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Abstract
A multitude of demographic, health, and genetic factors are associated with the risk of 
developing severe COVID-19 following infection by the SARS-CoV-2. There is a need to 
perform studies across human societies and to investigate the full spectrum of genetic variation 
of the virus. Using data from 869 COVID-19 patients in Bahrain between March 2020 and 
March 2021, we analyzed paired viral sequencing and non-genetic host data to understand host 
and viral determinants of severe COVID-19. We estimated the effects of demographic variables 
specific to the Bahrain population and found that the impact of health factors are largely 
consistent with other populations. To extend beyond the common variants of concern in the 
Spike protein analyzed by previous studies, we used a viral burden approach and detected a 
protective effect of low-frequency missense viral mutations in the RNA-dependent RNA 
polymerase (Pol) gene on disease severity. Our results contribute to the survey of severe 
COVID-19 in diverse populations and highlight the benefits of studying rare viral mutations.
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Introduction
As of April 2022, over 6.1 million deaths have been directly caused by severe coronavirus 
disease (COVID-19) after SARS-CoV2 infection (Ritchie et al. 2020). At the local epidemic 
level, the rate of severe cases is related to a confluence of factors including the circulating viral 
variants, and population characteristics ranging from demographics, to medical risk factors such 
as hypertension, diabetes, and genetics (Angioni et al. 2020, Ioannou et al. 2020, Williamson et 
al. 2020, Beaney et al. 2022, Kousathanas et al. 2022, Nyberg et al. 2022). A minority of studies 
have focused on severe COVID-19 in non-Western populations where mRNA vaccines have 
been less widely available (Booth et al. 2021). The systematic evaluation of demographic, 
medical and viral risk factors for severe COVID-19 in different populations can improve our 
understanding of pathophysiology and inform policy around prevention moving forward. This is 
especially the case as it has recently become evident that existing vaccines do not adequately 
protect against mild infection and have limited ability to interrupt community transmission, 
necessitating a renewed focus on preventing severe COVID as the key outcome of public health 
interventions (Singanayagam et al. 2021). 

Most analyses of viral genetics have focused on whether emerging variants, generally 
characterized by different combinations of Spike protein mutations, impact transmissibility and 
COVID-19 severity (Lin et al. 2021). For instance, the Alpha (B.1.1.7) variant has been 
associated with an increased mortality risk compared to previously circulating variants (Challen 
et al. 2021), while the Omicron (B.1.1.529) variant has been associated with a decreased 
mortality risk compared to the Delta (B.1.617.2) variant (Nyberg et al. 2022). Genome-wide 
association studies can be used to assess the severity-risk of every observed mutation in the 
SARS-CoV-2 genome (Hahn et al. 2021), but such an approach can lack power when the 
majority of  mutations are at low frequencies and higher frequency variants are grouped into 
emerging variants that spread through the population.

To move beyond existing work on common viral variants of concern in the Spike protein and 
their effect on clinical disease severity, we studied viral mutations that occur at lower 
frequencies and in other genes. Recent work has shown that many of the possible SARS-CoV-2 
mutations have negative effects on viral fitness (Morales et al. 2021), and that these effects vary 
by gene (Lythgoe et al. 2021). However these mutations have a yet unknown impact on disease 
severity and COVID-19 outcomes.

Here, we prospectively analyzed data from 869 COVID-19 patients receiving inpatient or 
outpatient care in Bahrain between March 2020 and March 2021. We used paired viral 
sequencing and non-genetic host data to understand host and viral determinants of severe 
COVID-19 in Bahrain. Using multivariable regression and a viral burden approach, we detected 
a protective effect of rare missense viral mutations in the RNA-dependent RNA polymerase 
(Pol) gene, the target of the drug remdesivir, on disease severity. We find that rare mutations in 
Pol lead to a small but statistically significant increase in predictive ability for severe COVID-
19, and that Pol is one of the most strongly constrained genes in the viral genome. Our results 
contribute to and support study of COVID-19 in diverse populations and highlight the benefits of
studying rare viral mutations.
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Results

Patient population 
The median age of patients with COVID-19 was 37 years (IQR 27-51 years), and the majority of 
patients were male (59.5%). The Bahraini population is recognized to be majority male estimated
at 64.7%, attributed to the sizable migrant worker population (The World Bank). The patient 
sample represented all four Bahraini Governates (Table 1). After Bahraini (58.4%), the next most
common patient nationality was South Asian (18.2% spanning India, Bangladesh, Nepal, and Sri 
Lanka) (Table 1). The most commonly observed individual comorbidities were hypertension 
(16.6%), and diabetes (14.3%). A total of 30.2% of the patient sample were identified to have 
another comorbidity (Table 1).

Viral diversity
The earliest SARS-CoV-2 isolates (March-May 2020) belonged to clades 19A, 20A and 20B 
(Fig 1A). The clade composition shifted primarily to 20A and 20B in June 2021. The 20I (Alpha)
clade appeared and rose in frequency in December 2021, coexisting with 20A and 20B for the 
duration of our sample. Numerous other clades were detected at low frequency and may 
represent the occasional unsuccessful importation of viral diversity from other countries. The 
first viral genetic principal component (PC) separated 20I (Alpha) from the remaining isolates 
(Fig 1B). The second partially separated 20A and 20B. Other PCs captured remaining genetic 
variation within clades 20A and 20B, and the seventh PC separated clades 19A and 19B from 
other clades (Fig. S1). 

