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Abstract 
 
Wearable biosensors and smartphone applications can measure physiological 
variables over multiple days in free-living conditions, revealing circadian rhythms and 
responses to external stressors such as meals and physical activity. Here we 
develop a probabilistic Bayesian framework to learn interpretable, personal 
parameters from wearable time series data. We measure food and drink ingestion, 
glucose dynamics, physical activity, heart rate (HR) and heart rate variability (HRV) 
in 25 healthy participants over 14 days. Modelling ingestion events with glucose 
reveals that slow glucose decreases are associated with large postprandial glucose 
spikes, and we uncover a circadian baseline rhythm in glucose levels with high 
amplitudes in some individuals. Physical activity and circadian rhythms explain 40-
65% of HR variance, whereas the variance explained for HRV is more 
heterogeneous across individuals (20-80%). Finally, incorporating activity, HR and 
HRV in the modelled glucose explains an additional 10% glucose variability in some 
individuals, highlighting the relevance of integrating multiple physiological signals for 
a complete and predictive understanding of glucose dynamics. 
 
Keywords 

Wearable devices, glucose levels, circadian rhythms, mathematical modelling, 
Bayesian inference 
  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 22, 2022. ; https://doi.org/10.1101/2022.08.20.22278813doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.20.22278813
http://creativecommons.org/licenses/by-nd/4.0/


Introduction 
  
Wearable biosensors and smartphone applications can be used by individuals in 
free-living conditions to measure multiple physiological variables, including glucose 
levels, food consumption, physical and heart activity. In contrast to traditional lab 
measurements taken at a single time point, the time series data provided by 
wearables can reveal the dynamic changes of physiological variables in response to 
external perturbations and as a function of the time of day. Wearable data has the 
potential to create a more dynamical systems view of health status1, but one of the 
major challenges of personalised medicine will be how to extract the most robust and 
physiologically meaningful information from these complex time series data. 
  
Glucose regulation is a prime example of a dynamic and complex physiological 
system, as the body is confronted with irregular inputs (i.e. food intake, especially of 
carbohydrates) and glucose uptake by organs (e.g. muscles, liver, heart). As such, 
glycaemic regulation employs a range of homeostatic mechanisms to avoid both low 
(hypoglycaemic) or high (hyperglycaemic) levels of glucose2. After meal 
consumption, increased insulin secretion by pancreatic beta cells acts to decrease 
glucose levels by promoting the utilisation of glucose and inhibiting endogenous 
production, but this glucose-insulin negative feedback loop can become defective in 
diabetes mellitus through either insulin resistance or beta cell dysfunction3. Long-
term chronic hyperglycaemia in diabetes mellitus can lead to macrovascular 
(atherosclerosis and cardiovascular disease) and microvascular (neuropathy, 
nephropathy, retinopathy) complications4, and glucose levels show a non-linear and 
modest association with vascular diseases even in populations without diabetes5–7. 
  
As glucose homeostasis is inherently dynamic and glucose levels fluctuate 
throughout the day, continuous glucose monitors (CGMs) have gained popularity as 
they provide deeper insights into glucose regulation. CGMs measure glucose in 
interstitial fluid continuously for up to 2 weeks with satisfactory clinical accuracy 
compared to reference capillary blood glucose values8, and standardised CGM-
derived metrics such as the coefficient of variation (CV, the standard deviation 
divided by the mean) and the time-in-range (the fraction of time spent within the 
desired range of 3.9-10.0 mmol/L) have been adopted in clinical practice to assess 
glycaemic control within diabetic patients9–11. At a more fine-grained level, CGMs 
have been combined with smartphone records of ingestion events to quantify 
postprandial (post-meal) glycaemic responses (PPGR) in free-living conditions, 
where the PPGR is often defined as the area under the glucose curve for the two 
hours following a recorded ingestion event12–14. Machine learning predictions of 
PPGRs using multiple explanatory variables (including blood parameters, dietary 
habits, anthropometrics, physical activity, and gut microbiota) correlate with the 
measured PPGRs better than carbohydrate-only predictions12, showing the potential 
of wearables to create more personalised nutrition plans. 
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None-the-less, neither the standardised CGM metrics nor the PPGR approach can 
explain the complete glucose time series and its fluctuations over the 24-hour clock. 
Physiological processes in humans follow 24-hour cycles, including blood hormone 
levels, blood pressure, body temperature, and sleep15–17. Energy metabolism is also 
subject to circadian control via both the endocrine system and direct regulation of 
metabolites18–23, and glucose spikes following oral glucose tests are more severe in 
the evening than the morning24. A pre-breakfast rise in glucose levels, termed the 
“dawn phenomenon”, has been observed since the early 1980s25,26, but the 
amplitude and phase of circadian rhythms in baseline glucose levels has thus far not 
been well described at an individual level. Describing the relative contribution of the 
circadian clock to the glucose time series would be particularly helpful for the 
interpretation of the standard 24-hour summary CGM report, which is often used in 
discussions with patients to identify patterns of low and high glucose values27.  
  
