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Abstract

Objective: To compare and release the diagnosis (ICD-10-CM), procedure (ICD-10-PCS), and medication (NDC) concept
(code) embeddings trained by Latent Dirichlet Allocation (LDA), Word2Vec, GloVe, and BERT, for more efficient electronic
health record (EHR) data analysis.
Materials and Methods: The embeddings were pre-trained by the four aforementioned models separately using the
diagnosis, procedure, and medication information in MIMIC-IV. We interpreted the embeddings by visualizing them in 2D
space and used the silhouette coefficient to assess the clustering ability of these embeddings. Furthermore, we evaluated
the embeddings in three downstream tasks without fine-tuning: next visit diagnoses prediction, ICU patients mortality
prediction, and medication recommendation.
Results: We found that embeddings pre-trained by GloVe have the best performance in the downstream tasks and the
best interpretability for all diagnosis, procedure, and medication codes. In the next-visit diagnosis prediction, the accuracy
of using GloVe embeddings was 12.2% higher than the baseline, which is the random generator. In the other two prediction
tasks, GloVe improved the accuracy by 2%-3% over the baseline. LDA, Word2Vec, and BERT marginally improved the
results over the baseline in most cases.
Discussion and Conclusion: GloVe shows superiority in mining diagnoses, procedures, and medications information of
MIMIC-IV compared with LDA, Word2Vec, and BERT. Besides, we found that the granularity of training samples can affect
the performance of models according to the downstream task and pre-train data.
Keywords: ICD-10-CM, ICD-10-PCS, NDC, code embedding, MIMIC-IV
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1 Introduction
In the EHR systems, medical codes in diagnosis, procedure and medication
contain rich medical information and abundant hidden knowledge about
disease/therapeutic characteristics. Though the codes in different EHR
system has distinct distribution due to different demographic of patient
population, the hidden knowledge between these medical codes are
universal. Existing EHR mining research [7, 31, 41] widely use pre-
defined (also known as embedding) medical codes to capturing the hidden
correlation between codes and enhancing various clinical tasks, such as
diagnosis prediction and mortality prediction.

With the widespread deployment of EHR systems, clinical datasets
such as MIMIC-IV [19] may store rich patient information while retaining
their multimodality and complex structures. Well-structured code systems
in EHR often record patient information such as diagnoses, procedures, and
medications. A medical code is equivalent to a ‘word’ in natural language;
all codes that occurred during a patient’s hospital visit naturally constitute
one ‘sentence’; and a ‘document’ is equivalent to all hospital visits of a
patient sorted by visiting time. The major inadequacy of this analogy is
that each visit is a time-irrelevant set of codes. In other words, unlike
natural language, the ‘words’ in each ‘sentence’ here do not appear in any
particular order. As a result, order-insensitive sequence models based on
the distributional hypothesis (LDA [2], Word2Vec [25], and GloVe [33])
are suitable for modelling medical codes. A more complex language model,
BERT is also analyzed in this paper for comparison.

1.1 Word Embedding

In natural language processing (NLP), the semantic and syntactic features
of words in unlabeled text data are expected to be fully captured in a
low dimensional space through distributional semantics word embedding.
Under distributional hypothesis [15], two semantically similar words
are assumed to occur in a similar context, which means having similar
word co-occurrence. Word2Vec [25] defines the context of the target
word as the co-occurrence between target word and the words in the
fixed-size window around it. As Word2Vec only considers the local co-
occurrence, GloVe [33] utilizes global co-occurrence to capture explicitly
defined sub-linear relationships. However, the drawback of these early
word embeddings is that they represent all senses of a word into
one embedding, while words are in multiple senses, in reality, e.g.
“good” and “cheerful” are synonyms, but mean different in sentences
“This restaurant has a good reputation.” and “A great many people
would agree.”. Then many sense embedding works are proposed to
give representations in different senses to a word in supervised or
unsupervised ways. Some unsupervised sense embeddings works [28, 23]
are based on LDA [2], a probabilistic topic model that can model the
topic distribution over documents. In recent years, contextual embedding
methods arises to give a solution that covers many aspects (e.g. sense
representation, synonymy/antonymy, and hypernymy/hyponymy) [37].
The successful contextual embedding method BERT [10] learns contextual
word embeddings based on bidirectional transformer architecture with the
masked language model (MLM).