Host factors influence disease severity
In multivariable regression of host and socioeconomic factors (Table 2), vaccination with 
Sinopharm was found to decrease the odds of severe COVID-19 by 0.14 fold (95% CI=[0.05, 
0.41]), and the odds of severe COVID-19 increased 2.11 fold (95% CI=[1.83, 2.44]) for each 10 
year increment in age. Diabetes and other comorbidities were associated with, respectively, 2.36 
(95% CI=[1.34, 4.15]), and 1.86 (95% CI=[1.01, 3.45]) higher odds of severe disease. Gender 
and sampling date were not significantly associated with severe disease, although the OR point 
estimate for female vs. male gender was <1 (Table 2). We did not observe an increased risk for 
severe disease with hypertension or smoking. Patients from the Muharraq governorate had  
decreased odds of severe disease (OR=0.36, 95% CI=[0.16, 0.79]) compared to the rest of the 
country, and that individuals with a nationality other than Bahraini, or South Asian had increased
odds (OR=2.52, 95% CI=[1.36, 4.64]).

Vaccination impacts the distribution of viral clades

We examined the relationship between vaccination and clade in our patient panel. Vaccination 
with Sinopharm started in Bahrain in November 2020. The COVID-19 clade composition in 
January 2021 has a relatively equal proportion of 20I (Alpha, V1) in previously vaccinated and 
unvaccinated COVID-19 patients. However, in February and March 2021, the proportion of 20I 
(Alpha, V1) isolates increased in vaccinated individuals relative to the unvaccinated to reach a 
ratio of approximately 2:1 (Fig 3). We found a significant association between 20I (Alpha, V1) 
and breakthrough COVID-19 among individuals vaccinated with Sinopharm compared with 
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unvaccinated control COVID-19 patients matched by diagnosis date (OR=8.00, 95%CI=[4.06, 
16.52], p=2E-11).

Viral factors influence disease severity
To study the effect of viral genetics on severity, we assessed the effects of common mutations 
controlling for population structure using the principal components as fixed effects. No common 
mutations were significantly associated with COVID-19 severity at the Bonferroni-corrected 
threshold of 0.001 (Fig 2A). One potential reason for this is that relevant patterns of common 
genetic variation were captured in the clade designations and principal components (Figs 2B and 
2C). We next tested individually the effect of clades or PCs (analyzed separately due to high 
collinearity). Individually both clade 20I (Alpha, V1), and PC1 were associated with increased 
risk of severe COVID-19 with OR 1.85 (95% CI=[0.87, 3.96]), 1.18 (95% CI=[1.0, 1.38]) 
respectively.

We investigated low-frequency mutations and their relationship with COVID-19 severity. We 
first aggregated rare missense and rare synonymous mutations across all genes and found that 
neither score had a strong or significant effect on severity (Fig 4A).  Henceforth to account for 
any overall confounding signal of rare variation, we included synonymous burden scores as a 
covariate in missense analyses (Methods).

We decided to test the hypothesis that rare variants in key genes collectively may result in 
reduced (or altered) COVID-19 severity. We decided to focus on two obvious primary 
candidates: S glycoprotein (Spike) because of its role in stimulating neutralizing immunity and 
RNA-dependent RNA polymerase (Pol) because of its role in remdesivir resistance. There is no 
signal in Spike, but there is a biologically plausible nominally significant signal in Pol. We found
a significant protective effect of rare mutations in the Pol gene (max-freq:10, per-mutation OR= 
0.27 [95% CI 0.08, 0.94, p=0.039]; max-freq:100, per-mutation OR= 0.28 [95%CI 0.084, 0.93, 
p=0.038]), and no significant effect of the rare mutation burden in the Spike gene (max-freq:10, 
per-mutation OR=1.41 [95%CI 0.88, 2.27, p=0.16]; max-freq:100, per-mutation OR= 1.36 
[95%CI 0.88, 2.10, p=0.17]) (Figs 4B and 4C). The association with decreased severity in Pol 
was robust to using either clades or PCs as covariates (Fig. S2).

Motivated by this result, we also tested the remaining genes and found none being nominally 
significant. Thus, the Pol gene is the only gene that harbors rare alleles apparently reducing 
disease severity. We note, however, that this result would not have been genome-wide significant
and reflects our original focus on a biological hypothesis.

Motivated by this result, we then tested burden scores in the remaining 12 genes in the SARS-
CoV-2 genome containing  ≥200 amino acids. None were significantly associated with COVID-
19 severity at the nominal threshold of 0.05 (Fig 4D, Fig S2). Thus, Pol is the only gene that 
harbors rare alleles apparently reducing disease severity. We note, however, that this result 
would not have been genome-wide significant using a Bonferonni correction and reflects our 
original focus on a biological hypothesis.