In addition to CGMs, wearables also allow the measurement of heart activity either 
optically using photoplethysmography or via electrical signals with 
electrocardiography. In addition to heart rate (HR), the intervals between each heart 
beats (interbeat interval) can be used to quantify the heart rate variability (HRV) 
through a variety of metrics28, including the root mean square of successive 
differences (RMSSD) between successive heart beats. HR receives inputs from both 
the sympathetic nervous system (SNS) and parasympathetic nervous system (PNS), 
whereas RMSSD is more related to the PNS via vagal nerve activity29. The SNS and 
PNS are sometimes simplistically referred to the “flight or fight'' or “rest and digest” 
branches of the autonomic nervous system and control a diverse range of functions 
in the body30. Plasma glucose levels are negatively associated with HRV31,32, and a 
reduction in HRV has been shown to predict the development of autonomic 
neuropathy before symptom onset amongst diabetic patients33. Both HR and HRV 
are modulated by physical activity, which can now be conveniently measured with a 
triaxial accelerometer often integrated in wearables. Analogously to meals providing 
perturbations to the glucose system, physical activity acts as a perturbation to the 
SNS and PNS systems, and the simultaneous measurement of physical activity, HR 
and HRV could be used to assess the sensitivity of the autonomic nervous system to 
physical activity as an external stressor. 
  
In this study, we use multiple wearable sensors to measure glucose levels, HR and 
HRV in individuals in free-living conditions, in order to quantify for each individual the 
role of external perturbations (such as ingestion events and physical activity) and 
baseline circadian rhythms. To achieve this, we build a minimal dynamic model 
(Supplementary Fig.1) that considers multi-signal interactions, 24-hour rhythms and 
random fluctuations and infer the parameters for each individual within a Bayesian 
framework. We first combine the ingestion events recorded with a smartphone app 
with the glucose time series and show that individuals with a slow response half-life 
(i.e. a dynamic property) also have the largest postprandial glucose responses. The 
circadian rhythms in baseline glucose levels are highly personalised in terms of 
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amplitude and phase. We then analyse physical activity, HR and HRV as a coupled 
dynamical system and find that the combination of physical activity and circadian 
baseline rhythms well predict HR for all participants. The physical activity, HR and 
circadian components explain the vast majority of variance in RMSSD (a proxy for 
PNS) for some participants, but the ability to exploit the multi-signal coupling was 
much weaker for others. Finally, the integration of the physical and heart activity 
explains additional glycaemic variability for some individuals. While our study 
assessed cross-sectional differences between individuals, future studies will be able 
to re-use the framework to describe subject-specific longitudinal changes over time 
in response to interventions and to metabolic diseases. 
 
Results 
  
Measuring multivariable physiological time series in free-living conditions 
  
To quantify the personalised dynamics of individuals in free-living conditions, we 
measured ingestion events, glucose levels, physical activity, HR and HRV for 25 
participants over a two-week period. Participants (16 males, 9 females) were young 
(mean age 33.0 ± SD 11.0), had normal weight (mean BMI 22.7 ± 2.8 kg/m2, 1 
person with overweight and 1 person with obesity) and a normal blood pressure 
(systolic 117.6 ± 11.4 mmHg, diastolic 75.3 ± 7.9 mmHg). Participants were asked to 
record all food and drink consumption and add a manual free text annotation of the 
content with the smartphone application MyCircadianClock34. Each ingestion event 
was automatically timestamped by the app. The adherence (defined as at least 2 
meals separated by at least 5 hours in a given day35) was above 83% for all 
participants (Supplementary Table 1). Participants were also asked to log physical 
exercise using the app. 
  
We measured glucose levels continuously using the Abbott FreeStyle Libre Pro 
CGM device, which records interstitial glucose levels every 15 minutes over a two-
week period. As the device is blinded, participants were unable to access their 
glucose data during the study period thus avoiding feedback on their eating 
behaviour. Five participants wore two sensors (on different arms), with the aim of 
validating that parameters estimated from the model were consistent between the 
two sensors (noted ID .A and .B in the figures below). We often saw long-term trends 
within the time series glucose data, which could be related to sensor drift or a slow-
changing biological variable of unknown origin. To pre-process the glucose data, we 
removed such long-term trends with a non-parametric regression model with a time-
scale of two days (see Methods). Physical activity, HR and HRV were measured for 
each participant over the two-week study period using the CamNTech ActiHeart 
device, and the physical and heart activity data was also blinded to participants 
during the study. 
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Multi-wearable time series data reveal complex dynamical responses as a function of 
external inputs and time of day 
  
As an exploratory data visualisation, we superposed the recorded days of glucose 
data based on time of day and found strong inter-individual heterogeneity in the 
mean 24-hour pattern, with the highest mean glucose level occurring in the morning, 
afternoon or evening depending on the individual (Fig.1a, all participants shown in 
Supplementary Fig.2). These unique 24-hour trends could be caused by either food 
or drink ingestion (i.e. external perturbations) and/or an underlying circadian baseline 
rhythm, and this motivated the inclusion of both ingestion events and circadian 
rhythms in the model of glucose dynamics as separate components with learnable 
parameters. 
  