1.2 Medical Codes Representation Learning

Since the arising of deep learning, representation learning of medical codes
becomes crucial for clinical prediction. Early works learn visit/patient
representations [6, 6, 8, 29, 27, 4] utilizing deep learning methods
such as recurrent neural networks, convolutional neural networks or
stacked denoising autoencoders on longitudinal EHR data. These methods
demonstrates the effectiveness of learning distributional representation
for clinical prediction, but the representations are prediction-task-guided.
For adaptation of different patient distribution in different EHR dataset,
many works turn to utilizing language model to embed medical concepts.
GRAM [7] learns ICD-9 disease code embeddings using GloVe and

shows a considerable improvement in sequential diagnosis predictions;
G-BERT [38] pre-trains on ICD-9 disease codes for diagnoses and ATC
codes for medications together with a modified MLM objective where the
loss combines these two modalities of codes; BEHRT [22] embeds caliber
codes for diagnoses with only MLM pre-training objective and achieved
better results than visit and patient representation works [8, 27] in next
visit prediction; Med-BERT [34] embeds ICD-9 and ICD-10 codes for
diagnoses to predict the prolonged length of stay in hospital task with
MLM pre-training. Recently, some works investigated the performance of
other unsupervised NLP models in embedding medical concepts. Finch
et al. [13] shows the clustering capability of ICD-10 disease codes with
Word2Vec embeddings. Nuria et al. compared LDA and PLDA (supervised
version of LDA) [21] ICD-10 in Osa dataset and ICD-9 in MIMIC-III
dataset. However, for a variety of reasons, most of these works are unable to
publish the pre-trained code embeddings. And as far as we know, there is no
such comparison between these word embedding methods in longitudinal
EHR data. The contribution of this work is twofold: (1) it gives an empirical
comparison of four popular code embedding pre-training methods which
can be considered as guidance for EHR researchers; (2) we are the first to
publish the publicly accessible pre-trained embeddings1 for ICD-10 codes
using BERT, GloVe, Word2Vec, and LDA based on MIMIC-IV data, which
can be used as initialization for any ICD-10 related tasks.

2 Method

2.1 Comparison Framework

To compare the pre-trained embeddings, LDA, Word2Vec, GloVe,
and BERT were assessed in two ways: embedding interpretability and
performance in three downstream tasks.

We set our pre-training to be downstream task-independent in order to
make the application of the pre-trained embeddings as wide as possible.
We note that the pre-training methods are unsupervised/self-supervised
learning: the embeddings are learned from the intrinsic information in the
data, such as the co-occurrence or the context information, and are not
further tuned with the down-stream tasks.

The three modalities of medical concept, ICD-10-CM (Clinical
Modification of diagnoses), ICD-10-PCS (Procedure Coding System), and
NDC (National Drug Code), may have different compatibilities with LDA,
Word2Vec, GloVe and BERT, therefore, were individually trained.Then the
medical concept embeddings were fixed (without fine-tuning) and fed into
downstream tasks as the input features of the concepts.

We extracted the diagnosis, procedure and medication information
from the ‘diagnoses_icd’, ‘procedures_icd’ and ‘prescriptions’ tables
under the ‘hosp’ module from the MIMIC-IV (version 1.0) website
(https://physionet.org/content/mimiciv/1.0/), respectively.
In particular, we focused on the ICD-10 codes for diagnosis and procedure
and NDC codes for prescription. The statistical information of the data
is depicted in Table. 1. All of the data were processed into two levels
of granularities: each patient as a sample and each visit as a sample, as
depicted in Figure. 1. When using a patient as a sample, we concatenated
all visits of a patient ordered by time to form a ‘sentence’; when a visit
serves as a sample, each ‘sentence’ is simply the collection of all codes that
occurred during a visit. Notably, the codes within a visit are not ordered
by time since this information is not provided in MIMIC. As far as we
know, the choice of sample granularity has not been studied under the
representation learning of medical concepts.

1 https://bit.ly/3ONj9Su
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Table 1. Information on diagnoses, procedures, and medications data. Avg. # of visits is on patients and Avg. # of codes is on visits.