We also assessed the association of each gene with disease severity using a permutation score in 
which we determined the percentile of gene-specific burden score relative to the distribution of 
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burden scores for randomly chosen mutations at matched frequencies. This was done to ensure 
that it was not somehow the particular combination of variant frequencies driving severity 
associations. Pol burden scores were at the 1.2 and 1.7 percentiles of simulations for maximum 
frequencies of 10 and 100 respectively  (Fig 4B). Spike burden scores were at the 96.6 and 98.7 
percentiles compared to simulations (Fig 4C). We note that as the background distribution of 
mutations was biased towards risk-decreasing effects, and Spike mutations appear relatively risk-
increasing in that context. Missense burden scores in all other genes had percentiles less extreme 
than Pol and Spike (Fig 4E).

Another way to summarize the association between genetic variables and COVID-19 severity is 
by their ability to improve prediction accuracy relative to a model with only host characteristics. 
We quantified the improvement in prediction accuracy by the change in AUC in a leave-one-out 
cross-validation (Methods). We found a modest improvement in severity prediction adding the 
Pol burden score ( AUC=0.008 95%CI=[0.001, 0.017]), no prediction improvement adding  𝚫AUC=0.008 95%CI=[0.001, 0.017]), no prediction improvement adding  
scores for Spike or principal component 1 to the host characteristics model (𝚫AUC=0.008 95%CI=[0.001, 0.017]), no prediction improvement adding  AUC=0.0009, 
95%CI=[-0.003, 0.01]) (Fig. S3).

Signatures of selection on the SARS-CoV-2 genome
SARS-CoV2 genes varied widely in their diversity, ranging from 76.4 missense mutations per kb
for the ORF3a protein to 17.5/kb for Pol (Fig 5D). To compare genes we computed a rank 
percentile sum statistic (RPSS, Methods) which evaluates whether the ranked mutations 
observed in a gene tend to decrease in frequency faster or slower than the rest of the genome. 
This statistic was designed to be less sensitive to the presence of outlier high-frequency and 
potentially positively selected mutations. In addition to having low diversity across the sample, 
the Pol gene (Fig 5A) had the lowest RPSS score (0.061) among genes longer than 200 amino 
acids, and only the Exonuclease (ExoN) and M genes were at lower percentiles in the simulated 
distribution of derived allele burdens. The Spike gene (Fig 5B) had the highest derived allele 
burden percentile (0.999) and the fourth highest RPSS score (0.799). Genes like the 3-C like 
protease (3CL-PRO) fell towards the middle of the distribution of mutation frequencies, and 
might be considered as under typical selection pressure for the SARS-CoV-2 genome (Fig 5C). 
The derived allele burden and RPSS measures of selection were correlated among genes (Fig 
5D).

Discussion

The development of severe COVID-19 is determined by patient demographics and medical risk 
factors in a complex interplay with viral and host genetics. In this study we sought to disentangle
this interplay in the Bahraini population by first using a large dataset enriched for severe 
COVID-19 with available viral sequences and metadata on relevant non-genetic host risk factors.
We reproduced the expected impact of age and comorbidities on COVID-19 severity. However, 
we did not find a significant effect of gender on COVID-19 severity, whereas other studies have 
found that the fatality rates are higher for men than in women (Beaney et al. 2022), risk 
differences by gender have been shown to vary considerably with geography and time, 
suggesting that this interaction is mediated by social rather than biological factors (Danielsen et 
al. 2022) and highlighting the benefits of studying epidemics in different populations
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That we found an increased risk of severe COVID-19 among certain non-citizen residents of 
Bahrain (`Other` category, Table 2), and within one of five governantes (Muharraq) indicates 
some degree of demographic heterogeneity of risk within the Bahraini population. Interestingly, 
the fact that South Asian patients had no detectable increased risk of severe disease, and that 
many South Asians in Bahrain are migrant workers, may mean that correlates of migrant worker 
status were not important determinants of COVID-19 outcomes. This is possibly due to a 
younger age distribution and the general availability of treatment. Overall, because our analysis 
was restricted to the relatively small number of patients for which viral genetic data were 
available, we were underpowered to detect associations with demographic and medical risk 
factors with more subtle effects.

While it was important to assess the impact of non-viral factors, the major goal of this study was 
to investigate the association between viral genetic variation and the risk of severe COVID-19.  
Global genetic surveillance of the SARS-CoV-2 pandemic has demonstrated the emergence of  
competing successive strains that regularly displace one another. During our sampling period this
included the near replacement of the original genotype with clades carrying the D614G mutation 
in the Spike gene (Plante et al. 2021), and then the rise in frequency of the Alpha strain (Walker 
et al. 2021). While these large-scale genetic changes can causally impact disease severity, they 
can also be correlated with different segments of the population becoming infected or with 
changing medical treatment. It takes careful study design to confidently assess the impacts of 
large-scale shifts in viral genetics on host outcomes. 

A previous genome-wide association study (GWAS) of SARS-CoV-2 used a low-dimensional 
representation of the genetic similarity matrix to control for the effects of large-scale genetic 
shifts in the virus (Hahn et al. 2021). We took a similar approach and used clade designations 
(Hadfield et al. 2020; Aksamentov et al. 2021) and principal components of the genotype matrix.
While we did detect a borderline-significant association between 20I (Alpha, V1) and increased 
risk of severe COVID-19, there was not a strong overall effect of either clades or principal 
components (Fig 2B and 2C). One possible reason for this is that variation in clade frequencies is
strongly time-dependent and confounded with other time dependent changes in prevention and 
treatment that we attempted to control for by including a time lapse variable, as well as a 
sampling strategy that kept the proportion of severe cases relatively constant (Fig 1C). At the 
same time reducing the temporal component would tend to attenuate our ability to study the 
effects of large-scale shifts in viral genetics. 