Further exploratory analysis of the multiple wearable signals showed rich interactions 
between the five measured variables (i.e. meals, glucose, activity, HR and HRV). As 
expected, glucose levels often rose following ingestion events, and for some of the 
individuals, recorded meals seemed to lead to large, predictable peaks in glucose 
(Fig.1b, ID 14 and 23), while for others this relationship appeared to be more 
complex, with small postprandial glucose spikes that were barely larger than the 
glucose fluctuations between meals (Fig.1b, ID 06). Compared to CGM analysis 
methods that focus exclusively on PPGRs, our goal was to dynamically model the 
entire glucose time series over 2 weeks, including the fluctuating glucose levels 
during periods between ingestion events. 
 
Visual inspection of the physical and heart activity data showed that spikes in 
physical activity typically coincided with an increased HR and HRV (as measured 
with RMSSD-1) (Fig.1c-d). By creating a joint dynamical model of the three signals 
(physical activity, HR and HRV), we aimed to uncover the inter-individual 
heterogeneity in response dynamics, the underlying rhythms, as well as the coupling 
between the multiple signals. 
  
Finally, we observed spikes in glucose levels following physical activity for some 
individuals (Fig.1b, ID 23), which could be caused by the release of glucose from the 
liver via glucagon or the effect of adrenaline. However, to establish more firmly 
whether physical and heart activity signals help explain glucose variation, we  
developed a dynamical model to formally assess to which extent the total glucose 
signal across the two-week study period is predictable by the combined meal, 
physical, HR and HRV data (Supplementary Fig.1). 
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Slow glucose dynamics is associated with large postprandial glucose spikes 
  
We will first construct a mathematical model of glucose dynamics that incorporates 
food and drink ingestion timestamped events, circadian rhythms in baseline glucose 
levels and random fluctuations in glucose levels (we will later add the physical and 
heart activity variables). Following from the visual data exploration (Fig.1) and 
physiological knowledge, we built a minimal dynamical model that included the 
following four features: i) the ability to produce a continuous postprandial glucose 
response following an ingestion event, ii) negative feedback (due to the regulating 
action of insulin, Supplementary Fig.1), iii) a random component that captures the 
glucose fluctuations between meals, iv) a circadian baseline rhythm (discussed in 
next section). 
 
We model the glucose dynamics using a negative feedback model (see Methods), 
where ingestion events act to perturb glucose to higher levels. After the ingestion 
causes an increase, the glucose levels return to their steady-state values (i.e. 
reflecting homeostasis), but the decay kinetics and precise shape of the response 
will depend on the individual parameters of the model. The glucose dynamics is also 
subjected to random perturbations to account for fluctuations in the data, meaning 
that the glucose time series data can show noisy deviations from the idealised, 
deterministic meal response. 
 
The glucose dynamics model can then be summarised with three parameters 
controlling the individual-specific response to a meal perturbation (or random 
fluctuation), namely a half-life reflecting the time taken for glucose to return to 
baseline levels, the mean increase in glucose levels caused by meal consumption 
(referred to as the average meal height) and a damping coefficient specifying 
whether the response profile is akin to an overdamped (a rapid glucose increases 
followed by a monotonous slower decay i.e. non-dipping) or an underdamped 
(leading to a slower initial increase followed by decay and overshoot, i.e. dipping) 
response. For each participant, the entire glucose time-series is probabilistically 
matched to the model using a Gaussian state space model (a.k.a. a Kalman filter) 
and we infer each of the model parameters using Markov Chain Monte Carlo 
(MCMC) sampling within a Bayesian framework that yields uncertainty estimates for 
each parameter (Methods and Supplementary Information). We first verified model 
performance by assessing the correlation coefficient between the fitted meal 
response function and the data (Fig. 2a). The correlation coefficient generally ranged 
from 0.5-0.8 but was particularly low for participant ID 04. Visual inspection of this 
participant’s raw data showed large glucose spikes following physical activity, which 
we address at a later stage of the modelling. While all model parameters are shown 
in Supplementary Fig.3, here we focus on the three summary metrics of the glucose 
dynamics. 
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Response half-lives ranged from 1h to 2.2h (Fig.2b) and average meal response 
heights ranged from 0.5 mmol/L to 1.5 mmol/L (Fig.2c). Across participants we found 
a positive relationship between response half-lives and average meal heights, with 
slower glucose response half-lives associated with larger postprandial glucose 
spikes (Fig.2d). This suggested that postprandial glucose control (i.e. the size of 
glucose spikes following meals) depends on glucose clearance time, which might be 
determined physiologically by insulin sensitivity or beta cell function (Discussion). 
 
The damping coefficients describing the shapes of glucose responses were 
clustered around 0 across all participants (Fig.2e), where values of 0 represent 
“critical” damping at the border between overdamped (non-dipping profiles, damping 
coefficient >0) and underdamped (profiles with a dip, damping coefficient <0). 
Interestingly, glucose responses were proposed to be critically damped in an early 
glucose model36, which would be consistent with our finding that the inferred values 
are scattered around zero. However, subject-to-subject variability is clearly found, 
with participant ID 14 showing a clear underdamped glucose response compared to 
the critically damped response in ID 23 (Fig.2f-h). While the fitted model that uses 
meal responses and circadian time (orange) is a smooth function that shows 
deviations from the glucose data (blue, Fig.2g-h), the full model that also adds 
random fluctuations produces glucose traces that closely resemble the glucose data 
(Supplementary Fig. 4). 
 
