possible so as to timely and proactively implement appropri-
ate quarantine measures and contain their potential spread and outbreak [189].
This is particularly important during the varying incubation periods which are
often asymptomatic to mildly symptomatic yet highly contagious virus variants,
particularly for the increasing evolving new virus strains.

The SARS-CoV-2 diagnosis and test methods include (1) chemical and clini-
cal methods, typically nucleic acid-based molecular diagnosis, and antibody-based
serological detection; (2) medical imaging-driven analysis, such as symptom inspec-
tion from CXR and CT images; (3) clinical diagnoses and tests like respiratory
signal analysis, such as on the abnormal patterns of infected lung ultrasound waves
and coughing and breathing signals; and (4) other noninvasive methods such as
by involving SARS-CoV-2 and its disease data and external data [54,56].

Data-driven discovery also plays an increasingly important role in improv-
ing COVID-19 diagnosis. Due to the virus and disease complexities, alternative
and complementary to the chemical and clinical diagnosis approaches, COVID-19
identification [263] can benefit by analyzing biomedical images, genomic analy-
sis, symptom identification and discrimination, and external data including social
contacts, social activities, mobility and media communications, etc. by data-driven
discovery [42].

Below, we summarize and illustrate the above research for COVID-19 infection
diagnosis, test and case identification.

– Nucleic acid-based diagnosis test (NAT) [87,3,307] refers to various molecu-
lar diagnosis test methods, including the non-isothermal amplification (e.g.,
the real-time reverse transcription polymerase chain reaction (RT-PCR) test,
which is the gold standard of COVID-19 diagnosis), isothermal amplification
(e.g., CRISPR-based), and sequencing-based tests. Such methods may benefit
from modeling techniques including gene and protein sequence analysis and
drug-target and virus-host interaction analysis. It is highly sensitive and us-
able for large-scale operations, but it is expensive as typically it is done using
specific test materials and in labs, which is less accurate as it is subject to the
varied quality and quantity of specimen collections. The challenges are to re-
duce its false-negative and false-positive rates supplemented by other diagnosis
tools and develop scalable fast test tools.

– Antibody-based serological diagnosis [155,148,208] is to detect anti-SARS-CoV-
2 immunoglobulins, i.e., the antibodies produced in response to COVID-19
infections by validating the specificity and sensitivity of chemiluminescent im-
munoassays, enzyme-linked immunosorbent assays and lateral flow immunoas-
says against SARS-CoV-2. It is an alternative or complement to NATs for acute
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infection diagnosis with easier and cheaper operations at any time. It, however,
may produce poor-performing results which are unreliable for decision-making.
It may take time to get the results and it might be unsuitable for early large-
scale diagnosis. There is an urgent need to develop more accurate serological
test methods and tools. Machine learning methods such as CNNs could im-
prove test performance, e.g., analyzing the test results, involving external data
on patient demographics and clinical results, and integrating various test re-
sults [175].

– Clinical diagnosis and analysis involves clinical reports, domain knowledge,
and clinicians in identifying COVID-19-specific symptoms, indications, and in-
fections; differentiating them from other similar diseases such as influenza; and
confirming positive, negative, severe, or fatal conditions. Such diagnoses are
conducted by blood tests, cough sound judgment, breathing pattern detection,
and external factors by involving external data, etc. AI, machine learning and
analytics methods have been increasingly used to classify COVID-19 from other
diseases, predict infections, recovery and mortality rates, numbers or timing,
etc. [31,135,33]. For further discussion, see Section 6.2.

– Clinical medical imaging analysis for the COVID-19 inspection on COVID-
19-sensitive medical images, typically using DNN-based image analysis, can
complement the aforementioned chemical and medical methods. It can detect
abnormal and discriminative symptoms and patterns sensitive to COVID-19 in
patient’s CXR and CT images. Both typical deep and shallow learning methods
have been widely applied, which may also bring about inconsistencies and
biases in their applications, experiments, results and actionability [230]. For
further discussion, see Section 7.2.3.

– Data-driven prediction is conducted on COVID-19 related data, such as blood
test results, respiratory signals, and external data that may indicate symptoms,
patterns or anomalies of COVID-19 infections. Shallow and deep learning and
mathematical modeling methods have been applied to classify symptom types,
differentiate COVID-19 infections from other diseases, and detect outliers that
may indicate COVID-19 infections. For example, in [31], a random forest clas-
sifier estimates the likely positive or negative COVID-19 patients on hemato-
chemical values from routine blood exams. In [236], computer audition is used
to recognize COVID-19 patients under different semantics such as breathing,
dry and wet coughing or sneezing, and speech during colds, etc. AI4COVID-
19 [120] combines the deep domain knowledge of medical experts with smart
phones to record cough and sound signals as the input data to identify suspect
COVID-19 infections with 92.8% accuracy reported. In [183], a shallow LSTM
model combines medical information and local weather data to predict the risk
level of the country.

Discussion. A comparison of the diagnosis methods is shown in Table 5. As
commented in various reviews [268,24,254,155,179], COVID-19 diagnosis and tests
still suffer from various limitations and challenges. The issues include concerns
about the result quality, implementation scalability, actionability for determining
isolation and quarantine strategies, and trustfulness of accepting medical findings
as general clinical specifications. An increasing number of studies appear promis-
ing by incorporating advanced data science and AI techniques into complementing
medical and chemical test approaches and tools. They integratively enhance pre-
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analytical and postanalytical test results, and strengthen the interpretability and
actionability of the results for clinicians, microbiological staff, and public health
authorities.

Table 5 Comparison of COVID-19 Infection Diagnosis Methods.

Methods Pros Cons Data References
Nucleic acid-
based diagno-
sis test

High sensitivity, suitable for
large-scale operation

Preliminary assessment by
technicians, professional
data analysis, expensive,
less accurate, false-negative
or false-positive results

Nasal, nasopha-
ryngeal or oropha-
ryngeal swab,
aspiration, saliva
or wash specimens

[307]

Serological di-
agnosis

Easy and cheap to imple-
ment, no requirement of ex-
perts

Unstable performance,
time-inefficient, unscalable
for early diagnosis

Serum or plasma
samples

[155]

Clinical diag-
nosis analysis

Diagnosis from mixed clin-
ical reports and tests, on-
demand, verifiable by do-
main experts

Require professional tools
and domain knowledge

Blood and respira-
tory test samples,
etc.

[31]

Medical imag-
ing inspection

Fast and automated detec-
tion, data-driven analysis

Need trained experts, costly
in labeling and early detec-
tion, train data scarcity

CT and CXR im-
ages

[230]

Data-driven
prediction

Algorithmic prediction by
data-driven analytics and
learning on data relevant to
the COVID-19 diagnosis

Biases from data and predic-
tors

Any relevant data
including clinical
test results and
genomic/protein
sequences

[56]

7.2.2 COVID-19 patient risk and prognosis analyses

COVID-19 patient risk assessment identifies the risk factors and parameters asso-
ciated with patient infections, disease severity, and recovery or fatality to support
accurate and efficient prognosis, resource planning, treatment planning, and inten-
sive care prediction. This is crucial for early interventions before patients progress
to more severe illness stages. Moreover, the risk and prognosis prediction for pa-
tients can inform effective health and medical resource allocation when intense
monitoring, such as that involving ICU and ventilation, and more urgent medical
interventions are needed and prioritized. Machine learning models and data-driven
discovery can also play a vital role in such risk factor analyses, scoring, prediction,
prioritization, and planning of prognostic and hospitalization resources and facili-
ties, treatment, and discharge planning. They can also conduct the influence and
relation analyses between COVID-19 infection, disease conditions, and the external
environment and context (e.g., weather conditions and socioeconomic statuses).

Techniques including mathematical models, and shallow and deep learners
are applicable on health records, medical images, and external data. For exam-
ple, LightGBM and Cox proportional-hazard (CoxPH) regression models incorpo-
rate quantitative lung-lesion features and clinical parameters (e.g., age, albumin,
blood oxygen saturation, and CRP) for prognosis prediction [315]. Their results
show that lesion features are the most significant contributors in clinical prognosis
estimation. Supervised classifiers like XGBoost are applied on electronic health
records to predict the survival and mortality rates of severe COVID-19 infectious
patients [302,237] for the detection, early intervention, and potential reduction of
mortality of high-risk patients. In [223], logistic regression and random forest are
used to model CT radiomics on features extracted from pneumonia lesions to pre-
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dict feasible and accurate COVID-19 patient hospital stay, which can be treated
as one of the prognostic indicators. Further, shallow and deep machine learning
methods are applied to screen COVID-19 infections on respiratory data, including
lung ultrasound waves, and coughing and breathing signals. For example, in [123],
a bidirectional GRU network with attention differentiates COVID-19 infections
from normal on face-based videos captured by RGB-infrared sensors with 83.69%
accuracy. Lastly, external data can be involved in risk analysis. For example, the
work in [173] analyzes the association between weather conditions and COVID-19
confirmed cases and mortality.

7.2.3 COVID-19 medical imaging analyses

COVID-19 medical services generate typical medical imaging data, including the
CXR and CT images of a COVID-19 patient’s lung (lobes or segments), lesion,
trachea, or bronchus. Building on shallow and deep learning methods, especially
various pretrained CNN-based image nets, a rapidly growing number of research
studies are available on COVID-19 medical imaging processing. They handle vari-
ous COVID-19 medical imaging tasks, including their feature extraction, the region
of interest (ROI) segmentation, infectious region or object detection, and disease
and symptom diagnosis and classification. The most commonly used DNNs are
pretrained and customized CNNs, GANs, VGGs, Inception, Xception, ResNet,
DenseNet, and their variants [121,242]. Their principles are similar to other appli-
cations in computer vision and pattern recognition.

Further, CNN-based transfer learning models and deep transfer learning are
applied on CXR images to detect COVID-19 pneumonia, segment the pneumo-
nia, and detect their severity [63,180]. On chest CT images, CNNs like ResNet,
DenseNet, VGG and the Inception transfer networks are applied to classify
COVID-19 infected patients, detect COVID-19 pneumonia, and localize infection
regions [318,217,11,284,249].

It is reported that the application of various DNNs for COVID-19 medical
imaging analyses shows significant performance advantages in comparison with
shallow learners. For example, several references report close-to-perfect prediction
performance of pretrained DNNs on CXR images, such as achieving 100% accu-
racy and F-score 1.0 in [161], AUC 1.0 in [222] and AUC 0.9997 in [170], and 98%
accuracy and F-score 0.98 in [186]). Lower performance is achieved by customized
networks on CT images, e.g., obtaining 99.68% accuracy in [108], 0.994 AUC in
[85], and 0.94 F-score in [85,249]). These reported results show the highly promis-
ing potential of deep learning for COVID-19 medical imaging analytics, especially
when the number of COVID-19 medical imaging is sufficient for DNN fitting.