In contrast to the GWAS approach, which tests every single observed mutation in the SARS-
CoV-2 genome (Hahn et al. 2021), we used a burden approach to test individual genes. We 
initially tested the RNA-dependent RNA polymerase (Pol) and S-glycoprotein (Spike) genes, as 
these were large genes with the greatest prior evidence for affecting COVID-19 severity. Pol is 
the target of the drugs remdesivir (Kokic et al. 2021) and molnupiravir (Kabinger et al. 2021), 
contains many domains conserved across RNA viruses (Xu et al. 2003), and mutations in Pol 
have been shown in vitro to affect viral fitness (Szemiel et al. 2021) as well as the response to 
remdesivir treamtent (Gandhi et al. 2022). The Spike protein contains the receptor binding 
domain necessary for binding to ACE2 and subsequent entry into human cells. Mutations in 
Spike are capable of altering this binding affinity (Starr et al. 2020). By first testing these two 
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genes and then performing an exploratory analysis on the remaining SARS-CoV-2 genes over 
200 amino acids we drastically reduce the multiple testing problem compared to analyzing the 
whole genome. 

Our main finding is that rare mutations in the Pol gene decrease the risk of severe COVID-19 
(Fig 4A). Although the confidence intervals of the estimated effect are wide, ranging from 5% to 
90% decrease in risk per rare mutation, the signal was robust to different approaches to 
controlling for population structure (Fig. S2), and was below the 2nd percentile of permuted 
mutations with the same frequency against a genomic background biased towards protective 
effects (Fig 4B). The inclusion of a Pol burden score significantly increased the predicted value 
of a logistic model. The magnitude of this effect was around a 1% increase in AUC. This modest 
improvement is expected given that the baseline probability of severe covid is 12% in our 
sample, and 10% of patients had at least one mutation with a Pol mutation of count 10 or lower.

Additionally, genetic variation in the Pol gene had one of the strongest signals of negative 
selection in the SARS-CoV-2 genome, a finding that agreed with the analysis of intra-host 
genetic variation in a previous study (Lythgoe et al. 2021). Phylogenetic analyses of 
sarbecoronaviruses as well as global variation within SARS-CoV-2 have indicated that much of 
the genome is under predominantly negative selection (Jungreis et al. 2021, Morales et al. 2021, 
Ghafari et al. 2022). We looked for differences in the strength of negative selection between 
genes by comparing the frequencies of missense mutations in our sample. Despite selective 
pressure to keep them from spreading, mutations with negative impacts of viral fitness can drift 
to detectable frequencies through stochastic superspreader and founder events (James et al. 
2007). Deleterious mutations can also hitchhike to higher frequencies when they occur on 
relatively more fit genetic backgrounds. The overall expectation is that more frequent mutations 
have less negative effects on viral fitness compared to less frequent ones. By extension, genes 
with mutations at lower frequencies are more likely to be prone to mutations with negative viral 
fitness consequences.

In contrast to Pol, the burden of rare mutations in the Spike gene was not significantly associated
with changes in the risk of severe COVID-19 although it was found to be in the upper percentiles
of possible mutation permutations in increasing the risk of severe COVID-19 (Figs 4C, 4D, and 
4E). Lade-defining Spike mutations have been repeatedly characterized to be under positive 
selection and associated with immune-escape and/or transmissibility but not consistently with 
changes in disease severity (Rochman et al. 2021). Mutations that either increase or decrease 
ACE2 binding affinity in Spike have been identified experimentally (Starr et al. 2020), but 
whether these increase the risk of severe COVID-19 in the hosts where they appear remains 
unknown. 

An unanswered question is whether negatively selected mutations like the mutations observed in 
Pol, will increase, decrease, or have no effect on the risk of severe disease. Viral fitness is 
determined by a combination of the ability to survive and replicate with hosts, and the ability to 
transmit to new hosts. The first, within-host component of fitness may be related to disease 
severity. Our results support that mutations in Pol, as the central component of viral replication, 
are likely to affect this fitness component. This bodes well for the efficacy of antivirals targeting 
this enzyme in the future, but surveillance is needed to confirm this. Future studies with large 
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sample sizes, analyzing currently circulating strains of SARS-CoV-2, will be necessary to 
conclusively demonstrate the importance of rare mutations for COVID-19 outcomes.

Methods
Study population and data collection
We prospectively collected, through the chart abstraction from the Bahrain Ministry of Health 
(BMOH) medical records, demographic and health information for 1,151 patients in Bahrain 
with PCR-confirmed SARS-CoV-2 infection between March 4th, 2020 and March 8th 2021. 
These SARS-CoV-2 infected patients were chosen for sequencing based on (1) sampling to 
evenly represent asymptomatic or mildly symptomatic SARS-CoV2 patients across the different 
Bahraini geographic districts, or (2) the development of severe COVID as defined by an O2 
saturation <90% or PaO2 <60%, and a physician determined need for ICU hospitalization, and 
the presence of respiratory disease including ARDS, or viral pneumonia or the need for 
mechanical ventilation or death due to COVID-19. Host level characteristics including 
comorbidities were abstracted from the patient electronic health records and physician 
questionnaires. These variables were then cleaned by correcting misspellings, categorizing fields 
as needed, and ensuring all null and missing values were entered as detailed in the code 
accompanying this paper.