Diagnoses Procedures Medications

# concepts # patients
Avg. #
of visits

Avg. #
of codes

# concepts # patients
Avg. #
of visits

Avg. #
of codes

# concepts # patients
Avg. #
of visits

Avg. #
of codes

17658 107704 2.49 11.79 ± 7.90 10429 61414 2.90 2.75 ± 2.49 8357 232064 2.13 21.21± 14.59

Figure 1: Data format for pre-training in the context of diagnoses data.
Blocks with different colors are different visits. The same settings were
used for procedures and medication data. A word in diagnoses data is an
ICD-10-CM code, while for procedures and medications data is an ICD-
10-PCS code, and an NDC code, respectively.

2.2 Models

2.2.1 Notation Definition
Let the sets of codes in diagnoses, procedures, and medications data
be CD , CP , and CM , respectively. We write C as the set of codes
when there is no need to specify the modality. C is the code vocabulary.
A sentence at visit-level is a list constructed by c ∈ C of the form
sij = [c1, c2, ..., cvij ], where vij is the amount of codes in the jth
visit of the ith patient. While a sentence at patient-level is in the form si =

[c1, ..., cv1 , cv1+1, ..., c∑j
k=1

vik
, c∑j

k=1
vik+1

, ..., c∑Vi
k=1

vik], where

Vi is the amount of visits of the ith patient. The pre-training data
consist of a document, which can be defined as D. At visit-level,
D = [s11, ..., s1v1 , ..., sp1, ..., spvp ], while at patient-level, D =

[s1, s2, ..., sp], where p indicates the amount of patient.

2.2.2 LDA
Based on De Finetti’s classic representation theorem [9], LDA mixture
models capture the exchangeability of both words and documents. LDA
assumes that each document is a mixture over latent topics, where each
topic is characterized by a distribution over words. A topic distribution
θi for document Di is sampled from a Dirichlet allocation Dir(α).
The topic zi,j for the jth word in Di is sampled from the multinomial
distribution Multinomial(θi). Sample ϕzi,j of the jth word ci,j is
from the dirichlet distribution Dir(β). The word ci,j then is modelled
by the multinomial distribution Multinomial(ϕzi,j ). Considering the
successful application of LDA in learning phenotypes compared to other
topic models, we assume that each dimension of an embedding is a latent
topic, and the latent topics can be learned by LDA, so we used the word-
topic matrix as the representation of the medical concepts. In this case, the
embedding for each word is a vector of the probability in each topic, where
the number of topics is the vector dimension. Then, the distribution is
learned through variational inference. We implemented LDA using Python
library GenSim [35], and the inference method is online variational Bayes
[17].

2.2.3 Word2Vec
Word2Vec can make use of either continuous bag-of-words (CBOW) [25]
or skip-gram [26]. The assumptions are different between CBOW and
skip-gram. Skip-gram model assumes that a word can be used to generate
its surrounding words, while CBOW assumes that the target word can be

Figure 2: BERT model structure in the context of diagnoses data.

generated by its surrounding words. The surrounding words are the words
around the target word within a fixed window size. We adopted the skip-
gram version of Word2Vec in this work, as our early experiment showed
that skip-gram has better performance in this case.

Given the dictionary C, the training target of skip-gram is to maximize
the average log probability:

1

|C|

|C|∑
c=1

∑
−w≤j≤w,j ̸=0

logp(ct+j |ct) (1)

The conditional probability p(ct+j |ct) is the probability of the
presence of ct+j given the cotext word ct and is calculated as:

p(ct+j | ct) =
exp

(
Ein

ct+j

⊺
Eout

ct

)
∑

c∈C exp
(
Eout

c
⊺Ein

ct

) (2)

where Ein and Eout are the ‘input’ and ‘output’ embeddings of codes. The
final embedding for each code is the average between Ein and Eout.

We used the implementation of Word2Vec provided by Python library
GenSim with hierarchical softmax and set the window size as 2.

2.2.4 GloVe
While Word2Vec learns the embeddings by mining the local context
information, GloVe was proposed to globally compute the word embedding
based on the matrix of word-word co-occurrence counts. Instead of
considering the local co-occurrence within a fixed-size window, GloVe
computes the co-occurrence within a data unit. In our use case, the data
unit is the lists of clinical codes at visit/patient level. The distribution of
code co-occurrences in GloVe is modelled by a power-law function of the
frequency of each code pair. Based on the observation of the co-occurrence
probabilities, GloVe models the ratio of co-occurrence probabilities.