We used linear regression to quantify the relationships between the glucose model 
parameters and the glucose coefficient of variation (CV) derived from the glucose 
data, which is a metric of glycaemic control used in the clinical settings9,11. We found 
statistically significant relationships with both the response half-lives (p=0.03) and 
average meal heights (p=0.01) (R2 using both variables = 0.63). On the other hand, 
the damping coefficient was not significantly associated with glucose CV, but the 
shape of the glucose response might otherwise play a role in other aspects of 
glucose dynamics such as overshooting and hunger37. Our results highlight that the 
glucose response half-life is playing a significant role in glycaemic control and may 
be an interesting parameter to estimate for both fundamental research and clinical 
purposes. 
 
Circadian rhythms in baseline glucose levels show large inter-individual variability 
 
In addition to the input from ingestion events, the glucose model also allows for an 
underlying circadian rhythm in glucose levels described with three parameters: a 
baseline level that specifies the glucose at the trough of the oscillation, an amplitude 
parameter denoting the difference between the trough and peak of the oscillation, 
and a parameter that sets the peak time of the oscillation. 
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The amplitudes of underlying circadian glucose rhythms were highly variable 
between participants (Fig. 3a), being virtually null for some participants while 
exceeding 1 mmol/L for others (Fig. 3b, ID 03 and 07, respectively). The association 
between the circadian baseline amplitude and glucose CV was not statistically 
significant, possibly due to the fact that the contribution of meals dominates in terms 
of explained glycaemic variability (Fig. 3e), and individuals with the largest amplitude 
circadian oscillations could still maintain low glucose CV. 
 
The confidence intervals for the peak times of the circadian oscillations showed large 
differences between participants, with tight confidence intervals for participants with 
large amplitudes and wide intervals for participants with weaker amplitudes (Fig. 3c). 
This relationship is probably caused by a low signal-to-noise ratio and suggests that 
the circadian peak time cannot be reliably inferred for participants with a low 
circadian amplitude. While the peak times of the circadian underlying trend typically 
fell in the mid-afternoon, there were several notable exceptions. For example, 
participant ID 20 had a phase at 10:00 while it occurred much later for participant ID 
17, falling at 20:00 (Fig. 3d). 
 
Overall, the underlying circadian glucose rhythm plays an important role in glucose 
dynamics and could explain >15% of glycaemic variability in addition to the meal 
model for participants with large amplitudes (Fig. 3e). Given that the study was 
observational, we do not know whether it would be possible to modify either the peak 
time or amplitude of this rhythm, but these personalised parameters should prove to 
be useful in applications such as personalised meal timing (Discussion). 
 
The multi-signal coupling between physical and heart activity varies between 
individuals 
 
For the physical and heart activity data, we first considered the impact of physical 
activity and underlying circadian rhythms on heart rate (HR, Supplementary Fig.1, all 
inferred model parameters shown in Supplementary Fig. 5). In a similar manner to 
ingestion events acting as external inputs into glucose levels, we modelled physical 
activity as a positive input into HR (i.e. activity acts to increase HR).  
 
The combination of circadian rhythms and of physical activity input was consistently 
predictive for HR, explaining 40-65% of HR variance across all participants (Fig.4a). 
Fig. 4b-c shows an example of the predicted HR (orange) for two different 
participants using both the underlying circadian rhythm (black) and integrating the 
physical activity (green). While the circadian contribution to the explained HR 
variance differs for these two participants (Fig.4 a), the correlation between the 
predicted and observed HR was around 0.8 for both participants, demonstrating that 
time of day and activity state are necessary for optimal personalised modelling of 
HR. 
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The ability to predict HRV was, in contrast, much more heterogeneous between 
participants. HR and HRV (assessed with RMSSD-1) share common physiological 
inputs, where HR is controlled by the PNS and SNS while RMSSD is predominantly 
influenced by the PNS28. The shared inputs may cause correlations between the HR 
and HRV time series, which we modelled by including a correlation parameter 
between HR and HRV fluctuations (Methods). In addition to inputs from physical 
activity and the underlying circadian rhythm, we evaluated whether the correlations 
between HR and HRV could be exploited by using HR to predict HRV (which is 
technically more difficult to measure than HR). 
 
The ability to predict HRV varied significantly across individuals with (total variance 
explained between 20-80%, Fig. 4d). This notable difference in predictability is 
illustrated in Fig. 4d, showing a favourable prediction for participant ID 25 (R = 0.89) 
compared to ID 14 (R = 0.44). For ID 25, the HR signal explained 40% of the 
variance compared to using just activity and circadian rhythm, but for ID 14 the 
addition of HR makes no difference to HRV prediction (Fig. 4e-f). Given that RMSSD 
is considered a proxy for PNS (via the vagus nerve) activity, the strong relationship 
between HR and RMSSD for ID 25 suggests that HR is more tightly coupled to PNS 
activity than for ID 14. Of note, ID 14 was previously diagnosed with diabetes but 
was currently treated only with lifestyle measures (and not pharmacological 
treatment) and ANS dysfunction is a known complication of diabetes 38. 
 