Further, Table 6 illustrates various DNNs applied on medical imaging for
COVID-19 screening and abnormal infection region segmentation, etc. For exam-
ple, CNNs such as shallow CNNs, truncated InceptionNet, VGG19, MobileNet
v2, Xception, ResNet18, ResNet50, SqueezeNet, DenseNet-121, COVIDX-Net,
GoogleNet, AlexNet and capsule networks [69,183,18,111,2,279] have been ap-
plied to analyze CXR images. They are used to screen COVID-19 patients, assist
in their diagnosis, quarantine and treatments, and differentiate COVID-19 infec-
tions from normal, pneumonia-bacterial, and pneumonia-viral infections.

Please note that the reported results in the literature are mainly data-driven
using pattern and exception analyses. They result from their specific designs, set-
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tings, data manipulation, fitting, and evaluation on their specific data. Their clin-
ical applications should be subject to further methodological checks, validation,
practical tests [230,295], and domain-driven actionability checks [42,45], etc.

Table 6 Summary and Examples of Deep COVID-19 Medical Imaging Analysis.

Method Task Data Performance
Domain extension
transfer learning
with pretrained
CNNs [18]

Diagnosis Italian Society of Medi-
cal Radiology and Inter-
ventional (25 cases)a; Ra-
diopaedia.org (20 cases)b;
COVID-19 images (180
cases) [64]; A Spanish hos-
pital (80 cases)c

Overall accuracy 90.13% ± 0.14

Shallow CNN [183] Diagnosis COVID-19 images [64]
(321 cases); Kaggle non-
COVID-19 CXR images
(5856 cases)d

Highest accuracy 99.69%, sensitivity
1.0, AUC 0.9995

CNN-based trun-
cated Inception-
Net [69]

Diagnosis COVID-19 images (162
cases) [64]; Kaggle CXR
images (5863 cases); Tu-
berculosis CXR imagese

Accuracy 99.96% (AUC of 1.0) in
classifying COVID-19 cases combin-
ing pneumonia and healthy cases; ac-
curacy 99.92% (AUC of 0.99) in clas-
sifying COVID-19 cases combining
pneumonia, tuberculosis and healthy
CXRs

DarkCovidNet [200]
built on Darknet-19

Diagnosis COVID-19 images (127
cases) [64]; CXR im-
ages [287]

Accuracy 98.08% for binary classes
and 87.02% for multi-class cases

CoroNet built on
Xception pretrained
on ImageNet [133]

Diagnosis COVID-19 images [64];
Kaggle CXR images

Accuracy 89.6%, precision 93% and
recall 98.2% for COVID vs bacte-
rial pneumonia, viral pneumonia, and
normal

COVID-CAPS
based on Capsule
net [2]

Diagnosis COVID-19 images [64],
Kaggle CXR images

Accuracy 95.7%, sensitivity 90%,
specificity 95.8%, and AUC 0.97

VGG16 and transfer
learning [192]

Diagnosis COVID-19 images [64],
RSNA Pneumonia Detec-
tion Challenge dataf

Accuracy 83.6% for COVID-19 pneu-
monia vs non-COVID-19 pneumo-
nia and healthy; sensitivity 90% for
COVID-19 pneumonia

COVID-Net [279] Diagnosis COVID-19 images [64],
COVID-19 CXR Dataset
Initiativeg , ActualMed
COVID-19 CXR Dataset
Initiativeh, RSNA data,
COVID-19 radiography
datai

Accuracy 93.3%, sensitivity 91.0%,
positive predictive value 98.9%

Inf-Net with decoder
and attention [64]

Segment COVID-19 CT
Segmentationj , COVID-
19 CT Collection

Dice similarity coefficient 0.739, sen-
sitivity 0.725, specificity 0.960

DeepPneumonia
built on ResNet-
50 [249]

Diagnosis Private data Sensitivity 0.93, AUC 0.99; AUC 0.95
and sensitivity 0.96 for COVID-19 vs.
bacteria pneumonia-infections

ahttps://www.sirm.org/category/senza-categoria/covid-19/;
bhttps://radiopaedia.org/search?utf8=\%E2\%9C\%93&q=covid&scope=all&lang=us;

chttps://twitter.com/ChestImaging/status/1243928581983670272;
dhttps://www.kaggle.com/paultimothymooney/chest-xray-pneumonia;

ehttps://ceb.nlm.nih.gov/tuberculosis-chest-X-ray-image-data-sets/;
fhttps://www.kaggle.com/c/rsna-pneumonia-detection-challenge;
ghttps://github.com/agchung/Figure1-COVID-chest-xray-dataset;
hhttps://github.com/agchung/Actualmed-COVID-chest-xray-dataset;

ihttps://www.kaggle.com/tawsifurrahman/covid19-radiography-database;
jhttps://medicalsegmentation.com/covid19/.
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7.2.4 COVID-19 pathological and treatment analyses and drug development

The modeling of COVID-19 pathology and treatment aims to characterize virus
origin and spread, infection sources, pathological findings, immune responses, and
drug and vaccine development, etc. The formulation of coronavirus molecular
mechanisms and pathological characteristics underlying the viral infection can
inform the development of specific anti-coronavirus therapeutics and prophylac-
tics, and disclose the structures, functions and antigenicity of SARS-CoV-2 spike
glycoprotein [275]. The pathological findings can pave the way to design vaccines
against coronavirus and its mutations. For example, a higher capacity of membrane
fusion of SARS-CoV-2 compared with SARS-CoV is shown in [296], suggesting the
fusion machinery of SARS-CoV-2 as an important target of developing coronavirus
fusion inhibitors. Further, human angiotensin coverting enzyme 2 (hACE2) may
be the receptor for SARS-CoV-2 [198] informing drug and vaccine development
for SARS-Cov-2. In [276], a structural framework for understanding coronavirus
neutralization by human antibodies can help understand the human immune re-
sponse upon coronavirus infection and activate coronavirus membrane fusion. The
kinetics of immune responses to mild-to-moderate COVID-19 discloses clinical and
virological features [256].

Data-driven analytics have also been applied in COVID-19 virology, pathogene-
sis, genomics, and proteomics. They analyze the pathological testing results, gene
sequences, protein sequences, physical and chemical properties of SARS-CoV-2,
drug information and its effect, together with their domain knowledge. Such ap-
proaches play an important role in discovering and exploring feasible drugs and
treatments, enabling drug discovery and repurposing, and correlating drugs with
protein structures for COVID-19 drug selection and development. For example,
a pretrained MT-DTI (molecule transformer-drug target interaction) deep learn-
ing model based on the self-attention mechanism identifies commercially available
antiviral drugs by finding useful information in drug-target interaction tasks [20].
In [317], 28 machine learning methods including generative autoencoders, gen-
erative adversarial networks, genetic algorithms, and language models generate
molecular structures and representations on top of generative chemistry pipelines
and optimize them with reinforcement learning to design novel drug-like inhibitors
of SARS-CoV-2. Further, multitask DNNs screen candidate biological products.
In [176,177], CNN-enabled CRISPR-based surveillance supports a rapid design of
nucleic acid detection assays.

For genome and protein analysis, frequent sequential pattern mining identifies
the frequent patterns of nucleotide bases, predicts nucleotide base(s) from their
previous ones, and identifies the genome sequence locations where nucleotide bases
have changed [187]. In [8], a bidirectional RNN classifies and predicts the interac-
tions between COVID-19 non-structural proteins and between the SARS-COV-2
virus proteins and other human proteins with an accuracy of 97.76%.

Classic and deep machine learning methods such as classifiers SVM and XG-
Boost, sequence analysis, multi-task learning, deep RNNs, reinforcement learning
such as deep Q-learning network, and NLP models such as Transformer are ap-
plied to SARS-COV-2 therapy discovery, drug discovery, and vaccine discovery
[132]. Examples are the rule-based filtering and selection of COVID-19 molecu-
lar mechanisms and targets; virtual screening of protein-based repurposed drug
combinations; identifying the links between human proteins and SARS-COV-2

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 26, 2022. ; https://doi.org/10.1101/2022.08.22.22279022doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.22.22279022
http://creativecommons.org/licenses/by-nc-nd/4.0/


64 L. Cao and Q. Liu

proteins; developing new broad-spectrum antivirals and molecular docking; iden-
tifying functional RNA structural elements; discovering vaccines such as predicting
potential epitopes for SARS-COV-2 and vaccine peptides by LSTM and RNNs;
and analyzing protein interactions, and molecular reactions by neural NLP models
such as Transformer variants.

Table 7 briefly illustrates the applications of COVID-19 modeling in supporting
COVID-19 treatments and drug and vaccine development.

Discussion. In this review, we illustrate some results of COVID-19 medical
and biomedical analytics, which have been published by peer-reviewed venues, as-
sociated with advanced methods, or achieving impressive performance. We did not
validate them independently, nor check their design, implementation and evalua-
tion. We also did not check their reproducibility and actionability. They may not
be directly applicable to practice. It would not be surprising if their models and
results are not reproducible and nonactionable when deployed. In fact, as con-
cerned in domain-driven actionable knowledge discovery [45], data and AI ethics
[126], and broadly in fairness, bias, and code of conduct of applying AI models in
practice [174,73], it is often the case that data-driven and machine learning find-
ings in the literature are not actionable for decision-making. This may be due to
various reasons, such as their over-focus on data and parameter fitting, ignorance
of COVID-19 characteristics and complexities, and mismatch of pretrained deep
networks with the COVID-19 reality. There may also be gaps in characterizing
COVID-19 characteristics and involving COVID-19 knowledge into modeling. In
particular, deep neural networks tend to report close-to-perfect results on simple
data, which may not be the case when they are applied on usually small, highly
inconsistent, and quality-limited COVID-19 data.

It is thus worthy of noting that the reported results should not be directly
used as evidence of implementing the corresponding COVID-19 case confirma-
tion, medical treatment, hospitalization, resource planning, and quarantine, etc.
Their practical test and deployment require the involvement of medical and clin-
ical context, knowledge, expertise, code of conduct, and regulation. Independent
and external validation are also suggested to further verify the soundness, appli-
cability, and actionability [45,42] of their methodologies, processes, models, data
manipulation, business and technical evaluation, and result conditions. It is also
suggested to undertake a careful check of potential methodological flaws, design
biases, learning and evaluation fairness, and faulty manipulation of features and
labels, which could cause their uselessness in practice [230,295].

8 COVID-19 Influence and Impact Modeling

COVID-19 has had an unprecedented and overwhelming influence and impact on
all aspects of our life, society, and the economy. It has posed significant health, eco-
nomic, environmental and social challenges to the entire world and all mankind [48,
104,1,136]. The literature analysis in [44] reports that over 3k references of the 44k
modeling references involve the topic of COVID-19 influence and impact modeling.
Here, we review and summarize the modeling and analysis methods and illustrate
some results on several broad and important areas affected by SARS-CoV-2 and
COVID-19. They include modeling the effect of COVID-19-sensitive NPIs and
the COVID-19 healthcare, psychological, economic, and social influence and im-
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Table 7 Summary and Examples of Modeling for COVID-19 Treatment and Drug and Vaccine
Development.