SARS-CoV-2 Sequencing

Viral RNA underwent cDNA synthesis using Invitrogen SuperScript IV VILO (SSIV VILO) 
Master Mix. Enrichment of SARS-CoV-2 genome was done via PCR using NEB Q5 High-
Fidelity DNA Polymerase and ARTIC SARS-CoV-2 primer pools. ARTIC SARS-CoV-2 gene-
specific primer set was synthesized by IDT. PCR amplicons were purified with Beckman Coulter
AMPure XP beads and quantified by PicoGreen assay. 150ng of tiled PCR amplicons per sample
was used to prepare sequencing libraries using IDT Lotus DNA Library Prep Kit.  The size of the
final library construct was determined on the PerkinElmer LabChip GX system and 
quantification was performed by qPCR with Kapa Library Quantification Kit (Roche 
Diagnostics. Sequencing was performed on Illumina NovaSeq 6000 S4 flow cells using 151 bp 
paired-end sequencing reads according to Illumina protocols.

SARS-CoV-2 whole genome sequence analysis
Consensus SARS-CoV-2 genomes were generated from read data using a reference-based 
assembly pipeline (https://github.com/broadinstitute/viral-pipelines, Lemieux et al. 2020) with 
NC_045512.2 as the reference (Wu et al., 2020). We then filtered sequences based on quality 
summaries implemented in Nextclade using default parameters for SARS-CoV-2 (Aksamentov 
et al., 2021, https://clades.nextstrain.org). Sequences were given a “bad” missingness quality 
designation if they had over 3,000 sites missing. After removing sequences with a “bad” 
missingness score, no sequences with “bad” scores on any other quality metric remained. Of the 
1,151 patients with isolates submitted to viral sequencing, 988 remained after this quality 
filtering. Of the 988 isolates, an additional 118 were excluded because they lacked clinical 
severity data. A single isolate was dropped because its viral clade designation (20A) conflicted 
with its position in principal component space (20I, Alpha V1), representing possible sequencing
errors or a patient coinfected with multiple SARS-CoV-2 strains. The final patient sample used 
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in subsequence analysis consisted of 869 COVID-19 patients, 106 (12.2%) of whom had severe 
COVID-19. 

We determined the functional consequences of mutations, relative to the reference genome, by 
assigning them to protein-coding sequences in the viral genome and asking whether they resulted
in an amino acid change (missense) or not (synonymous). Non-overlapping protein-coding 
sequences in the viral genome were identified by downloading 24 amino acid sequences from the
UniProt PODTD1 track, which were then compared to the reference genome (The UniProt 
Consortium 2021, https://www.uniprot.org/uniprot/P0DTD1). Tblastn was used to obtain 
coordinates within the viral genome (Gertz et al. 2006). To eliminate any ambiguity in the 
functional consequences of mutations, we ignored codons where more than one mutation was 
detected in at least a single individual. We also masked known problematic sites within the 
SARS-CoV-2 genome (De Maio et al. 2020, https://github.com/W-L/ProblematicSites_SARS-
CoV2/). For the purposes of genetic association and phylogenetic analyses, we ignored all 
insertions, deletions, and premature stop codon mutations. A four nucleotide deletion which 
leads to a premature stop codon removing the last 20 amino acids of ORF3a was detected in 30 
samples. Multiple mutations resulting in premature stop codons in ORF8 were detected, 
indicating that this gene is not essential for the virus (Jungreis et al. 2021).  A custom script was 
written to perform annotations. 

Viral phylogenetic and population structure analysis
We assigned samples to phylogenetic clades using Nextstrain clade definitions as implemented 
in the Nextclade software (Aksamentov et al. 2021, https://clades.nextstrain.org). While all 
samples we analyzed were from Bahrain, this tool compared our sequences to a sample 
representative of global viral genetic diversity. We also summarized the overall genetic structure 
in our sample by conducting a principal component analysis (PCA) using the prcomp function in 
R (R Core Team, 2022). We did not variance-scale genotypes, so principal components (PCs) 
should be interpreted as reflecting patterns of common genetic variation.

Associations of host variables and viral genetics with COVID-19 
severity
The following non-genetic host variables were included in the multivariable logistic regression 
models associating host and viral factors with disease severity: age, gender, sampling time, and 
vaccination status (all but one patient received the Sinopharm vaccine) (Al Kaabi et al., 2021). 
We also included nationality, and geographical region, reasoning that these two variables might 
capture socioeconomic and ethnic differences predictive of access to care and COVID-19 
severity (Yancy 2020, Guha et al. 2020). The inclusion of sampling time was made in order to 
capture potential temporal changes in the patient population or treatment that may have impacted
the probability of developing severe COVID-19. We grouped nationalities into Bahraini, South 
Asian, and other, while the geographic region of patients was encoded as one of four 
governorates (Capital, Muharraq, Northern, and Southern). We also analyzed a set of 
comorbidities that included individual predictors for hypertension, diabetes, and smoking based 
on previous literature implicating these characteristics with increased disease severity. We 
pooled additional comorbidities that were individually rare into a ‘miscellaneous comorbidity’ 
variable comprising immunocompromising disease, renal disease, chronic lung disease, 