Integrating physical and heart activity signals helps explain glycaemic dynamics for 
some individuals 
 
As a final modelling step, we integrated the physical and heart activity signals with 
the glucose-meals model to quantify how much of the glucose dynamics can be 
accounted for with physical activity, HR and HRV (Supplementary Fig.1). To simplify 
the model inference problem, the parameters describing the physical and heart 
activity model in isolation were locked to their posterior mean values, and we added 
three new parameters that describe the input of physical activity, HR and HRV on 
glucose levels, respectively (Supplementary Fig.1). These influences were left 
unconstrained and could have a positive, negative or zero effect on glucose levels. 
 
Fitting the parameters to the data revealed that the effect of physical activity on 
glucose (parameter C5,1) was generally negative, the effect of HR (parameter C5,2)  
was generally positive and the effect of HRV (parameter C5,3) was typically neutral 
across all participants (Fig.5 a-c). Given that the raw data showed glucose spikes 
during some periods of exercise (Fig.1 d), the negative influence of physical activity 
on glucose (C5,1) was not fully expected. To test the robustness of this prediction, we 
therefore refitted the data using three simpler models, where there was only one 
input at a time from the physical and heart activity signals (Supplementary Fig.6). 
The influence of physical activity on glucose remained negative even when it was the 
sole Actiheart input into glucose levels, further suggesting that the overall effect of 
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physical activity is to deplete glucose levels. Meanwhile, as HR acts to increase 
glucose levels (C5,2), increased HR during intense exercise can still lead to a net 
increase in predicted glucose levels. Overall, the total amount of additional explained 
variance contributed by the Actiheart signals was modest for most participants but 
contributed up to 15% in certain individuals (Fig. 5b).  
 
Amongst the participants whose glucose dynamics benefit most from the physical 
and heart activity signals, the mode of action also differed. For participant ID 04, the 
inclusion of the physical and heart activity signals allowed for at least partial 
prediction of exercise-induced glucose spikes that were otherwise absent from the 
glucose model that contained meals only (Fig. 5c). For participant ID 08, which also 
showed a benefit of including physical and heart activity data, there were no notable 
isolated glucose spikes that were predicted by the physical and heart activity data. 
Instead, the linear combination of the physical and heart activity variables (weighted 
according to the inferred coefficients C5,1-C5,3) appeared to track the glucose levels 
(Fig. 5d), and the cross-correlation profile showed a maximum correlation between 
the two signals with no time delay (Fig. 5e). This suggests that for this type of action, 
the physical and heart activity signals make a more diffuse contribution to the 
prediction of glucose levels that is more related to baseline trends spread over the 
time series. 
 
Discussion 
  
A new generation of wearable biosensors can measure multiple physiological 
variables with high temporal resolution over multiple days. Here we developed a 
stochastic dynamical model combined with Bayesian learning to capture the full time 
series for each participant and provide interpretable personalised parameters that 
reflect responses to external perturbations and circadian rhythms. 
 
Combining the ingestion events timestamped by the smartphone app with the 
glucose time series, we found that slow glucose dynamics are associated with large 
postprandial glucose spikes. Mechanistically, slow glucose disposal could relate with 
the quantity of ingested carbohydrates, the rate of gut absorption39, its metabolism40, 
suppression of endogenous glucose production41, insulin resistance or beta cell 
function3. Moreover, we also detected highly personalised circadian rhythms in the 
underlying glucose levels. While diurnal rhythms in beta cell function and insulin 
sensitivity have been shown at an average level within healthy populations42, it was 
unexpected to see such large differences in circadian glucose amplitude and phase 
between individuals. Future studies will determine whether this circadian glucose 
trendline is predictive of responses to specific meal times, e.g. in time-restricted 
eating, an intervention which restricts eating to a specific window within the 24-hour 
clock43.  
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Many different models of glucose dynamics have been proposed over the last 
several decades44–46, ranging from minimal models47 to more detailed simulators with 
dozens of parameters48. There are many possible extensions that could be added to 
the glucose model. For simplicity and to ease identifiability, we assumed that the 
shape of each meal response was conserved within each individual (but variable 
across individuals) while the height was learnt for each unique ingestion event. 
Given that the rate of meal absorption likely depends on meal constituents such as 
fat, fibre and protein content14, the response shape of each meal could indeed vary, 
although the addition of meal-specific response shapes would effectively double the 
number of meal-related parameters. Our two-dimensional linear model is admittedly 
a coarse-grained approximation of the full glucose metabolism system, although 
linear models with more variables (representing glucose and insulin in different 
compartments) have been deployed in artificial pancreas devices and are at the 
forefront of computer-assisted glucose management in diabetes49,50. More complex 
nonlinear dependencies and long-range memory could be captured for example with 
flexible neural networks51–54. In contrast to the artificial pancreas, where highly 
accurate short-range forecasting is desirable, our main goal was to extract model-
based summary metrics for distilled and multi-metric diagnostics. 
 