Objectives Approaches Data References
Treatment Data-driven diagnosis-informed treatment, e.g., pathological

analysis, medical imaging analysis, immune reaction, genomic
and proteomic analysis

Pathological,
clinical, vi-
rological,
genomic,
proteomic
data

[121,315,
121,242]

Drug de-
velopment

Correlating drugs with protein structures and molecule trans-
former for drug-target interactions, DNNs like GANs and
multitask DNNs for drug discovery, machine learning and lan-
guage models to generate molecular structures and drug-like
inhibitors

Virological,
genomic,
proteomic
data

[20,317]

Vaccine de-
velopment

Sequence analysis and sequential modeling like LSTM and
RNN variants and NLP models like Transformer variants for
functional RNA structures, vaccine epitopes and peptides,
protein interactions and molecular reactions

Genomic and
proteomic
data

[132]

pact. Table 8 further summarizes and illustrates various areas and their subareas
influenced by the COVID-19 pandemic and their relevant research.

8.1 Modeling COVID-19 Intervention and Policy Effects

On one hand, pharmaceutical measures and drug and vaccine development play
a fundamental role in containing COVID-19 [320]. On the other, governments
adopt various NPIs, such as travel restrictions, border control, business and school
shutdown, public and private gathering restrictions, mask-wearing, and social dis-
tancing, to control outbreaks of COVID-19 and its further influence on various
aspects. For example, travel bans and lockdowns are issued to decrease cross-
border population movement; social distancing and shutdowns minimize contacts
and community spread; school closures and teleworking reduce indoor gatherings
and workplace infections. Although these control measures flatten the curve, they
also undoubtedly change the regular mobility and activities of the population,
normal business and economic operations, and the usual practices of our daily
businesses.

A critical modeling issue is to characterize, estimate and predict how such
NPIs influence the COVID-19 epidemic dynamics, infection spread, case devel-
opment, population structure including deceased people, medical resource and
treatment allocation, and human, economic and business activities. Accordingly,
various modeling tasks apply epidemiological, statistical and social science mod-
eling methods and their hybridization (e.g., stochastic compartmental models) to
evaluate and estimate their effects. Typically, such modeling aligns NPIs with the
case numbers of a country or region for their correlation and dependency modeling.
Below, we summarize and illustrate the modeling of NPI influence on COVID-10
epidemic dynamics, public resource allocation including healthcare systems, and
human activities.

Modeling the NPI influence on COVID-19 epidemic dynamics. This typically
models the correlations between COVID-19 cases and NPIs, the NPI influence on
COVID-19 epidemic factors including transmission rate and case numbers, and the
NPI influence on improving recovery rates and lowering death rates. Various SIR
and statistical models have been applied to evaluate the effects of such control
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Table 8 Summary and Examples of COVID-19 Influence and Impact Modeling.

Aspects Objectives Approaches Data References

NPI effect &
influence

on epi-
demic
dynamics

SIR model variants, statisti-
cal models, Bayesian hierarchical
models, etc.

COVID-19 case data, case
reporting data, NPIs

[257,71,30,
209,144,88,
219]

on public
resources

SIR model variants, statistical
models, polynomial regressors,
etc.

Case data, NPIs, public
resource (incl. healthcare)
data

[84,94,5]

on human
behaviors

SIR model variants, statistical
models e.g. MCMC, relation
modeling, behavior and event
analysis, etc.

Case data, NPIs, human
activities (incl. mobile
phone data), mobility, etc.

[140,130,
92,98,290,
314,86,146,
77]

Psychological
and mental
influence

on individ-
ual mental
health

Psychology, systematic reviews,
classic and neural NLP mod-
els e.g. BOW, LDA, SciBERT,
Transformer variants, etc.

Clinical data, personal
healthcare records, iden-
tity, social media data,
news feeds, Q/A, sur-
veys, instant messaging,
behaviors, NPIs, etc.

[299,286,
188,267]

on public
mental
health

Psychology, systematic reviews,
classic and neural NLP mod-
els e.g. BOW, LDA, SciBERT,
Transformer variants, etc.

Healthcare data, social
media data, news feeds,
Q/A, surveys, instant
messaging, public emo-
tion, activities and events,
NPIs, etc.

[299,286,
188,270,
114]

on disad-
vantaged
and vul-
nerable
people’s
mental
health

Psychology, systematic reviews,
meta-analyses, classic and neural
NLP models, statistics, etc.

Healthcare data, disad-
vantaged and vulnerable
people information, social
media data, question-
naires, instant messaging,
behavior and events,
NPIs, etc.

[299,106]

Economic
and financial
impact

on eco-
nomic
growth

Time-series analysis, descriptive
analytics, macroeconomic mod-
els, relational models, etc.

Economic data, financial
data, case data, NPIs, etc.

[48,214,
274,26]

on work-
force and
sustain-
ability

Descriptive analytics, time-series
analysis, relational models, NLP
models, Q/A analysis, etc.

Work and sustainability-
related data, performance,
activities, unemployment,
surveys, questionnaires,
social media data, social
welfare data, etc.

[15,89,153]

Social, public
and political
impact

on human
behaviors

Descriptive analytics, pattern
analysis, sequence analysis, be-
havior informatics, social media
and network analysis, NLP mod-
els, etc.

Public, online, and house-
hold activities, gathering,
mobility, entertaining,
mobile phone data, social
media data, etc.

[118,98,
114]

on public
health
systems

Descriptive analytics, relational
models, machine learning mod-
els, etc.

Public health and medi-
cal data, healthcare data,
public health resources,
public hygiene data, case
data, A/Q, surveys, etc.

[80,271]

on misin-
formation
and in-
formation
disorder

Classifiers, classic and neural
NLP models, social media and
network analysis, sentiment and
topic modeling, time-series anal-
ysis, outlier detection, etc.

Social media data, news
feeds, Q/A, cross refer-
ences, fact-check, etc.

[19,62,4,
93,150,178,
243]

on socio-
political
systems

Descriptive analytics, sociopoliti-
cal methods, survey analysis, etc.

Social and political data,
case data, surveys, ques-
tionnaires, sociopolitical
events, etc.

[141,244]

measures and the NPI combinations on containing virus spread and controlling
infection transmission (e.g., per the transmission rate) and to estimate the cor-
responding scenarios (distributions) of case number development [257,71,30]. For
example, in [209], a generalized SEIR model involves the self-protection and quar-
antine measures to interpret the publicly released case numbers and forecast their
trend in China. In [257], the effect of control measures, including city lockdowns
and travel bans implemented in the first 50 days in Wuhan, and their effect on con-
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trolling the COVID-19 outbreak across China in terms of infection case numbers
were estimated by an SEIR model before and after the controls.

Often, various NPIs are jointly implemented to contain a COVID-19 epidemic.
It is thus essential to estimate how multiple NPIs cooperatively reduce the epi-
demic effective reproduction number [30,144,88,219]. In [30], a temporal Bayesian
hierarchical model incorporates auxiliary variables describing the temporal imple-
mentation of NPIs to infer the effectiveness of individually (estimated 13% to 42%
reduction of reproduction number) and conjunctionally (77% reduction of repro-
duction number) implementing NPIs such as staying-at-home, business closures,
shutting down educational institutions, and limiting gathering sizes in terms of
their influence on the reproduction number. In [88], a hierarchical Bayesian model
infers the impact and effectiveness of NPIs (including case isolation, school clo-
sure, mass gathering ban, and social distancing) on the infections, reproduction
number R0, effect sizes of population, and the death toll in 11 European countries
and suggests continued interventions to keep the epidemic under control.

Modeling the NPI influence on public resources including healthcare systems.
The implementation of NPIs affects the demand, priority, and effectiveness of anti-
pandemic public health resourcing and the planning and operations of healthcare
systems. For example, in [84], an SEIR model and a polynomial regressor sim-
ulate the effect of early detection, isolation, treatment, adequate medical sup-
plies, hospitalization, and therapeutic strategy on COVID-19 transmission, in ad-
dition to estimating the reproductive number and confirmed case dynamics. The
SIDARTHE model [94] simulates the possible scenarios and the necessity of imple-
menting countermeasures such as lockdowns and social distancing together with
population-wide testing and contact tracing to rapidly control the pandemic. The
SHARUCD model [5] predicts the COVID-19 transmission response (in terms of
infection cases, growth rate, and reproduction number) to the control measures
including partial lockdown, social distancing, and home quarantining and differ-
entiates asymptomatic and mild-symptomatic from severe infections. The results
are assumed useful for informing the prioritization of healthcare supplies and re-
sources.

Modeling the NPI influence on human activities. This explores the relations
between COVID-19 NPIs and human mobility, travel, social and online activities.
For example, in [140], the alignment between human mobility and case number
development in Wuhan and China presents the effect of travel restrictions on case
reduction and COVID-19 spread. In [130], a simple SEIR model analyzes contact
tracing in the UK’s social network data, estimates the scenarios of COVID-19 infec-
tion control and subsequent untraced cases and infections, and shows the efficacy
of close contact tracing in identifying secondary infections. In [92], the MCMC pa-
rameter estimation and a meta-community SEIR-like disease transmission model
show the need for planning emergency containment measures such as restrictions
on human mobility and interactions to control COVID-19 outbreak (by 42% to 49%
transmission reduction). In [98], mobile phone data was collected and analyzed to
inform epidemiologically relevant COVID-19 behaviors and responses to interven-
tions. Weitz et al. [290] developed and analyzed an epidemiological intervention
model that leverages serological tests to identify and deploy recovered individ-
uals as focal points for sustaining safer interactions by interaction substitution,
developing the so-called ‘shield immunity’ at the population scale. In addition,
it is shown that the change of contact patterns could dramatically decrease the
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probability of infections and reduce the transmission rate of COVID-19 [314,86,
146].

Discussion. The diverse SIR-based modeling of COVID-19 invention and pol-
icy effects enables an epidemiological explanation. Such methods assume each NPI
independently acts on the case movement. This leaves various gaps and open is-
sues. One is to characterize the effectiveness of individual NPIs by assuming they
are coupled with each other and cooperatively contribute to flatten the curves. The
other is to explore the interactions between NPIs, case development, and external
factors such as people’s behaviors and environmental factors without disentan-
gling them (opposite to the method of DNN-based decoupled, homogeneous, and
independent representations and learning).

8.2 Modeling COVID-19 Psychological and Mental Impact

The literature analysis shows that the influence of COVID-19 on individual and
public psychological and mental health is the most commonly investigated impact
of concern [44,299]. To quantify such impact, typical tasks are to characterize,
classify and predict social-media-based individual and public emotion, sentiment
and their mental health issues. The COVID-19 psychological and mental impact
modeling may involve data and aspects of COVID-19 outbreak, health and med-
ical mitigation, NPI measures, government governance, public healthcare system
performance, vaccines, resurgence, coronavirus mutations, and the ‘new normal’
situations including working from home, home schooling, and online education.
Other commonly used data and explored tasks are from social media and networks
such as Twitter, Facebook, Wechat, Weibo, YouTube, Instagram, and Reddit; on-
line news feeds, discussion boards, blogs and Q/A; and instant messaging such as
mobile messaging and apps.