320

325

330

335

340

345

350

355

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 16, 2022. ; https://doi.org/10.1101/2022.08.13.22278740doi: medRxiv preprint 

https://clades.nextstrain.org/
https://www.uniprot.org/uniprot/P0DTD1
https://github.com/W-L/ProblematicSites_SARS-CoV2/
https://github.com/W-L/ProblematicSites_SARS-CoV2/
https://doi.org/10.1101/2022.08.13.22278740
http://creativecommons.org/licenses/by-nc-nd/4.0/


cardiovascular disease, sickle cell disease or trait, and cancer. Throughout the text we include 
vaccination status when referring to comorbidities.

Sampling date, age, and gender were missing for a small number of patients with good quality 
sequencing data. In order to retain these individuals in the data set, sampling date was imputed as
the median date within the Nextstrain-assigned cluster, age was imputed as the median overall 
age, and gender was imputed by coding as 0/1 and setting missing individuals to the mean value.

In all analyses presented here, we used logistic regression models to evaluate the association 
between genetic and non-genetic variables and the severity of COVID-19 cases. Wald tests were 
then used to assess statistical significance at the nominal threshold of 0.05. Non-genetic variables
were analyzed first in the absence of any viral genetic information, such as Nextstrain clade 
assignments and PCs. Age, gender, sampling date, and vaccination status were considered 
baseline predictors and included in every regression model presented here. All demographic 
variables and comorbidities were tested individually, as well as jointly in a full model containing 
all non-genetic factors. The observed effects of comorbidities were qualitatively compared to 
findings from other populations to assess whether directions were concordant with published 
results. All non-genetic variables were also included as covariates in viral genetic models even if 
associations with severity were not statistically significant. 

To analyze the association between viral population structure and COVID-19 severity, we used 
SARS-CoV-2 clades/’variants of concern’ as designated by Nextstrain, as well as the first seven 
principal components (PCs) of the genetic relatedness matrix. Because some clades appeared at 
low counts in our sample, for association analyses we grouped low-frequency clades together. 
Clades 20C, 20D, 20E (Theta), 20G, 20H (Beta, V2), 21D (Eta), and 20E (EU1) were grouped 
together into an `Other` category. Population structure variables were also included as covariates 
in subsequent individual-mutation and gene-based tests. The effects of individual, common 
mutations were analyzed in the same manner. We tested the top 50 most frequent mutations in 
the sample to assess whether their presence or absence was associated with COVID-19 severity. 
Statistical significance was evaluated using a Bonferroni correction and family-wise error rate of 
0.05.

We examined the relationship between vaccination and clades in our patient panel by grouping 
patients by vaccination status and clade for the months of January, February, and March 2021 
(when vaccination became common). We balanced the data for each month by randomly 
dropping patients so that equal numbers of vaccinated and non-vaccinated individuals remained 
within each month. After pooling the data across the three months, we conducted a Fisher’s 
Exact Test between vaccination status and a binary variable indicating Alpha versus non-Alpha 
clade status.

The connection between individual viral genes with COVID-19 severity was investigated using a
burden approach. For a given gene, each patient was assigned a viral burden score based on the 
number of rare mutations detected in that gene. We then tested whether patients with higher 
burden scores in a particular viral gene are more or less likely to have severe disease. This 
approach is capable of detecting severity-influencing viral genes when mutations in those genes 
tend to influence risk in the same direction. Given the existing evidence for negative selection in 
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SARS-CoV-2 (Morales et al. 2021), we hypothesized that at least in certain genes, mutations 
which decrease viral fitness could improve patient outcomes. To enrich for mutations under 
negative selection, and also to avoid some of the aforementioned confounding issues with 
common mutations, we calculated burden scores using a frequency cutoff. Mutations under this 
cutoff were included in the score, while those over were ignored. We varied the frequency cutoff 
between 1 and 100 to assess sensitivity.

The association between burden scores and COVID-19 was tested using logistic regression, 
including all demographic and health information, as well as the top seven principal components 
(PCs) and Nextstrain clade designations, as covariates. We calculated burden scores for all 
missense and all synonymous mutations. In analyses of missense variation, we also included as 
covariates the burden score for synonymous mutations with the same frequency cutoff and for 
the maximum frequency cutoff (100). The purpose of including synonymous burden scores as a 
covariate was to correct for any overall correlation of burden with severity unrelated to function. 
We first tested the RNA-dependant RNA polymerase (Pol) and S glycoprotein (Spike) genes, as 
both are large genes with well-understood biological functions and assessed statistical 
significance at the nominal 0.05 level. We then calculated and tested burden scores for the 
remaining 12 genes. This second set contained many small genes for which we expect to have 
much lower power, and statistical significance was assessed using a Bonferonni-corrected 
threshold of 0.0024 (family-wise error rate: 0.05). To assess whether regression results were due 
to the composition of our sample rather than gene-specific effects, we also simulated burden 
scores by randomly sampling missense mutations with the same observed frequencies for each 
gene. Regression analyses were then performed on simulated scores, and we calculated the 
percentile of each gene’s effect size in the real data within this simulated distribution of 
frequency-matched, hypothetical genes.