Recent efforts have attempted to utilise additional multimodal wearable signals to 
either improve glucose forecasting or provide more accessible proxies for glucose 
without using CGMs 55–57. The physical and heart activity data explained up to 15% 
of glucose variability in our study. From a clinical perspective, the incorporation of 
these additional signals might help both patients and clinicians understand glucose 
dynamics that seem otherwise disconnected from meal consumption (e.g. Fig. 5e). A 
potential limitation of our approach is again the use of a relatively simple linear 
model, which may not be able to capture more complex phenomena such as 
eventual decreases in hepatic glucose production during prolonged exercise58. 
However, a recent study based on deep learning found the addition of wristband 
activity data improved the root mean square error of 60-minute glucose forecasting 
by 2.25 mg/dL from a baseline of 35.3 mg/dL, and hence more substantial 
improvements in glucose predictions may prove to be a difficult challenge even with 
more flexible models59. 
 
Within healthcare, there is increasing interest in the use of digital twins60,61 that 
integrate multiple types of clinical data to devise personalised treatments and 
perform risk modelling. As our approach contains interpretable parameters, it would 
also be possible to explore hypothetical situations by altering parameters (such as 
circadian amplitude or glucose response time) and simulating from the model. Our 
data is from a single two-week period, but with multiple measurement periods it 
would be possible to perform significance testing to detect longitudinal parameter 
changes over time and across clinical interventions. On a practical level, one of the 
main advantages of health measurement with wearable biosensors is the relative 
rapidity of the experimental pipeline: in our study it took a team of two researchers 
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two days to complete questionnaires and set up devices for all 25 participants 
simultaneously. Overall, capturing circadian rhythms and interactions between 
different physiological subsystems with a multi-wearable approach offers a dynamic 
and personalised description of cardiometabolic health states. 
 
Methods 
 
Devices and experimental design 
 
The Multi-Sensor Study (MSS) was approved by the local ethics committee (CER-
VD, BASEC no. 2019-02245) and each participant signed a written informed 
consent. Recruitment was performed via posters at the École polytechnique fédérale 
de Lausanne (EPFL), Lausanne University Hospital (CHUV) and the University of 
Lausanne (UNIL) and via presentations given in the EPFL School of Life Sciences. 
As part of our recruitment strategy we actively attempted to recruit motivated 
participants that felt highly confident of recording all of their data for two weeks.  
 
We included adults aged ≥ 18 years, with a smartphone compatible with the 
MyCircadianClock app (iOS or Android systems34) and able to take pictures of 
food/drinks, and who self-identified as disciplined enough and motivated to record all 
data for two weeks. The exclusion criteria were major illness/fever, surgery over the 
previous month, eating disorder, major mental illness, unable to give informed 
consent, taking medicines including paracetamol, aspirin or vitamin C supplements, 
enrolled in another interventional clinical trial (medication, medical device), shift work 
or travel to a different time zone before and during the study. 
 
At baseline, we collected data on demographics, medical history, physical activity 
(short form of International Physical Activity Questionnaire, IPAQ-SF62, chronotype 
(The Munich ChronoType Questionnaire63, sleeping habits (Pittsburgh Sleep Quality 
Index64 and eating timing (with a custom questionnaire on eating habits during work 
and free days).  
 
For each participant, we collected data for two weeks using the following devices: 1) 
Timestamps of food/drinks and text annotations collected with the smartphone 
application (app) MyCircadianClock34; 2) Continuous glucose monitoring (CGM) 
using the FreeStyle Libre Pro device (Abbott); 3) Physical activity, heart rate (HR) 
and heart rate variability (HRV using RMSSD–1) using the ActiHeart device 
(CamNTech). While the Actiheart device is waterproof, participants were permitted to 
briefly remove the device during showers and baths. Information on device technical 
failure and handling of missing data and data quality is included in the 
Supplementary Information. 
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Pre-processing CGM data 
 
We used nonparametric regression with Gaussian processes (GPs) to remove the 
long-term trends observed in the data. After mean-centring the data, we fitted a GP 

with a squared exponential kernel 𝐾SE(𝑡, 𝑡#) = 𝛼exp +− $%&%!$
"

'("
-	and a length scale l=48 

hours using GPflow.  
 
Data analysis 
 
See the Supplementary Information for detailed computational methods which are 
summarised here. We use a linear Gaussian state space model (otherwise known as 
a Kalman filter) to analyse the time series generated by the wearable devices, which 
was implemented using the ‘LinearGaussianStateSpaceModel’ distribution within 
TensorFlow Probability65. We will first describe the general data analysis framework 
before providing details on each of the three models used. For each model we define 
a dynamic model that describes the time evolution of the underlying physiological 
variables and a measurement model that incorporates measurement noise. For the 
dynamic model, we use a system of stochastic differential equations (SDEs) 
 

dx(t) = Wx(t)dt + dβ, 
 
where 𝑊 is a matrix describing the interactions between the variables and β 
is a brownian noise term with covariance matrix 𝑄. The specific forms of 𝑊 and 𝑄 
are unique for each model and will be described below. To keep the model exact 
while benefiting from the generic framework of Gaussian state space models (a.k.a. 
as Kalman filters), we then convert this system of continuous-time SDEs into a 
model where time is discrete (see Supplementary Information for details). 
 