The COVID-19 psychological and mental impact analyses, characterizes, clus-
ters, classifies or identifies negative sentiments [286,188], opinion and topic trends,
online hate speech [270], psychological stress, men’s and women’s worries [267], re-
sponsive emotions [114], behaviors and events on short and long texts by applying
NLP and neural language modeling techniques. Examples are extracting TF-IDF
and part-of-speech features and then applying NLP and text analysis models. Typ-
ical models include shallow NLP and text analysis models such as bag-of-words and
latent Dirichlet allocation (LDA), and neural text modelers including BioBERT,
SciBERT, Transformer and their variants on the word, sentence or corpus level. For
example, in [299], the preferred reporting items for systematic reviews and meta-
analyses guidelines are used to review the COVID-19 impact on public mental
health, disclosing the extent of symptoms and risk factors associated with anxiety
(6.33% to 50.9%), depression (14.6% to 48.3%), posttraumatic stress disorder (7%
to 53.8%), psychological distress (34.43% to 38%), and stress (8.1% to 81.9%) in
the surveyed population of eight countries.

Discussion. The existing modeling of COVID-sensitive psychological and
mental influence often misses psychological knowledge because it is purely driven
by data. The analytical results are based on a cohort of infected people with
anonymous identification. No work is available on fusing various sources of data
including online misinformation to infer the predominant drivers of specific mental
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stress such as vaccination hesitation and the targeted analysis of specific mental
issues in vulnerable groups such as COVID-driven teenage suicide and racism.

8.3 Modeling COVID-19 Economic Impact

The COVID-19 pandemic has had an overwhelming and devastating impact on re-
gional and global economy and business activities, including trade, tourism, educa-
tion exchange, logistics, supply chains, workforce, and employment. It seems that
no economy on the interconnected globe is immune to the negative consequences of
COVID-19 [61,129,21,26]. Typical tasks of modeling COVID-19 economic impact
include identifying and quantifying indications and insights for (1) how COVID-
19 influences various aspects of the economy and businesses; (2) how to manage
and balance COVID-19 control measures (including NPIs and vaccination rollouts)
and government relief and recovery programs, and (3) how to sustain and recover
business and economic activities without seriously suffering from uncontrollable
outbreaks and resurgences for better sustainability in the COVID new normal.
Below, we illustrate two sets of impact on economic growth, the workforce, and
sustainability.

Modeling the COVID-19 impact on economic growth. A rapidly growing body of
research investigates the heterogeneous, non-linear and uncertain macroeconomic
effects of COVID-19 across regions and sectors in individual countries and on a
global scale. It is estimated that COVID-19 and SARS-CoV-2 may have caused
over 2% monthly GDP loss and a 50% to 70% decline in tourism in 2020 [48].
In [214], a sectoral macroeconomic model analyzes the short-term effects of in-
tervention measures, such as lockdown, social distancing, and business reopening,
on economic outcomes. Examples of economic outcomes include affecting the pro-
duction network, supply and demand, inventory dynamics, unemployment, and
consumption and estimating their influence on the relations between reproduction
number and GDP. The study in [274] illustrates the relations between a coun-
try’s income levels, public healthcare availability and capacity, and the COVID-19
infected patient’s demography and social patterns in low- to middle-income coun-
tries.

Modeling the COVID-19 impact on workforce and sustainability. COVID-19
drives the new normal of work practices, including a hybrid work mode, cloud-
based enterprise operations, the shift from centralized infrastructures (including
IT) to cloud-based ICT and home-based workplaces, and gender inequality in un-
employment. COVID-19 also triggers new ways of ensuring sustainability, includ-
ing engaging and supporting clients through online operations and services and
AI-enabled cost-effective planning, production, logistics and services. In [15], the
descriptive statistics of the daily activities of Baidu developers show the positive
and negative impacts of working from home on developer productivity, particularly
on large and collaborative projects. The meta-analysis and review in [89] estimate
the health, social, and economic effects of the COVID-19 pandemic on gender
equality and identify that women more likely suffered from unemployment at the
early stage of the COVID-19 pandemic. The analysis in [153] in Australia shows
the impact of government welfare support responses to COVID-19-infected people
and businesses on mitigating potential unemployment, poverty, income inequality,
and the sustainability of such support measures.
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Discussion. The existing objectives, tasks and methods of modeling COVID-
19 economic impact are highly preliminary, specific and limited. Expected op-
portunities include macro-, meso- and micro-level modeling of economic impact
by involving their economic-financial variables and activities, contrastive analysis
with similar historical events and periods, and data-driven insight discovery for a
sustainable tradeoff between mitigation and economic growth in the new normal,
to name a few.

8.4 Modeling COVID-19 Social Impact

The COVID-19 pandemic has had a significant impact on public health, welfare,
and social, political and cultural systems. It has reshaped our global society, in-
cluding restricting human activities and mobility, affecting people’s well-being,
causing an overwhelming burden on public health systems, restructuring sociopo-
litical systems, and disturbing social regularity and order such as incurring online
information disorder. This section reviews the relevant modeling work on such
social impacts.

Modeling the COVID-19 influence on human behaviors. In addition to the
COVID-19-sensitive NPI influence on human activities as discussed in Section 8.1,
SARS-CoV-2 and COVID-19 have fundamentally reshaped people’s social activi-
ties, mobility, and habits [66,303]. For example, Baidu-based daily transportation
behaviors and simple statistics show COVID-specific high-level mobility patterns
such as visiting venues, origins, destinations, distances, and transport time dur-
ing the COVID-19 epidemic in China [118]. In [98], large-scale mobile phone data
such as call detail records, GPS locations, Bluetooth data, and contact tracing apps
were collected and analyzed by off-the-shelf tools to extract statistic metrics and
patterns of behaviors, mobility, and interactions. Their results indicate population
behaviors, individual contacts, movement paths, mobility patterns, and networking
affected by the COVID-19 epidemic. In [114], social media data from Sina Weibo,
the Baidu search engine, and 29 Ali e-commerce marketplaces were collected and
analyzed using keyword-based linguistic inquiries and statistics like word frequen-
cies and Spearman’s rank correlation coefficient analysis. Keywords extracted show
people’s behavioral responses to COVID-19 outbreaks, public awareness and at-
tention to COVID-19 protection measures, concerns about misinformation and
rumors about ineffective treatments, and the correlation between risk perception
and negative emotions.

Modeling the COVID-19 influence on public health systems. The sudden
COVID-19 endemic to pandemic and its mysterious, wide and unexpected resur-
gences have resulted in significant impact on public health systems globally [101,
297,251]. They increase the imperative, nonscheduled and overwhelming rationing
demand on healthcare and medical professionals, public health and medical re-
sources and supplies. The pandemic has caused a global shortage of health re-
sources, including oxygen, hospital beds, hospital facilities, ICU facilities, ventila-
tors, medical waste processing equipment, hygiene protection equipment such as
medical masks and sanitization chemicals, and intervention materials and devices.
The pandemic also triggers the research demand on how to better plan, prioritize,
ration, and manage these resources, assess their supply and demand, and evaluate
global supply chain systems. Other research studies the effects of different strate-
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gies and priorities in particular of prioritizing the emergent resources for COVID
hotspots and in-demand regions and optimizing their reorganization per local and
global needs. Another important topic is to assess and improve the population-
wide well-being during the pandemic by identifying disadvantaged groups, aged
and vulnerable people, people and communities hit hard by the pandemic, and
those experiencing poverty. For example, in [80], recommendations are made to
allocate medical resources to both COVID-19 and non-COVID-19 patients to max-
imize benefits, prioritize health workers, avoid a first-come, first-served approach,
in a way that is evidence-based and involves science and research findings. People
from different classes have different affordabilities and capacities, and the COVID-
19 impact on them also presents different patterns and extents, including on vac-
cine production, affordability, allocation, and deployment [292] and on people’s
vaccination intention [271].

Modeling the COVID-19 influence on sociopolitical systems. The COVID-19 in-
fluence on social and political systems is unprecedented. COVID-19 has reshaped
confidence and trust in the existing sociopolitical systems, including public and
moral values, national interests, social welfare systems, human services, politi-
cal relations, globalization, scientific exchange and collaborations, science-driven
epidemic mitigation policies and strategies, and social governance and disaster
management. For example, an identity fusion theory-based online sampling and
a moral foundations theory-based computer simulation show the correlations be-
tween nationalism, religiosity, and anti-immigrant sentiment from a socio-cognitive
perspective during the COVID-19 pandemic in Europe. The surveys undertaken
in [141] show that COVID-19 affects the scientific uncertainty and the public and
political trust in science-based policy making in the US and suggest more careful
scientific communications. The work in [244] evaluates the impact of COVID-19
on globalization and global health. It shows that the COVID-19 pandemic has
affected mobility, trade, travel, event management, food, and agriculture. A pan-
demic vulnerability index quantitatively measures the potential impact on global
health and those countries most impacted.

Modeling misinformation and disorder in the COVID-19 infodemic. The
COVID-19 infodemic has been accompanied by a large volume of misinformation
(partially or entirely inaccurate or misleading information), biased (polarized),
questionable, and unverified information, rumor, and propaganda [196,93,243].
Such information is harmful for correctly understanding, recognizing, interven-
ing, and preventing the COVID-19 pandemic. However, their diffusion is usually
fast, their spread is often wide, and their impact is typically devastating. Model-
ing such COVID-19 misinformation and information disorder is thus imperative.
COVID-19 infodemic modeling tasks include detecting and ranking misinforma-
tion, classifying them, undertaking fact checks and cross-references, tracing their
sources and transmission paths, discovering their diffusion and propagation net-
works and paths, and estimating their effects on the COVID-19 epidemic spread
and control.

For example, in [62], skip-gram was used to represent the words collected
from Twitter, Instagram, YouTube, Reddit, and Gab. The converted vector rep-
resentations were then clustered by partitioning them around medoids and cosine
distance-based similarity analysis to extract the topics of concern. An SIR model
was then applied to estimate the basic reproduction number of the social media-
based COVID-19 infodemic. A comparative analysis then estimates and compares
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the platform-dependent interaction patterns, information spread (w.r.t. reproduc-
tion rate), questionable and reliable information sourcing and differentiation, and
rumor amplification across the above platforms. In [4], bivariate (ANOVA) and
multivariate logistic regression identifies similar belief profiles of political orienta-
tion, religious commitment, and trust in science in survey-based narratives and
compares the profiles of those who are disinformed or conspiratorial with scientific
narratives. Further, the statistics on Weibo tweets show the COVID-19 misin-
formation evolution related to topics and events such as city lockdowns, cures,
preventive measures, school reopening, foreign countries, the bias involving cures
and preventive methods, and sentiment evolution such as fear of specific topics
[150]. The work in [178] applied SVM, logistic regression, and BERT to classify
COVID-19 misinformation and counter-misinformation tweets, characterizes the
type, spread and textual properties of counter-misinformation, and extracts the
user characteristics of the citizens involved. Further, in [19], the authors applied
word embeddings and time-series analyses to analyze the spread of diverse con-
spiracy theories with real-life impact on both individual and group levels.