We assessed the predictive value of viral genetic variables for COVID-19 severity using a leave-
one-out cross-validation (LOOCV) approach. This was done by leaving out every patient from 
the data set one at a time, fitting a logistic model on the remaining samples, and using the fit 
model to predict the probability that the left-out patient developed severe COVID-19. 
Hypertension, smoking status, gender, and date were left out of LOOCV regressions because 
they did not provide any predictive value. Regressions were fit with and without each viral 
genetic variable at each iteration. Predicted probabilities of severe disease were compared to true
disease status by calculating false positive and false negative rates at different probability 
thresholds (receiver operating characteristic (ROC) analysis) and computing the area under this 
curve (AUC). Confidence intervals were obtained by bootstrapping patients and performing the 
LOOCV procedure on bootstrapped samples. Prediction analyses were performed for the first 
principal component and for missense burden scores in the Pol and Spike genes.

Mutation frequency across the SARS-CoV2 genome
To explore the connection between negative selection and gene-based severity associations, we 
used two metrics to measure the tendency of genes to harbor lower or higher frequency 
mutations compared to the overall viral genome. The first metric is the average number of 
missense mutations observed in that gene across patients. The second is a rank percentile sum 
statistic (RPSS) designed to be less sensitive to the presence of outlier high-frequency, positively
selected mutations. RPSS was calculated by first ranking the mutations in a gene from highest to 
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lowest count. The percentile of each count within the set of all observed mutations was then 
computed, conditional on the count of the mutation with the next highest rank. The sum of these 
percentiles was the RPSS. For instance, for a gene with 10 mutations where the highest 
frequency mutation has count 100 and the next highest frequency mutation has count 50, the first
percentile score would be the probability that the highest frequency was 100 or greater in a 
sample of 10 mutations from across the whole genome. The second percentile score would be the
probability that the highest frequency mutation in a sample of size 9 was 50 or greater after all 
mutations with count greater than 100 are removed, as well as the single 100-count mutation in 
the previous spot. When the count reaches one, we stop adding percentiles. This metric therefore 
reflects the tendency of mutation counts within a gene to decrease by rank, compared to that 
expected by chance. As a rank-based statistic, RPSS should be less sensitive to the complex 
phylogenetic structure which could result from sampling SARS-CoV-2 patients. The RPSS 
strategy is similar to generalized summary statistics for the site frequency spectrum (Achaz 
2009) with equal weights given to ranks rather than frequencies.

Both selection scores were compared to random samples with the same number of mutations as 
observed in that gene. A gene’s percentile within these samples reflects how often we would see 
such a bias towards low-frequencies if mutations were assigned randomly to genes within the 
SARS-CoV-2 genome. Because this procedure conditions on the observed number of mutations 
in a gene, it should reflect whether observed mutations are at lower frequencies than expected by
chance, rather than overall levels of variation that are sensitive to differences in mutation rate.

Data availability
All code for processing patient information and viral genetic data for running analyses is 
available at https://github.com/emkoch/CV19BH. 
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Tables

Table 1
Table 1. Baseline characteristics of COVID-19 positives

Characteristic Patients (n=869) Percentage

Age group

0 - 20 years old 94 10.8%

21 - 40 years old 410 47.1%

41 - 60 years old 248 28.5%

61 - 80 years old 99 11.4%

81 - 99 years old 18 2.1%

Sex

Female 351 40.4%

Nationality

Bahrani 509 58.6%

Missing 70 8.0%

South Asia 158 18.2%

Other 132 15.2%

Collection date

Q1 2020 (March only) 7 0.8%

Q2 2020 (May and June) 100 11.5%

Q3 2020 71 8.2%

Q4 2020 191 22.0%

Q1 2021 497 57.1%

N/A 4 0.%

Viral lineage
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19A 27 3.1%

19B 14 1.6%

20A 203 23.4%

20B 288 33.1%

20I 304 35.0%

Other 33 3.8%

Comorbidities

Diabetes 124 14.3%

Hypertension 144 16.6%

Smoking 88 10.1%

Other comorbidities 101 11.6%

Covid severity

Severe 106 12.2%

Remdesivir

Yes 49 5.6%

Region

Capital 273 31.4%

Muharraq 133 15.3%

Missing 147 16.9%

Northern 219 25.2%

Southern 97 11.1%

Vaccination status

Not vaccinated 728 83.8%
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Table 2

Value n / median Univariate OR Univariate P-value Adjusted OR Adjusted p-value

Age (10 years) 3.9 2.11 [1.83, 2.44] 1.00E-23 1.97 [1.64, 2.36] 5E-13

Gender (Female) 351 0.84 [0.52, 1.36] 4.80E-01 0.70 [0.41, 1.18]                    2E-01