x(t)) = F)&*x(t)&*) + N(0, Σ)&*), 
 
where F) is the state-transition model and 𝑄 is the covariance of the process noise. 
The measurement model describes the observation process and assumes that 
variables are observed with normally distributed measurement noise 
 

y(t)) = H)x(t)) + N(m), R)), 
 

where 𝐻+ is the observation matrix and 𝑚+ and 𝑅+ represents the mean and 
covariance of the observation noise, respectively. The goal is to use the wearable 
time series data 𝑦*:- to estimate parameters (denoted by θ) for each participant. 
Within a Bayesian inference framework, the parameters of the model can be 
estimated from the data as follows 
 

p( θ ∣∣ y*:. ) ∝ p(θ)p( y) ∣∣ θ ), 
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where 𝑝(θ) is the prior distribution of parameters and 𝑝( 𝑦*:- ∣∣ θ )	is the likelihood of 
observing the temporal data 𝑦*:- given the set of parameters θ. Considering the time 
series sequence of data, the likelihood term for a given set of parameters θ can be 
expressed as  

p( y*:. ∣∣ θ ) = p( y* ∣∣ θ )Fp(y) ∣∣ y*:)&*, θ )
.

)/'

, 

and the sequence of distributions 𝑝( 𝑦+ ∣∣ 𝑦*:+&*, θ ) are calculated within a Kalman 
filtering framework. Once the likelihood and priors are specified for each model, we 
used the Hamiltonian Monte Carlo sampler provided within TensorFlow Probability to 
sample model parameters from the posterior distribution using 4 different chains with 
10,000 samples each. See Supplementary Information for further details on MCMC 
scheme. 
 
Model 1: glucose model 
 
We model glucose dynamics (Supplementary Fig.1) with a two-dimensional system 
of SDEs, where the second variable xGLUC2 represents the glucose levels and the first 
variable xGLUC1 represents an unobserved latent variable that allows negative 
feedback within the system. In matrix form, the model is expressed as follows 

	
 

and where the coefficients 𝐴67 are constrained to be positive. The covariance of the 
brownian noise term β is given by 𝑄. 
 
We incorporate meal events (that are recorded at time 𝑡8) as producing a response 
function r9(t) (see Supplementary Information for precise functional form), and then 
the total meal function is the sum over all individual meal responses 

r(t) =Ir9(t)
:

 

We also add an underlying circadian rhythm in glucose levels using a sinusoidal 
function 

𝑔(𝑡) = 𝐴;,GLUC + 𝐴*,GLUC(1 + cos(ω𝑡 − ϕGLUC))/2 
 
where 𝐴;,GLUC is the baseline level, 𝐴*,GLUC is the amplitude, ω is the frequency (fixed 
at 2π/24), and ϕGLUC is the peak time of the maximum. The observation model for 
the glucose model is then as follows 
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Model 2 : physical and heart activity model 
 
We model glucose dynamics (Supplementary Fig.1) with a with a three-dimensional 
system of SDEs, where the first variable 𝑥ACT represents physical activity, the second 
variable 𝑥HR represents heart rate and the third variable 𝑥HRV represents heart rate 
variability, where we use the inverse of the root mean square of successive 
differences between normal heartbeats (RMSSD-1). We normalise all three variables 
by their respective standard deviations before inferring parameters.  In matrix form, 
the model is expressed as follows 

 
 
and where the coefficients 𝐶67 are constrained to be positive and the covariance of 
the brownian noise term β is given by 𝑄. The observation model is then given by  
 

 
 
where 𝑔ACT(𝑡), 𝑔HR(𝑡) and  𝑔HRV(𝑡) are circadian oscillatory functions (Supplementary 
Information). 
 
Model 3: combined model 
 
The final model (Supplementary Fig.1) connects the Actiheart signals with glucose 
dynamics by stitching the previous glucose and Actiheart models together. The 
glucose and Actiheart models are otherwise left unchanged, but there is an 
introduction of three new parameters 𝐶B*, 𝐶B' and 𝐶BC that describe the effect of 
physical activity, HR and HRV on glucose levels. These three parameters are left 
unconstrained and can take either positive or negative values. 
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The observation model is then given by 
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Figure legends 
 
Fig.1. Exploratory analysis of wearable signals: examples of 24-hour trends and 
responses to external stressors. (a) Continuous glucose monitoring (CGM) data: 
superposition of all recorded days of data shown on the same 24-hour scale for three 
different participants (see related Supplementary Fig.2 for all participants). Black: 
average over all days; coloured lines: data for individual days; time axis: wall clock 
time. (b) Selected day examples of CGM glucose levels alongside recorded 
ingestion events for three participants (same individuals shown in panels B-D). Blue: 
glucose levels; green shade: recorded activity events; time axis: wall clock time; 
vertical dotted lines: ingestion events. (c) Selected day examples of physical activity 
measured with the Actiheart device. Green: physical activity; green shade: recorded 
activity events; time axis, clock time. (d) Selected day examples of HR and HRV 
measured with the Actiheart device. Green shade: recorded activity events; purple: 
heart rate variability (HRV) (quantified with RMSSD-1 in ms-1); red: heart rate (HR) in 
beats per min. (bpm); time axis: wall clock time. 
 