Discussion. Typical research on COVID-19 influence and impact modeling
only involves local and regional COVID-19 case data and their affected objects.
Hence, the resultant conclusions are often limited in their ability to indicate their
applicability to general practices and broad pandemic control. More robust results
are expected to inform medical and public health policy-making on medication,
reinhabitating and reactivating businesses and society, and reboosting the econ-
omy. In addition, no-to-rare outcomes are available on how NPIs influence the
threshold and effects of COVID-19 vaccinations and herd immunity and on how
to balance NPIs and economic and social revivification. It is also difficult to find
actionable evidence and guidelines on what policies should be implemented and
what tradeoff is appropriate in balancing a COVID-19 outbreak, containing their
resurgence, and promoting economic and social business recovery.

9 COVID-19 Simulation Modeling

Simulation has been widely applied in understanding, intervening, and managing
SARS-CoV-2 and COVID-19 and their impact [67,165]. Here, we summarize and
illustrate the broad COVID-19 simulation research, simulating the COVID-19 epi-
demic transmission and evolution, and simulating the effect of interventions and
policies on COVID-19 epidemic development. Table 9 summarizes and illustrates
COVID-19 simulation modeling.

Broad COVID-19 simulation research. Despite being a small focus in COVID-
19 modeling (over 3k of the 44k publications on modeling), simulation has been
an essential means to understand, imitate, replicate and test SARS-CoV-2 and
COVID-19 and their transmission, containment, and influence [149]. The COVID-
19 simulation research can be categorized into simulating (1) the transmission and
infection of SARS-CoV-2 and its COVID-19, including their infection mechanisms,
epidemic transmission processes, evolution, and mutation under certain conditions,
such as airborne transmission, asymptomatic transmission, indoor transport and
exposure; (2) the influence and effect of external factors on SARS-CoV-2 and
COVID-19, such as NPIs, the interactions and self-organization between COVID
and external factors, and the effect of mitigation measures and various interior
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Table 9 Summary and Examples of COVID-19 Simulation Modeling.

Objectives Approaches Data References
COVID-19
epidemic
and trans-
mission

Markov chain model, Monte Carlo model,
agent-based simulation, stochastic SIR
models, mathematical models, Bayesian
models, etc.

Case data, reporting informa-
tion, demographics, mobility, lo-
cation, etc.

[300,7,321,
95]

COVID-19
influence
and impact

Monte Carlo simulation, statistical mod-
els, nonlinear analysis, machine learning
methods, agent-based modeling, etc.

Case data, reporting informa-
tion, business data, economic
data, social activities, social me-
dia data, news, etc.

[67,306]

External
factor im-
pact on
COVID-19

Mathematical models such as regression,
Bayesian models, machine learning mod-
els, deep neural networks, behavior mod-
els, interaction modeling, discrete event
modeling, etc.

NPIs, vaccination, drug and
medical treatment data, case
data, etc.

[52,49,76,
55,216]

Treatment
and in-
tervention
effect

Risk factor analysis, molecular dynamics
simulation for virus-drug interactions and
drug-target interactions, what-if analysis,
agent-based modeling, Monte Carlo simu-
lation, and hybrid methods, etc.

Gene sequences, molecular data,
viral response, NPIs, vaccines,
drugs, clinical data, case data,
etc.

[149,165,
90,52,57]

and contextual factors: (3) the virus-drug and virus-vaccine interactions, the ef-
fect of drugs and vaccines on SARS-CoV-2 and COVID-19, immune response,
herd immunity, such as by molecular dynamics; and (4) the influence and im-
pact of SARS-CoV-2 and COVID-19, such as on healthcare resource allocation,
public health resource planning and optimization, vaccine rollout, production and
distribution, unemployment, and the global economy.

Typical simulation methods include dynamic systems, state-space modeling,
discrete event simulation, agent-based modeling, reinforcement learning, Monte
Carlo simulation, molecular dynamics, evolutionary computing such as swarm in-
telligence, what-if analysis, Gompertz model, nonlinear dynamics such as the re-
action–diffusion model and fractional-order model, and hybrid simulation [67,165,
300,7].

Simulating COVID-19 epidemic transmission and evolution One important but
unclear question is how SARS-CoV-2 and COVID-19 evolved over time in the
community, indoors, by airborne methods, and in contained environments. Typ-
ical simulation models include SIR model variants, statistical and mathematical
models, agent-based simulation, and Monte Carlo simulation. For example, what-if
analyses can be applied to estimate COVID-19 infection case numbers and their
evolution under various hypotheses tests [321]. In [90], composite Monte Carlo
simulation enables the what-if analysis of future COVID-19 epidemic develop-
ment possibilities on top of the estimation made by a polynomial neural network
on COVID-19 cases. Fuzzy rule induction then generates decision rules to inform
epidemic growth and control. In [95], an agent-based simulation system simulates
a COVID-19 patient’s demographic, mobility, and infectious disease state (sus-
ceptible, exposed, seriously infected, critically infected, recovered, immune, and
dead), and their dynamic interactions (agents, i.e., people in epidemiology) in
certain environments (home, public transport stations, and other places of inter-
est). They further evaluate the effect of adjusting individual and social distancing
(separation) on epidemics (e.g., numbers of each state).

Simulating the relevant policy effect on the COVID-19 epidemic Another im-
portant task is to simulate how interventions, interior and external factors, and
other policies and control measures of interest influence the dynamics and their
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containment of the COVID-19 epidemic. For example, a discrete-time and stochas-
tic agent-based simulation system (Australian Census-based Epidemic Model) [52]
incorporates 24 million software agents. Each agent mimics an Australian individ-
ual in terms of their demographics, occupation, immunity and susceptibility to
COVID-19, contact rates in their social contexts, interactions, commuting and
mobility patterns, and other aspects, which are informed by the census data from
the Australian Government. The system evaluates various scenarios by adjust-
ing the level of restrictions on case isolation, home quarantine, international air
travel, social distancing, school closures, and their effects on COVID-19 pandemic
consequences in terms of the virus reproductive number, the generation period,
the growth rate of cumulative cases, and the infection rate for children. The sim-
ulation provides evidence and an indication to help the government understand
how COVID-19 is transmitted and what policies should be implemented to control
COVID-19 in Australia.

A typical simulation tool is to introduce control-measure-sensitive variables
into SIR models to estimate their effects on virus infections, reproduction numbers,
transmission rate, and outbreak control after implementing or relaxing certain in-
terventions. For example, in [172], an SIR model is implemented which incorpo-
rates variables reflecting symptomatic infections and the quarantine of suscepti-
bles, which then estimates the case development distribution as subexponential
after implementing the quarantine. In [306], an attributed heterogeneous infor-
mation network incorporates the representations of external information about
COVID-19 disease features, the population’s demographic features, the mobility
and public perception of sentiment into a GAN model, which then assesses the
hierarchical community-level risks of COVID-19 to inform interventions and min-
imize disruptions.

Discussion. Many aspects and questions related to COVID-19 could be (bet-
ter) addressed by simulation, while the relevant research is still very limited. In
addition to the major effort made to understand the COVID-19 epidemic dynam-
ics, other tasks and opportunities include simulating the mutation and resurgence
of the coronavirus and COVID-19 in communities with different social, ethnic,
and economic conditions; the influence of individual and compound COVID-19-
sensitive policies on social, economic, and psychological aspects; and the tradeoff
between the strength and width of mitigation strategies and their impact on soci-
ety and the economy.

10 COVID-19 Hybrid Modeling

Hybrid modeling dominates the literature on COVID-19 modeling. It involves
various hybrid scenarios, such as multi-objective modeling, multi-task modeling,
multisource and multimodal data modeling, and multi-method modeling. Hybrid
COVID-19 modeling applies cross-disciplinary, cross-domain, cross-scenario, and
cross-data approaches and settings. Below, we summarize and illustrate the broad-
reaching COVID-19 hybrid modeling, multi-objective and multi-task modeling,
multisource and multimodal data modeling, and hybrid methods for COVID-19
modeling. Table 10 summarizes and illustrates COVID-19 hybrid modeling.

Broad COVID-19 hybrid modeling. Hybrid COVID-19 modeling can be catego-
rized into the following families: (1) multi-objective modeling: to address multiple
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Table 10 Summary and Examples of COVID-19 Hybrid Modeling.

Objectives Approaches Data References
Hybrid
objective
modeling

Multivariate analysis, probabilistic com-
partmental models, Bayesian SIR models,
ensemble learning, deep neural networks,
evolutionary computing, etc.

Case data, NPIs, external fac-
tors, demographics, clinical data,
vaccinations, drug and medical
treatment, etc.

[321,139,
113,281,
154]

Hybrid
task mod-
eling

Multivariate analysis, probabilistic com-
partmental models, Bayesian SIR models,
ensemble learning, deep neural networks,
transfer learning, multi-task learning, etc.

Case data, NPIs, external fac-
tors, demographics, clinical data,
vaccinations, drug and medical
treatment, etc.

[158,71,53,
104,233,
136,271,
299,285]

Hybrid
data mod-
eling

Probabilistic compartmental models,
Bayesian SIR models, multimodal analy-
sis, event and behavior analysis, ensemble
learning, neural compartmental models,
deep neural networks, etc.

Case data, NPIs, external fac-
tors, demographics, clinical data,
vaccinations, drug and medical
treatment, mobility, business ac-
tivities, news, social media, Q/A,
surveys, etc.

[127,119,
173,259,2,
77,140,118,
98]

Hybrid
method
modeling

Ensemble learning, fuzzy neural net-
works, probabilistic compartmental mod-
els, Bayesian SIR models, hybrid deep neu-
ral networks, etc.

Case data, NPIs, external fac-
tors, demographics, clinical data,
vaccinations, drug and medical
treatment, etc.

[252,310,
305,158,1,
49,255,103]

problems and multiple modeling objectives at the same time, such as jointly un-
derstanding the COVID-19 epidemic dynamics and their corresponding effective
NPI policies; (2) multi-task modeling: to handle multiple modeling tasks, e.g.,
simultaneously forecasting daily confirmed, death and recovered case numbers;
(3) multisource and multimodal data modeling: to involve multiple sources and
modalities of internal and external COVID-19 data for modeling, e.g., supplement-
ing environmental and demographic data with case numbers and complementing
case numbers with medical imaging and social mobility data for COVID-19 in-
fection identification and diagnosis; (4) hybrid methods for COVID-19 modeling:
typically by sequentializing (i.e., multi-phase) or parallelizing multiple tasks or
methods from different disciplines and areas, e.g., integrating statistical methods,
shallow or deep learning methods, and evolutionary computing methods into com-
partmental models; and (5) complex modeling by hybridizing multi-methods from
various disciplines for multi-objective or multi-task modeling on multisource or
multimodal COVID-19 data.

COVID-19 hybrid modeling involves various hybrid methods across different
disciplines and research areas. Examples are combining epidemic models (e.g.,
SIR models) with statistical models to form statistical compartmental models;
integrating simulation methods (e.g., agent-based modeling) with SIR models to
simulate COVID-19 infections and transmission; integrating multiple data-driven
models, e.g., ensemble learning by integrating various machine learning models or
deep neural networks; integrating evolutionary computing (e.g., fuzzy rules) with
machine learning methods (e.g., ANN); and integrating deep learning with transfer
learning.