2.2.5 BERT
BERT [10] uses a masked language model (MLM) to enable the pre-
training of deep bidirectional embeddings, which can give both sentence
embeddings and word embeddings. We take diagnosis data as an example
and show the structure of BERT in Figure. 2. The pre-training objective
of MLM is to predict the randomly replace tokens into ‘[MASK]’ tokens
in the sentence with cross-entropy loss. In this way, code embeddings try
to learn through their context. We pre-trained the MLM with 15% words
masked in a sentence. We only used ‘[MASK]’ tokens but not ‘[CLS]’ and
‘[SEP]’ tokens since only MLM was considered here.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. peer review)

(which was not certified byThe copyright holder for this preprint this version posted August 22, 2022. ; https://doi.org/10.1101/2022.08.21.22278835doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.21.22278835
http://creativecommons.org/licenses/by-nc-nd/4.0/


i
i

i
i

i
i

i
i

4

Figure 3: Visualization of GloVe pre-trained ICD-10-CM code embeddings reduced into 2D space by t-SNE, zoomed-in views. The points in these two
subfigures are the same, but grouped by different categories.The points upper subfigure are classified into six typical diseases; the lower subfigure is
classified according the top level of ICD-10 taxonomy.

2.2.6 Settings
The model architectures are fixed for the three data modalities, diagnosis,
procedure, and medication. To pre-train BERT, we only adopted the
patient unit, as the visit unit is too short to show the advantage of BERT.
For the other three methods, both of the data granularities were tested.
The dimension of the embeddings was fixed as 128 for all models. In
the pre-training, the optimizer Adam was employed. The learning rate
was tuned as 5e-5, 1e-2, and 2.5e-2 for BERT, GloVe, and Word2Vec
respectively. BERT was only pre-trained with MLM, following the setting
of Med-BERT [34]. For Word2Vec, we set the window size as 2 with
hierarchical softmax. The hyper-parameters in GloVe were set the same
as the recommended settings in [33]. For LDA, the dimension of the
embeddings was the number of topics.

3 Embedding Interpretability
To evaluate the interpretability of the embeddings learned by these models,
we used t-SNE [40] to visualize the embeddings in 2D space, and we
labelled points according to different standards. For ICD-10-CM codes,
we classified points into six typical diseases as specified in Table. 4.
While the coding system of ICD-10-CM codes also provides a standard for
classifying concepts, so we divided these codes into different categories

according to the coding system2. For ICD-10-CM codes, we visualize the
embeddings with these two grouping standards and show them in Figure. 3.

Each ICD-10-PCS code consists of seven characters 3. The first
character is the ‘section’, and the second through seventh characters mean
different things in each section. For ICD-10-PCS, we used the 1st, 2nd,
and 3rd characters to classify embeddings, respectively. For medication,
we mapped the NDC codes into the Anatomical Therapeutic Chemical
(ATC) code system [30], which is a hierarchical classification system that
assigns a unique code to each medicine according to the organ system
the medicine works on and how it works. We used the top-level ATC as
the cluster labels which denote the main anatomical or pharmacological
groups.

More visualizations can be seen in our repository. For diagnoses
data, GloVe embeddings did the best in clustering diseases in kidney
failure, stroke, and diabetes. LDA and BERT could also cluster chronic
kidney failure well. All embeddings trained by the four methods cannot
separate between male diseases and female diseases well. For procedure
and medication data, embeddings pre-trained by GloVe also gave the best
visualization.

To further show the clustering ability of the 4× 3 sets of embeddings,
we used the clustering evaluation metric Silhouette coefficient [36].

2 https://www.icd10data.com/ICD10CM/Codes
3 https://www.cms.gov/medicare/icd-10/
2021-icd-10-pcs
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Figure 4: The silhouette coefficient value in clustering ICD-10-CM embeddings. The red dashed line denotes the average silhouette coefficient value.