Fig. 2. Characterising participant-specific post-meal glycaemic responses. (a) 
Posterior distributions (shown as boxplots) of the correlation between the inferred 
model (including meals and circadian time) and the glucose CGM data for each 
participant. The boxplots represent the 25th, median (50th) and 75th percentiles of 
the posterior distribution and the whiskers represent the 5th and 95th percentiles. (b) 
The inferred glucose response half-life for each participant, defined as the model-
predicted time it would take for glucose levels to fall to 0.5 mmol/L following a peak 
of 1 mmol/L. (c) The average meal glucose spike height calculated as the mean 
height over all meals consumed during the experiment. (d) The average meal height 
as a function of the glucose meal response half-life. Points represent the mean 
posterior values for each participant. (e) Damping coefficients (see Methods). (f) 
Average meal response profiles using the posterior mean parameter values. (g-h) 
Examples comparing the CGM data (blue) with the model prediction incorporating 
circadian dynamics (black) plus meal consumption (orange) for two participants with 
overdamped and underdamped dynamics, respectively. The timestamps of meals 
are shown as black dashed lines. Participant order is the same in Fig.2 and 3. 
 
Fig.3. Amplitudes and peak times of circadian baseline levels of glucose are highly 
heterogeneous between participants. (a) The amplitude of the 24-hour sinusoidal 
circadian rhythm in glucose levels after model fitting to the CGM data for all 
participants. The boxes represent the 25th, median (50th) and 75th percentiles of the 
posterior distribution and the whiskers represent the 5th and 95th percentiles. (b) 
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Example of participants with a high (ID 07) and low (ID 03) amplitude glucose 
circadian rhythm. Blue, CGM data; black, fitted model of circadian baseline (using 
mean posterior parameter values). (c) The circadian phase of the glucose circadian 
rhythm across all participants. (d) Examples showing two participants with large 
phase difference in underlying glucose rhythm (ID 20 peak phase: 10:00, ID 17 peak 
phase: 20:00). (e) The explained variance in glucose levels using just the meal 
component of the model (light orange) compared with the inclusion of the circadian 
rhythm (dark orange). Participant order is the same in Fig.2 and 3. 
 
Fig. 4. HRV predictions using multi-signal inputs and circadian rhythms are more 
heterogeneous than for HR. (a) the amount of variance of the HR signal explained by 
circadian rhythms (light orange) and a combined model with circadian rhythms and 
physical activity (dark orange). (b,c) Examples comparing HR data with model 
predictions for two participants. Red: HR data; black: baseline circadian rhythm; 
green: physical activity (shown on normalised scale where 1 represents the 
maximum value); orange: model prediction with circadian rhythm and integrating 
activity. (d) the amount of variance of the HRV (RMSSD–1) signal explained by 
circadian rhythms (light orange), a combined model with circadian rhythms and 
physical activity (medium orange) and a combined model with circadian rhythms, 
physical activity and HR (dark orange). (e,f) Examples comparing HRV data with 
model predictions for two participants. Red: HRV data; black: baseline circadian 
rhythm; green: physical activity (shown on normalised scale where 1 represents the 
maximum value); orange: model prediction using circadian rhythms, physical activity 
and HR. 
 
Fig. 5. Adding physical activity, HR and HRV into the glucose dynamics model can 
help explain glucose dynamics. (a,b,c) Posterior distributions (shown as boxplots) of 
the model coefficients C5,1, C5,2, C5,3 across all participants, which correspond to the 
influence on glucose of physical activity, HR and HRV, respectively. The boxplots 
represent the 25th, median (50th) and 75th percentiles of the posterior distribution 
and the whiskers represent the 5th and 95th percentiles. (d) A comparison of the 
variance explained in the glucose signal using just the meal and circadian rhythm 
model (light orange) compared to the prediction that also incorporates physical 
activity, HR and HRV (dark orange). (e) Example from ID 06 shows that the physical 
and heart activity data partially explain an exercise-induced glucose spike. Blue: 
glucose data; light orange: prediction using meal and circadian model components; 
dark orange: prediction including meal and circadian model components, physical 
activity, HR and HRV; brown: the weighted sum of the physical activity, HR and HRV 
variables according to the inferred coefficients C5,1, C5,2 and C5,3. The timestamps of 
meals are shown as black dashed lines. (f) Example from ID 08 showing how 
glucose dynamics (blue) track with the weighted sum of the physical activity, HR and 
HRV variables according to the inferred coefficients C5,1, C5,2 and C5,3 (dark brown: 
data only; light brown: using filtered estimations from Model 2 to fill missing Actiheart 
data). The timestamps of meals are shown as black dashed lines. (g) the cross-
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correlation of the glucose (blue in (f)) with the weighted sum of the physical activity, 
HR and HRV variables (brown in (f)) using all recorded data.  
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