COVID-19 multi-objective and multi-task modeling is commonly seen in
COVID-19 modeling, as shown in Sections 5-9. Multiple COVID-19 problems and
modeling objectives are involved in one task or setting. Typical problems and sce-
narios include forecasting COVID-19 transmission and its sensitivity to external
factors, such as patients’ age groups, hygiene habits, and environmental factors;
modeling the influence of NPIs and people’s ethnic conditions on case movements;
modeling the influence of NPIs on both case trends and public psychological health;
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and estimating the survival and mortality rates and their relations to dependent
factors such as patients’ health conditions.

Typical methods include multivariate analysis, probabilistic compartmental
models, simulation systems, multi-objective evolutionary learning methods, and
DNN variants. For example, in [216], a regression model estimates the relations
between reproduction number, environment factors, and human movements. In
[71], the Bayesian inference of an SIR model infers the effect of various interven-
tions on new infections. In [206], an SEIR models the relations between case trends,
epidemic conditions, socioeconomic effect, and interventions. In [299], systematic
reviews and meta-analyses review the work on the relations between COVID-
19 symptom severity, risk factors, and public emotions. In addition, in [158],
a Susceptible-Undocumented infected-Documented infected-Recovered (SUDR)
model integrates the probabilistic density function and Bayesian inference to char-
acterize undocumented infections during unknown transmission processes with
temporal transmission and social reinforcement during the COVID-19 contagion.

COVID-19 multisource and multimodal data modeling can serve various pur-
poses for COVID-19 [75]. Typical applications include predicting the COVID-
19 epidemic spread, transmission, medical diagnosis, treatment, government and
community interventions by combining data from respective modalities or sources.
Examples of multisource and multimodal data are combining COVID-19 case num-
bers with NPI data; integrating people’s demographics, health conditions, mobility,
social and business activities with their social networking and media information;
integrating health and medical records, diagnosis information, treatments, phar-
maceutical interventions, and pathological tests; integrating medical imaging such
as CXR, CT and ultrasound for diagnosis; combining social and public activi-
ties, events, economic data, and sociopolitical data; and integrating online, social
media, mobile app-based messaging, news, Q/A, and discussion groups.

Typical methods include data fusion-based learning, mixed representation-
based learning, and integrating clustering and classification on mixed data types,
integrating DNN variants [127]. For example, a novel variational-LSTM autoen-
coder model in [119] predicts the coronavirus spread in various countries by in-
tegrating historical confirmed case numbers with urban factors about location,
urban population, population density, and fertility rate and governmental mea-
sures and responses about school, workplace and public transport closures, public
event cancellation, contact tracing, public information campaigns, international
travel controls, fiscal measures, and investment in health care and vaccines. In
[173], COVID-19 case numbers and weather data are combined to analyze the
correlation between COVID-19 confirmed cases, mortality, and weather factors.
NLP methods are applied to extract and analyze the related news, which are then
input to LSTM networks to update the infection rate in a susceptible–infected epi-
demic model [319], outperforming the susceptible–infected epidemic model and its
combination with LSTM. Other examples are to couple LSTM with SIR epidemic
models to forecast the COVID-19 spread using case data, population density, and
mobility.

Hybrid methods for COVID-19 modeling integrate various methods for single
or multiple-objective, multi-task or multisource COVID-19 learning [252,310], as
partially illustrated above. Typically, ensemble learning integrates the results from
multiple learners such as ensemble trees and XGBoost for COVID-19 learning [51].
Further, multiple methods are sequentially involved to learn specific tasks or data
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over phases of COVID-19. Other common tasks are to integrate compartmental
models with methods like statistical models, classifiers, and DNNs to improve the
forecasting of COVID-19 epidemic dynamics and attributes [305,158]. For exam-
ple, in [313], a hybrid model predicts the infected and death cases by integrating
a genetic algorithm and LSTM into a modified susceptible-infected-quarantined-
recovered (SIQR) epidemic model to optimize infection rates and modeling param-
eters. In [49], a regression tree combined with wavelet transform predicts COVID-
19 outbreak and assesses its risk in terms of case numbers. In [16], a baseline
method generates a granular ranking (discrimination) of severe respiratory in-
fection or sepsis on the medical records of the general population. A decision-
tree-based gradient boosting model then adjusts the former predicted results in
subpopulations by aligning it with the published aggregate fatality rates. In addi-
tion, other methods and tasks are applied for innovative estimation of COVID-19
pandemic responses. Examples are automated primary care tools to alleviate the
shortage of healthcare workers [255], expert systems and chatbots for symptom
detection and lessening the mental health burden [181], IoT and smart connecting
tools to prevent outbreaks, remotely monitoring patients, and prompting the en-
forcement of guidelines and administrative orders to contain future outbreaks [103].

Discussion. Although hybrid COVID-19 modeling demonstrates an enhanced
capability and capacity to characterize COVID-19, the relevant research is still not
systematic, comprehensive, or substantial. The gaps and opportunities of novel
and effective hybrid COVID-19 modeling apply to hybrid problems, hybrid tasks,
hybrid data, and hybrid methods. These may provide extra capacity to address
the multiple characteristics and challenges of both the coronavirus and COVID
disease, as discussed in Sections 3.3, 3.2 and 3.4.

11 Discussion and Opportunities

This review also shows that there are many open challenges, gaps, and opportu-
nities in modeling COVID-19. First, publicly available COVID-19 data is limited,
partial, inconsistent, and may contain erroneous, biased, noisy and uncertain ob-
servations and statistics due to the limited, imbalanced and non-universal test
ability and non-unified reporting standards and statistical errors, especially at the
beginning of the epidemic and in underdeveloped regions and countries. Second,
the aforementioned long incubation period from infection to the onset of symptoms
and the large number of asymptomatic to mild infections make correct and instant
reporting difficult and lead to a significant number of undetected and unreported
cases, degrading data quality and trust. Third, coronavirus and COVID-19 exhibit
unique complexities, which differ from existing epidemics in terms of its transmis-
sion, infectivity in ethnic populations, external NPIs, people’s NPI reactions and
behavioral changes as a result of COVID-19 mitigation policies, and the rapid and
mysterious mutation and spread of coronavirus. Lastly, the modeled problems and
areas are fragmented, divided, and evolving, although the modeling techniques
and results are highly comprehensive.

These brief observations indicate the critical need to model COVID-19 and the
urgency of forming a comprehensive understanding of the progress being made in
COVID-19 modeling, the research gaps, and the open issues. This overview is
crucial not only for furthering COVID-19 modeling research but also for inform-
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ing insights on scientific and public strategies and actions to better battle this
pandemic and future pandemics.

In the above review of each category of the COVID-19 modeling techniques,
a brief discussion has been provided on the main limitations, gaps and opportu-
nities in those areas. Below, we further expand this specific discussion to broad
major gaps in the research on modeling COVID-19. In addition, we discuss various
open issues and opportunities to discover more informative insights for epidemic,
medical, biomedical, political and social management and the further research of
COVID-19 and other similar crises.

11.1 COVID-19 Modeling Gap Analyses

Here, we highlight two major aspects of modeling gaps. They are the gaps in
understanding the virus and disease nature and the gaps in modeling their com-
plexities.

11.1.1 Gaps in understanding the COVID-19 problem nature

Since the coronavirus is new and unique, our knowledge is limited in terms of all
aspects of the SARS-CoV-2 virus and COVID-19, such as virus characteristics, epi-
demiological attributes and dynamics, socioeconomic influence, virus mutations,
and so on. Specifically, our poor understanding of the intrinsic and intricate patho-
logical, biomedical and epidemiological attributes of the evolving SARS-CoV-2 and
COVID-19 systems limits the modeling attempts and contributions. As a result,
our understanding of the virus and disease is still (1) insufficient without substan-
tial knowledge and comprehensive evidence on the system complexities; (2) biased
to specific data, conditions or settings; (3) shallow without deep insights into the
virus and disease nature; (4) partial without a full picture of the SARS-CoV-2
and COVID-19 complexities, in understanding COVID complex systems and their
data complexities, as discussed in Sections 3.2 and 3.3 [288,41].

To address these issues, the COVID-19 modeling has to start with building a
comprehensive understanding of the coronavirus nature and the fundamental com-
plexities of COVID-19 ecosystems. Of the many questions to explore, we highlight
the following important unknowns. They require cross-disciplinary scientific ex-
plorations by integrating medical science, virology, bio-medicine, and data-driven
discovery.

– The hidden nature of SARS-CoV-2 and COVID-19 : How does the coronavirus
interact with human and animal hosts? What does the viral genetic system look
like? What are the epidemiological attributes of the virus and disease character-
istics after infections under different contexts, e.g., demographics, community
(population) scenarios, ethnics, seasonality, and weather conditions? What are
the high risk factors or high risk factor combinations of COVID-19 infection
and mortality? What causes the different levels of symptom onset and how do
asymptomatic and mild symptomatic infections differ from severe symptomatic
infections?

– The mysterious mutation mechanisms of SARS-CoV-2 : What genomic and
pathological factors determine how the coronavirus transforms from one gen-
eration to another and over time? What genomic and pathological mechanisms
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drive the variations? Why the genetic variants differ from region to region and
between populations of different ethnicities?

– The influence of external factors on coronavirus spread and evolution: How
does the virus evolve under different ethnicities, environmental and interven-
tion (including pharmaceutical and non-pharmaceutical) contexts? How do
external factors such as demographics, ethnics, environment, and healthcare
quality influence virus transformation? How do personal hygiene, public health
systems, public activities, population mobility, and daily commuting affect the
coronavirus spread and evolution?

– Coronavirus adaption to vaccines and drugs: What are the relations between
key factors such as the various vaccines and drugs available for treating
COVID-19, the increasing virus mutants and their more contagious new strains,
the widespread Delta and Omicron strain outbreaks, and unpredictable resur-
gences? How do the virus variants adapt to vaccines and drugs? How do the
different types of vaccines and vaccination strategies and coverage affect virus
evolution?

– Herd immunity, mitigation vs. zero COVID of the coronavirus: What is the
new COVID normalcy, i.e., should a ‘zero tolerance (zero COVID) approach
(or strategy)’ for the virus be the target and eventually remove the SARS-
COV-2 like occurred for SARS? Should mitigation (i.e., ‘quotidian existence’)
be the new normal such that humans live with the virus, similar to influenza?
Or should herd immunity be taken as the eventual approach? For the first
two approaches, what is the herd immunity threshold for a manageable normal
to coexist with the virus? Where is the manageable risk level of balancing
the vaccination rate, public health system capacity, ethnic and community
conditions, and acceptable daily numbers of infections and deaths? How does
the regional inequality of vaccinations and public health systems affect global
recovery?