The Silhouette coefficient is a value in the range of [-1, 1] measuring
how similar points are within a cluster, where a larger value indicates a
tighter cluster. Given embeddings and labels, the Silhouette coefficient
for an embedding is b−a

max(a,b) , where a is the mean distance between the
embedding and all other embeddings in the same cluster, and b is the
distance between the embedding and the nearest cluster that the embedding
is not a part of. It is worth noting that all of these four models are not for
clustering, so the application of Silhouette coefficient is mainly for the
interpretability purpose. We computed the Silhouette coefficient in the
original data space (128-d), and used one of the aforementioned labelling
systems as clustering labels.

For ICD-10-CM embeddings, the visualization of Silhouette
coefficients is shown in Figure. 4 with the top-level categeries of ICD-
10-CM. LDA clustered ‘Congenital malformations, deformations, and
chromosomal abnormalities’ class well, while GloVe clustered ‘Certain
conditions originating in the perinatal period’ better.

For ICD-10-PCS embeddings, we used the 2nd character as cluster
labels, with results shown in Figure. 5. For most classes, LDA did the worst,
for some small clusters, e.g., ‘Breast’, ‘Ear, Nose, Sinus’, ‘Lymphatic
System’, LDA could knit them tight.

For NDC embeddings, in Figure. 6, the ones learned by Word2Vec
clustered ‘Antineoplastic and immunomodulating agents’ well.

Overall, comparing the average silhouette coefficient, embeddings
learned by GloVe displayed better clustering ability than the ones learned
by other models.

4 EVALUATION

4.1 Tasks

To further compare the performance of these embeddings, we evaluated
them in three tasks: diagnoses prediction of multiple diseases in the
next visit within one month, mortality prediction for intensive care unit
(ICU) patients, and medication recommendation. We set the diagnoses

prediction as a six-class classification task using diagnoses embeddings,
predicting chronic kidney failure, acute kidney failure, heart failure,
respiratory failure, diabetes, and stroke for the patients’ next visit. The
mortality prediction is a binary classification task predicting whether
mortality happens to ICU patients within a month of the current visit
using diagnoses/procedures/medication embeddings. The medication
recommendation is a regression task that uses the diagnoses/procedures
embeddings to predict the medications within the same visit.

Patients with less than 2 visits are omitted in the evaluation. The
patients were split into train and test sets with a ratio of 70% and 30%.
Then patient-level data were further unwrapped to visit-level since one
patient may have multiple visits.

Each training input of these tasks is a set of codes. The pre-trained
embeddings for these codes are the feature matrix. To combine these
codes’ feature vectors, we use the average of the code embeddings as
the feature vector of each input. Except for the four sets of pre-trained
embeddings, we also use randomly initialized embeddings to serve as
baselines in the three modalities of data. We used four machine learning
models — CatBoost [11], Xgboost [5], Random Forest [3] and Multi-layer
Perceptron (MLP) [16] for classification (/regression).

4.1.1 Diagnoses Prediction
As we know, multiple organ failure is a severe, life-threatening condition,
while stroke and diabetes are correlated to multiple organ failure. The
diagnoses prediction in this paper is the multi-classification between
multiple organ failure diseases, stroke, and diabetes. This task was
conducted on a cohort where patients have more than one visit. We further
selected visit pairs with intervals of less than one month, and each visit was
labelled with one of the six disease classes mentioned above according to
the diagnosis code. Visits with multiple types of disease were also removed,
so to rule out multi-label cases. The ICD-10 codes of these diseases are
specified in Table 4. Lastly, visit pairs (v1, v2) with different labels were
remained. We used the average of code embeddings in v1 to predict the
disease label of v2.
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Figure 5: The silhouette coefficient value in clustering ICD-10-PCS embeddings.

Figure 6: The silhouette coefficient in clustering NDC embeddings.

4.1.2 Mortality Prediction
MIMIC-IV includes 21,622 ICU patients having diagnostic, procedures,
and medication records. We collected the set of visits of these patients
within a month since they entered the ICU, and unwrapped the set of visits
into a set of medical codes. Each input is a set of medical codes of an ICU
patient, and the task is to predict the label, which is 0/1 (denoting deceased
or live within a month). As the positive samples, which are labelled as 1, are
far more than the negative samples, we randomly down-sampled positive
samples to the same size of the negative samples.