11.1.2 Gaps in modeling the COVID-19 system complexities

The modeling gaps emanate from both a poor understanding of the nature of the
coronavirus and COVID disease and the limitations in modeling their characteris-
tics and complexities. On one hand, even though massive efforts have been made
in modeling COVID-19, the existing modeling work is still in its early stage. The
weaknesses and limitations of the existing work lie in various aspects, such as

– an average description of the population-wise coronavirus and the disease’s
epidemiological characteristics and observations after applying mitigation and
control measures, where no fine-grained and microlevel analysis and findings
are available;

– a direct application of existing (even very simple and classic) modeling meth-
ods without COVID-specific and optimal modeling mechanisms, typically by
applying overparameterized or independently pretrained deep neural models
or complex statistical and compartment models on low-quality and often small
COVID data;

– simple data-driven modeling purely motivated by applying advanced models
(typically deep models) on COVID-19 data without a deep incorporation of
domain and external knowledge and factors; and
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– a purposeful design without a comprehensive design or exploration of the multi-
faceted COVID-19 characteristics and challenges in one framework or system.

On the other hand, the general applications of existing methods are also un-
suitable and incapable of tackling the complexities of the complex coronavirus and
COVID disease. Table 11 compares the major modeling methods and their pros
and cons in modeling COVID-19. Consequently, it is common that the existing
models and their modeling results

– often only work for a specific population, cohort-based average estimation, or
specific hypothesis of epidemic transmission, losing a personalized applicability
to individual cases or scenarios, making it difficult to undertake personalized
treatment;

– are too specific and unexpandable to other regions and scenarios, irreproducible
and untransferrable to other regions without (significant) changes, making it
unsuitable for broad applications;

– over- or under-fit the given data and hypothesis settings, they are often difficult
to validate in a fine-grained way and have weak robustness or generalization
for a general but deep understanding of the problems; and

– lack the ability and capacity to disclose the intrinsic complexities and general
insights about the SARS-CoV-2 virus, COVID-19 disease, and their interven-
tions.

11.1.3 Gaps in actionable COVID-19 modeling and validation

The aforementioned COVID-19 problem nature and system complexities and their
mismatch to the existing COVID-19 modeling and results may result in the limited-
to-no actionability of existing COVID-19 modeling. Actionability is a common con-
cern in analytics and learning, as well as in other data and model-driven designs,
as discussed in domain-driven actionable knowledge discovery and actionable intel-
ligence [45,38–40,73,204]. Actionability is further related to issues including data
quality, sampling fairness and bias, algorithmic bias, evaluation bias, result repro-
ductionality, transparency, and interpretability, and more generally ethics [174].
The existing COVID-19 modeling also suffers from the weak actionability of their
methodologies, models, evaluation, and results.

In general, such weak actionability may be caused by the aforementioned gaps
in understanding the COVID-19 complexities and ecosystem reality. In practice,
the weak actionability of existing COVID-19 modeling may be caused and indi-
cated by different reasons or factors along their methodologies, designs, mecha-
nisms, assumptions, settings, data manipulation, feature selection, learning pro-
cesses, evaluation methods, and result presentation. Examples include:

– the potential flaws in the adopted methodologies, designs, mechanisms, and
processes of modeling COVID-19 problems [39,174,266];

– a partial-to-inappropriate understanding and quantification of the aforemen-
tioned COVID-19 problem nature and system complexities;

– no involvement of the relevant domain knowledge, domain factors, business
objectives, and socioeconomic factors in designing the COVID-19 modeling
and evaluation systems [40];
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Table 11 Comparison of COVID-19 Modeling Methods.

Methods Pros Cons
Time-series
analysis

Temporal representations and interac-
tion modelings of periodic and aperi-
odic components, relations and trends
of COVID-19 cases at different states
(e.g., new, asymptomatic, infected, re-
covered, and death) and external tem-
poral factors

Weak capacity in modeling other rich
factors (e.g., demographics and clinical
attributes) and complex data character-
istics (e.g., nonstationarity) and discov-
ering the insight of COVID-19 driving
forces and interventions

General ma-
chine learning

Multifaceted factor and relation anal-
ysis, outlier detection, profiling, clus-
tering, classification, prediction and im-
pact analysis of disease diagnosis, cases,
external influence, etc. often on small
and clean COVID-19 data

Weak capability of modeling poor-
quality, multisource and large data,
weak but complex interactions, cou-
plings, high-dimensional dependencies,
heterogeneity, nonstationarity, and
other COVID-19 disease and data
challenges

Statistical
modeling

Modeling COVID distributional dy-
namics, uncertainty and dependency
with analytical explanation and pa-
rameter settings, complementing other
methods such as epidemic modeling

Requires informative prior knowledge,
high modeling and computational com-
plexity on poor-quality COVID data,
weak capacity in modeling complex
interactions and heterogeneous multi-
source factors and data

Epidemic
modeling

Built on epidemiological knowledge on
coronavirus and COVID-19, straightfor-
ward but domain-friendly and explain-
able hypothesis test, strong characteri-
zation of infection processes, population
segmentation, state transitions, nonlin-
ear characterization, and parameter se-
lection

Weak capacity in capturing complex
epidemic transmission characteristics,
factors, causal relations and processes
in COVID-19 developments; strong hy-
pothesis of homogeneous disease trans-
missions

Deep learning High-performing on large and com-
plex COVID-19 data (e.g., medical
imaging)-based case and disease pre-
diction and identification with anno-
tated samples; pretrained models easily
adaptable to new tasks; low handcraft-
ing and engineering

Requiring annotated ground truth of
COVID-19 learning targets, under-to-
over fit small and low-quality COVID-
19 data, network vulnerability, poor in-
terpretability, high computational cost

Simulation Imitating and replicating complex
COVID-19 mechanisms and processes,
cost-effective, reproducible, risk-averse,
and manually controllable for purpose-
ful test and optimization, opportunities
in disclosing intrinsic realities in the
COVID virus and disease

Requiring proper knowledge and hy-
potheses about the COVID-19 epidemic
systems, transmission, and factor inter-
actions; high experimental complexity,
inactionable for evolving and random
real-life COVID scenarios

Hybrid meth-
ods

Addressing multi-objectives or multi-
tasks; flexible and powerful in fitting
small COVID-19 multisource data; tak-
ing advantage of multi-methods for
combined COVID-19 tasks and data

Requiring an understanding of the con-
stituents for their best ensemble, align-
ing hybridization to specific COVID-19
challenges with appropriate design com-
plexity, less flexible in combination op-
timization and explanability

– a lack of appropriate data science thinking [42] in data-driven modeling to
guide data-driven discovery design, processes, evaluation, and deployment;

– a misunderstanding or misinterpretation leading to a partial capturing of the
underlying data characteristics and system complexities in COVID-19, such
as in terms of data hierarchy, interactions, heterogeneity, non-IIDness, uncer-
tainty, dimensionality, and dynamics [42];

– an inappropriate feature set with partial, irrelevant, over-simplified, over-
manipulated, over-confident, correlated, biased, redundant, or noisy attributes
of multi-modal, cross-domain, low-quality, or irregular COVID-19 data;
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– inappropriate data manipulation and learning processes such as methodological
bias to data fitting, over- or under-sampling, over- or under-fitting, inappro-
priate conditioning, constraints or assumptions;

– the inappropriate application of pretrained, decoupled and homogeneous deep
neural networks in modeling small and limited COVID-19 data;

– the unfairness and bias of data sampling, feature selection, model selection,
modeling settings and conditions, test benchmarking, and learning processes;

– evaluation and validation flaws such as inappropriate or biased training-test-
validation set partitioning or sampling, inappropriate evaluation metrics, miss-
ing business and subjective measures, and the mismatch between modeling
conditions and evaluation settings.

11.2 Opportunities for AI, Data Science and Machine Learning

There are enormous opportunities and numerous future directions in modeling
COVID-19. Examples include (1) fundamentally characterizing COVID system
complexities, (2) addressing the aforementioned limitations of existing work on
modeling COVID-19, and (3) exploring new directions and alternatives for deeper
and more insightful and actionable COVID-19 modeling. These are particularly
valid for AI, data science and machine learning, which play a prominent role in
data-driven COVID-19 modeling.

11.2.1 Characterizing COVID-19 ecosystem complexities

To discover the mysteries of the COVID virus and disease, the most important
opportunities come from understanding their reality and system characteristics
and complexities, as discussed in Sections 3.2 and 11.1.1 on COVID-19 disease
challenges and gaps in understanding the nature of the problem. By combining
domain-driven and data-driven thinking and techniques, there are various direc-
tions in characterizing the COVID problem reality and system complexities:

– extracting, representing and distinguishing observable and latent factors and
metrics to describe the epidemiological, biological (genomic), medical (clinical
and pathological), and social attributes, liveliness, and dynamic processes of the
virus, virus mutations, the disease and its variants from other similar viruses
and diseases;

– identifying and characterizing external entities and factors (e.g., drugs, vac-
cines, ethnics, environment) and how they interact with the coronavirus and
COVID disease and influence their evolution;

– characterizing and simulating the diversified (e.g., explicit vs. implicit, global
vs. local, domain-specific vs. general) interactions and relations between the
above-extracted explicit and implicit internal and external factors and their
dynamics;

– quantifying and simulating the coronavirus and COVID disease’s system dy-
namics and genetic mechanisms (e.g., self-organization, genomic expression,
genetic crossover and mutation, interaction and adaptation with external en-
vironment) in terms of temporal and dependent variables and major transfor-
mations;
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– simulating and quantifying the virus parasitism, interactions, adaptation, and
evolution with human, animal and living hosts on a large scale.

11.2.2 Enhancing deep COVID-19 analytics and learning

To address the modeling gaps discussed in Section 11.1.2 and those rarely and
poorly explored areas and challenges discussed in Sections 3.3 and 3.4, we highlight
the following major directions to enhance deep COVID-19 analytics and learning.

Rarely-to-poorly addressed areas in COVID-19 modeling. First, opportunities
to address the areas rarely or poorly addressed in the existing COVID-19 modeling
include: (1) characterizing the effective NPIs on the variants of the SARS-CoV-
2 virus and comparing them with those on the original strains; (2) quantifying
the effect of COVID-19 vaccines, pharmaceutical and NPI interventions on infec-
tion control, mobility, mental health, society and the economy, e.g., the efficacy
of vaccinated population percentage on herd immunity, and the effect of variable
close-contact interactions and individual actions on epidemic de-escalating; (3) bal-
ancing NPI strength and socioeconomic recovery, e.g., modeling the effect of full vs
partial business close-downs and border control on virus confinement at different
stages and for different sectors, and characterizing the effect of increasing daily
commuting and workforce movement vs working-from-home and telecommuting
on virus confinement; (4) capturing the temporally evolving interplay and inter-
actions between virus propagation and external interventions; and (5) modeling
target problems by systemically coupling relevant multisource data and multiple
modeling techniques, e.g., by involving pathogen-related, societal, environmental
and ethnicity factors and the disparities between developing and developed coun-
tries, age groups, and races.

Enhancing hybrid COVID-19 modeling. Second, the hybridization of relevant
data and techniques offers significant opportunities to improve and expand the
existing modeling capacity and results. Examples include integrating (1) coarse-
grained and fine-grained modeling, e.g., epidemic modeling by SIR variants to
inform the analysis of the effect of further specific NPIs; (2) static and dynamic
modeling, e.g., from population-based static epidemic modeling to specific NPI-
varying and time-varying case forecasting; (3) observable and hidden factors and
relations, e.g., multisource-based attributed modeling with deep abstraction and
representation of interactions between multisource factors; (4) local-to-micro-level
and global-to-macro-level factors, e.g., involving patient clinical and demographic
records with their environmental and socioeconomic context in survival and mor-
tality prediction and medical resource planning; and (5) domain, data and models
for domain-specific, interpretable, evidence-based and actionable findings. These
typically involve compound modeling objectives, multisource data, and multi-
method ensembles.

Advancing COVID-19 modeling. Third, another set of new opportunities is to
undertake sequential or multi-phase modeling. Examples include (1) from coarse-
grained to fine-grained modeling: e.g., applying epidemic models like SIR and
SEIR on COVID-19 in the initial stage and then modeling the impact of NPIs,
and the mobility and behavioral change of a population on epidemic dynamics;
(2) from static to dynamic modeling: e.g., testing constant epidemic parameters
and then time-varying settings such as NPI-sensitive varying parameters; and (3)
from core to contextual factors: e.g., modeling epidemic processes on case data
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and then involving pathogen-related, societal and environment (like temperature
and humidity) variables to model their influence on epidemic movements.

Alternative COVID-19 modeling opportunities. Lastly, various alternative op-
portunities exist to address the gaps and opportunities in existing COVID-19
modeling. Examples include (1) developing COVID-19-specific modeling methods,
benchmarks and evaluation measures to address the challenges of the virus and
disease and their data challenges for an intrinsic interpretation of the nature and
dynamics of the virus and disease; (2) trans-disciplinarily integrating the relevant
domain knowledge and hypotheses from biomedical science, pathology, epidemi-
ology, statistics and computing science to address the multifaceted challenges of
the virus, disease, data and modeling and to form a comprehensive understand-
ing of the virus and disease; (3) defining multifaceted modeling objectives and
tasks to directly address comprehensive epidemiological, clinical, social, economic
or political concerns and their challenges in one framework; and (4) ethical and
explainable COVID-19 modeling with privacy-preserving and distributed hetero-
geneous information integration, augmentation, representation and learning by
utilizing personal computing devices (e.g., smart phones) and cloud analytics.

11.2.3 Exploring new epidemic and crisis modeling opportunities

In addition to many specific perspectives, such as hybridizing modeling objectives,
data and methods in Section 11.2.2 and addressing the shortcomings in Section
11.1.2, here we highlight some other opportunities that may particularly benefit
(from) AI, data science, and machine learning advances.

Quantifying the coronavirus nature and complexities. An imperative yet chal-
lenging task for the AI, data science and machine learning communities is to
‘quantify’ the reality and complexities of the coronavirus and COVID disease and
address the fundamental questions on the virus nature and complexities raised
in Section 11.1.1. Building on multi-disciplinary knowledge such as epidemiology,
other methods including genetic computing and theories of complex systems and
large-scale agent-based epidemic simulation systems are demanding to test and
improve genetic, clinical and epidemiological hypotheses and knowledge about the
virus and characterize the coronavirus genetic evolution mechanisms.

– Large-scale COVID epidemiological dynamics: to obtain quantitative results
and verification in relation to the questions in Section 11.1.1, such as: how
does a virus evolve, cross-over and mutate? how do billions of coronaviruses
interact, compete, and transform over time? and how do environmental factors
affect the virus life and genetic evolution?

– Large-scale human-virus interactions: to characterize the experiments in rela-
tion to questions such as: how does the full population of a country interact with
the virus under their varied demographic profiles, hygiene protection habits,
health conditions, vaccination conditions, mobility settings, etc. by mimick-
ing their physical census data and circumstances in the real world? what is
the vaccination threshold to build herd immunity for a country by considering
their specific circumstances? and how to compare the simulation results with
the reality of various waves of COVID-19 epidemic occurring in the country?

– Large-scale intervention influence on human-virus interactions: to quantify and
evaluate questions such as: how do the residents in a country respond to various
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intervention policies and restrictions on public and household activities over
time? how does enforcing or relaxing interventions and restrictions affect the
virus spread, infection numbers, and public heath system quality? and what
vaccination and intervention preconditions make business reopening possible?

Data-driven discovery of COVID mysteries. There are increasing and com-
prehensive sources of COVID-19 data available publicly and through private
providers. Data-driven discovery on this COVID-19 data can substantially leverage
other domain-specific research on COVID to disclose the mysteries of COVID.

– COVID data genomics: producing the ‘data genomics’ [46] of COVID for a
person, country, community or task by automatically extracting and fusing
possibly relevant data, e.g., contacts, personal health, mobility, clinical reports,
exposure to infected people, and household and public activities in a privacy-
preserving manner.

– COVID data augmentation: developing new techniques to address the various
data quality issues embedded in the data, as discussed in Section 3.3 and novel
augmented analytics and learning methods to directly learn from poor quality
COVID data.

– All-purpose representation of COVID attributes: learning the universal repre-
sentations [46] on all-relevant COVID data that can be used to describe the
full profile of COVID and support diverse learning objectives and tasks in an
ethical and privacy-preserving manner.

– Automated COVID screening and diagnosis: developing techniques and systems
to automatically detect, screen, predict and signal an alert to the potential
infection of the virus and disease on COVID data genomics.

– Virus detection and interaction modeling : developing personal IoT assistants
and sensors to detect the virus, trace its movement and origin, and visualize
the ‘COVID net’ showing its propagation paths, interactions and networking
with other viruses and hosts.

– COVID knowledge graph: generating knowledge graphs showing the ontology
of the virus; ontological connections between concepts of the virus; relations
between knowledge on the virus and its protection, intervention, treatment
and influence; and important highlights such as new knowledge discovered and
misinformation detected.

– COVID safety and risk management : developing systems and tools (including
mobile apps) for an individual’s personal and organizational daily management
of COVID safety and risk, e.g., COVID-safe physical and emotional health
management, mobility planning, risk estimation and alerting, infection tests,
immunity estimation, and compliance management.

– Metasynthetic COVID decision-support systems: developing evidence-based de-
cision support systems to fuse real-time and relevant big data, simulate and
replay the outbreaks, estimate NPI effects, discover evidence from data and
modeling, engage domain experts in the modeling and optimization processes,
generate recommendations for decision-making, and support data-driven ana-
lytics and the management of severe disasters and emergencies.
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12 Concluding Remarks

The COVID-19 pandemic’s short-to-long-term influence and impact on public
health (both physical and mental health), human daily life, global society, the
economy, and geopolitics are unprecedented, lasting, evolving yet quantified and
verified. This review paints a comprehensive picture of the field of COVID-19 mod-
eling. The multidisciplinary methods including mathematical modeling, AI, data
science, and shallow and deep machine learning on COVID-19 data have deepened
our understanding of the SARS-CoV-2 virus and its COVID-19 disease’s com-
plexities and nature. They have contributed to characterizing their propagation,
evaluating and assisting in preventive and control measures, detecting COVID-19
infections, predicting next outbreaks, and estimating the influence and impact of
COVID-19 on psychological, economic, and social aspects.

The review also highlights the important demands and significant gaps and op-
portunities of deeply and systemically (1) characterizing COVID-19-related prob-
lems and complexities and (2) developing effective, interpretable and actionable
models. Our future work is required to characterize, measure, imitate, evaluate and
predict broad-based challenges and problems and to proactively and effectively
intervene to mitigate them. Such COVID-19 modeling research proposes many
significant challenges and opportunities to the multidisciplinary modeling commu-
nities in the next decade. These include immediately gaining intrinsic knowledge
and proactive insight into the evolving coronavirus and its disease outbreak, infec-
tion, transmission, influence and intervention. It is also necessary to tackle future
global health, financial, economic, security-related and other black-swan events
and disasters.
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McKinney, D. Jarrett, P. Lió, and A. Ercole. How artificial intelligence and machine
learning can help healthcare systems respond to COVID-19. Mach. Learn., 110(1):1–14,
2021.

267. I. van der Vegt and B. Kleinberg. Women worry about family, men about the economy:
Gender differences in emotional responses to COVID-19. In Social Informatics’2020,
volume 12467 of Lecture Notes in Computer Science, pages 397–409, 2020.

268. O. Vandenberg, D. Martiny, O. Rochas, A. van Belkum, and Z. Kozlakidis. Considerations
for diagnostic COVID-19 tests. Nature Reviews Microbiology, 19:171–183, 2021.

269. A. Vespignani, H. Tian, C. Dye, J. O. Lloyd-Smith, R. M. Eggo, M. Shrestha, S. V.
Scarpino, B. Gutierrez, M. U. Kraemer, J. Wu, K. Leung, and G. M. Leung. Modelling
COVID-19. Nature Reviews Physics, 2:279–281, 2020.

270. N. Vishwamitra, R. R. Hu, F. Luo, L. Cheng, M. Costello, and Y. Yang. On analyzing
COVID-19-related hate speech using BERT attention. In ICMLA’2020, pages 669–676,
2020.

271. M. Vlasceanu and A. Coman. The impact of information sources on COVID-19 knowledge
accumulation and vaccination intention. Int. J. Data Sci. Anal., 13(4):287–298, 2022.

272. T. D. Vo and M. D. Tran. The impact of COVID-19 pandemic on the global trade.
International Journal of Social Science and Economics Invention, 7(1):1–7, 2020.

273. E. Volz, S. Mishra, M. Chand, J. C. Barrett, R. Johnson, L. Geidelberg, W. R. Hins-
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13 Appendix: List of modeling keywords

The following lists the base keywords combined with ‘COVID-19’ for the literature
search on COVID-19 modeling. The keywords are categorized into machine learn-
ing, deep learning, mathematical modeling, epidemic modeling, and other general
methods.

Machine learning:
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– Machine learning
– Sentiment analysis
– Support vector machine
– Transfer learning
– Random forest
– Decision tree
– Natural language processing
– Artificial neural network

Deep learning:

– Deep learning
– Convolutional neural network
– Neural network
– Long short-term memory
– Deep neural network

Mathematical modeling:

– Mathematical modeling
– Regression model linear regression
– Multivariate statistics
– Logistic regression
– Statistical model
– Bayesian
– Mathematical model
– Cox regression
– Univariate analysis
– Autoregressive integrated moving average
– Poisson regression
– Time-series analysis
– Linear model
– Bivariate analysis
– Multiple linear regression
– Multivariate regression

Epidemic modeling:

– Compartmental modeling
– Susceptible-exposed-infectious-removed
– Susceptible-infectious-recovered
– Transmission model
– Epidemiological model

General and other methods and keywords:

– Artificial intelligence
– Big data
– Compartmental modeling
– Data analytics
– Data mining
– Data science
– Decision making

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 26, 2022. ; https://doi.org/10.1101/2022.08.22.22279022doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.22.22279022
http://creativecommons.org/licenses/by-nc-nd/4.0/


104 L. Cao and Q. Liu

– Forecasting model
– Predictive model
– Simulation
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