4.1.3 Medication Recommendation
This task used the diagnostic/procedure information of a visit to predict
the probability that each NDC would be in the prescription for this visit. To
get the features of a visit, we firstly embedded the diagnostic/procedures
codes in this visit and each prescription code for this visit using the pre-
trained embedding from the same kind of model. Then we concatenated
the averaged embedding of diagnostic/procedures embeddings and the
embedding for one of the prescription codes as the feature of a sample
with the training label as 1.

4.2 Results

The evaluation results are shown in the Table. 2 and Table. 3.
Table. 2 shows that all four methods have improved performance in

diagnosis prediction compared with the baseline, randomly initialized
embeddings. It indicates that the hidden information captured by these
models has predictive powers for diagnoses. While in Table. 3, for
procedures, the embeddings learned by LDA and Word2Vec did worse
than the baseline. From Table. 2 and Table. 3, for the ICU patients
mortality prediction, we can see that the diagnosis embeddings pre-
trained by GloVe are more explicit in showing the patient’s criticality
in syndromes compared to procedures and medications data. While in
the medication recommendation task, only embeddings learned by GloVe
performed better than the randomly initialized inputs both for diagnoses
and procedures. The distribution biases introduced by LDA could worsen
the medication recommendation results. It may be caused by the poor
interpretability of the LDA pre-trained embeddings of NDC codes.

Comparing the granularity of pre-training data, using pre-training
data at the patient-level is better than using the visit-level for co-
occurrence-based methods (GloVe, Word2Vec, and LDA) in the diagnoses
prediction task. Pre-training with the visit-level data may lose the temporal
relationship between diseases, especially for chronic diseases. However,
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Next Visit Mortality Medication
Diagnoses Prediction Prediction Recommendation

Accuracy Precision Recall F1 Accuracy Precision Recall F1 Explained Variance MSE
BERT 0.547 0.470 0.386 0.406 0.659 0.653 0.653 0.652 0.783 0.054
GloVe 0.632 0.598 0.520 0.548 0.693 0.695 0.695 0.693 0.806 0.048

GloVe (v) 0.632 0.598 0.522 0.551 0.694 0.696 0.696 0.694 0.805 0.049
Wrod2Vec 0.515 0.427 0.354 0.368 0.648 0.655 0.651 0.650 0.760 0.060

Word2Vec (v) 0.514 0.491 0.332 0.342 0.650 0.654 0.653 0.650 0.759 0.060
LDA 0.558 0.514 0.369 0.389 0.664 0.668 0.667 0.663 0.581 0.105

LDA (v) 0.548 0.506 0.362 0.388 0.658 0.664 0.662 0.658 0.607 0.098
random 0.510 0.395 0.307 0.311 0.657 0.660 0.660 0.657 0.759 0.060

Table 2. Evaluation results on diagnoses data. Model name with ‘(v)’ means pre-training with the visit-level data. For classification tasks, we used accuracy,
macro-precision, macro-recall, and macro-F1 as the metrics. To evaluate the regression task, we used explained variance and mean-squared error (MSE), where
higher explained variance and lower MSE is better. We ran each experiment 5 times, and all of the standard deviations were less than 2e − 2.

Procedures Medications

BERT GloVe
GloVe
(v)

Word-
2Vec

Word2-
Vec (v)

LDA
LDA
(v)

random BERT GloVe
GloVe
(v)

Word-
2Vec

Word2-
Vec (v)

LDA
LDA
(v)

random

Mortality
Prediction

Accuracy 0.668 0.68 0.678 0.647 0.648 0.659 0.639 0.659 0.621 0.648 0.65 0.623 0.62 0.632 0.636 0.62
Precision 0.669 0.681 0.661 0.647 0.648 0.66 0.642 0.659 0.623 0.649 0.652 0.628 0.622 0.634 0.638 0.62

Recall 0.668 0.68 0.678 0.647 0.648 0.659 0.64 0.659 0.623 0.649 0.652 0.622 0.622 0.634 0.638 0.618
F1 0.668 0.68 0.678 0.647 0.648 0.658 0.639 0.659 0.62 0.647 0.65 0.618 0.62 0.631 0.636 0.617

Medication
Recommendation

Explained
Variance

0.780 0.813 0.803 0.787 0.788 0.757 0.76 0.787
/

MSE 0.055 0.047 0.049 0.053 0.053 0.061 0.06 0.053

Table 3. Evaluation results on procedures and medications data.

for mortality prediction, as the critical factor is mainly determined by
the fetal diagnoses [18] such as respiratory failure and sepsis, which is
acute and often unexpected, there is no big difference between using the
two kinds of data granularities. It is worth noting that GloVe showed
the best performance for all three downstream tasks among all models
considered. One of the reasons that GloVe outperformed BERT may be
that BERT was not fine-tuned for these tasks, which we deliberately left
out since we wanted to make the embeddings as generalized as possible.
Embeddings learned by Word2Vec and LDA performed poorly on these
tasks. Word2Vec does not use the global co-occurrence information,
instead, it uses the context information within a fixed-size window; LDA
is designed to do topic modelling. Nevertheless, embeddings learned by
LDA have better performance than the ones learned by Word2Vec in the
diagnoses prediction task and mortality prediction task.

5 DISCUSSION
Surprisingly, BERT did not do well in the evaluation. The reason may
be that BERT is only pre-trained with MLM. Besides, the pre-training of
BERT is sensitive to hyper-parameters and needs a large corpus, so the
optimized pre-training method RoBERTa [24] can further be utilized for
medical concepts representation learning.

With Word2Vec, the fixed window size introduces biases induced by
the order of the NDC codes, which might be the main reason for the
poor performances of the Word2Vec embeddings. In other words, the
neighborhood of a medical code is restrained by the window size, leading
to the omitting of codes that are out of the window but in the same visit.

For the tasks like clinical concept extraction in biomedical text,
some published work has shown that BERT is better than GloVe and
Word2Vec [39, 1, 32]. But in EHR data, Getzen et al. [14] also finds that
BERT did not perform well when using static embeddings. Combining
the results of this paper, we find that longitudinal EHR data is context-
independent within a visit (i.e. the position of disease in the visit does
not impact the semantics) but is context-dependent between visits. GloVe
and Word2Vec word embeddings are context-independent, while BERT

generates different embeddings for a word to capture the context of the
word, which is context-dependent. So BERT can introduce disturbance
for medical code embeddings as there is no context but co-occurrence
within a visit. And it is more suitable to use context-independent models
e.g. GloVe and Word2Vec when using the visit as the sample for word
embedding.

6 CONCLUSION
We have presented a new perspective on medical concepts representation
learning methods comparison via visualizations and three downstream
tasks. We considered three kinds of medical concepts: ICD-10-CM
(diagnoses), ICD-10-PCS (procedures), and NDC (medications) and
four pre-training methods — LDA, Word2Vec, GloVe, and BERT using
the MIMIC-IV dataset. We compare the effectiveness of four methods
in embedding three modalities of clinical codes. BERT pre-trained
embeddings without fine-tuning cannot beat the embeddings learned
by GloVe in this comparison framework. Furthermore, interestingly,
embeddings learned by LDA are better than Word2Vec in the next visit
diagnoses prediction task and mortality prediction task. Considering the
visualizations and the results of the downstream tasks, pre-training with
GloVe is the best in capturing the hidden semantics between medical
codes in MIMIC-IV. Moreover, the granularity of pre-training samples
should be considered according to different applications. In the mortality
prediction, using visit-level data could be better, while in the medication
recommendation, using patient-level samples may be a better choice.
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Diseases ICD-10 codes Num. of
codes Support

Chronic kidney failure N18 7 26507
Acute kidney failure N17,O904,T8612,N990 8 24737
Respiratory failure J960,J962,J969,J9582,P285 12 11917

Heart failure
I50, I9713,I0981,

I110,I130,I132
29 44832

Stroke H341,I63,I64,I61,G45 101 5637
Diabetes E10,E11,E12,E13,E14 158 63027

Table 4. Specified ICD-10 code prefix for six types diseases. We use the prefix
to denote all of the codes with this prefix. The support is the occurrence amount
of the codes in the specified class. The classification of codes refers to [20, 12].

9 DATA AVAILABILITY
The MIMIC-IV data underlying this article is available in https://

doi.org/10.13026/a3wn-hq05 with restricted-access.
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