Time (months) 01/17/2021 1.05 [0.96, 1.14] 2.80E-01 1.04 [0.93, 1.18] 4E-01

Vaccination status 142 0.14 [0.05, 0.41] 3.30E-04 0.14 [0.05, 0.42] 5E-04

Other Comorbid 101 1.86 [1.01, 3.45] 4.60E-02 1.81 [0.92, 3.57] 9E-02

Diabetes 124 2.36 [1.34, 4.15] 2.96E-03 2.44 [1.27, 4.70] 7E-03

Hypertension 144 1.48 [0.84, 2.59] 1.70E-01 1.17 [0.60, 2.25] 6E-01

Smoking 89 0.84 [0.32, 2.10] 6.90E-01 0.70 [0.26, 1.90] 5E-01

Region

Capital 273 - - - -

Muharraq 133 0.36 [0.16, 0.79] 1.12E-02 0.35 [0.15, 0.80] 1E-02

Northern 219 0.86 [0.46, 1.59] 6.20E-01 1.06 [0.55, 2.05] 9E-01

Southern 97 0.83 [0.38, 1.83] 6.50E-01 0.73 [0.31, 1.68] 5E-01

Missing 147 0.86 [0.36, 2.07] 7.40E-01 0.90 [0.32, 2.53] 8E-01

Nationality

Bahraini 510 - - - -

South Asia 158 0.68 [0.32, 1.43] 3.10E-01 0.76 [0.35, 1.68] 5E-01

Other 132 2.52 [1.36, 4.64] 3.15E-03 3.52 [1.79, 6.93] 3E-04

Missing 70 1.20 [0.44, 3.31] 7.20E-01 1.55 [0.44, 5.42] 5E-01
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Figures

Figure 1
Summaries of the patient population (n=869) for which high-quality genomes and COVID-19 
severity information were available. A) The distribution of cases and SARS-CoV-2 clades over 
the sampling period. B) The clustering of viral genomes on the first two principal components. 
The 20I (Alpha, V1) clade is separated from others along principal component 1. Principal 
component 2 captures variation within clades 20A and 20B, whose presence in the sample spans 
a longer time period. C) Individual cases and their COVID-19 severity are plotted as a function 
of sampling time. The blue line shows the LOESS-smoothed proportion of severe cases as a 
function of time.
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Figure 2
Results of analyses estimating the effects of common viral mutations, viral clades, and viral 
principal components on the probability of severe COVID-19 in patients. Effect sizes are given 
as odds ratios and 95% confidence intervals are displayed. A) The effects of the top 50 highest 
frequency mutations in the sample were estimated using logistic regression. 11 of these variants 
were collinear with other variables and were omitted. The remaining variants are labeled by the 
protein, the position in the reference genome, the reference/mutant nucleotide, and the reference/
mutant amino acid. Nextclade designations and principal components were both included in the 
common mutation analysis. B) The effects of Nextclade clade designations on COVID-19 
severity. C) The effects of the top seven principal components on COVID-19 severity. Odds 
ratios are per-unit in principal component space.
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Figure 3
The proportion of different clades among vaccinated and non-vaccinated individuals in the final 
three months of the sampling period. Only clades actually observed during this period are shown.
Numbers above bars indicate the patient counts in the vaccinated and unvaccinated categories.
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Figure 4
Results of burden tests for the association between low-frequency SARS-CoV-2 missense 
mutations on COVID-19 severity. Association results are presented as logistic regression 
coefficients (beta) per-mutation in the burden score. 95% confidence intervals are also shown. 
Violin plots show the distribution of coefficients from regressions calculated on randomized 
burden scores holding variant frequencies constant. Numbers to the right of violin plots give the 
percentile of the observed coefficient in the randomized distribution. A) Results for burden 
scores calculated on all missense and all synonymous mutations below each maximum value. B-
C) Results for missense mutations in the Pol and S glycoprotein proteins. D) P-values of burden 
scores across all analyzed proteins at maximum counts of 10 and 100. E) Percentiles of estimated
coefficients at maximum counts 10 and 100 in randomized distributions for all analyzed proteins.
F) Changes in AUC resulting from adding Pol max-10 burden score to predictions of COVID-19 
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severity using logistic regression. Vertical line shows the AUC calculated by applying  𝚫AUC=0.008 95%CI=[0.001, 0.017]), no prediction improvement adding  
LOOCV to the full patient data. Distributions show AUC values calculated by applying  𝚫AUC=0.008 95%CI=[0.001, 0.017]), no prediction improvement adding  
LOOCV to bootstrap samples from the patient data. 95% confidence intervals are calculated 
from bootstrap samples.

Figure 5
A-C) Distributions of observed SARS-CoV-2 mutation frequencies in genes of interest. Top 
plots show the frequencies of each mutation observed in a given gene, ordered by their rank. 
Gray lines represent random draws of missense mutations from the SARS-CoV-2 genome with 
the same number of mutations as observed in that gene. Bottom plots show the percentile of each
mutation in a gene with respect to the distribution of variants genome-wide with frequency lower
or equal to the mutation with the next lowest rank. Gray lines show these percentiles for the 
simulated set of mutations. Lines truncate when the frequency reaches one. The Rank Percentile 
Sum Score (RPSS) is the percentile of the area under the bold line against randomizations. D) 
The RPSS is plotted against the derived allele burden percentile of each gene. The derived allele 
burden is the average number of missense mutations in a gene, and the percentile is compared to 
randomizations with the same number of mutations.
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Supporting information

Figure S1. The clustering of viral genomes along the first seven PCs. PC 1 separates out 
clade 20I (Alpha, V1), PCs 2-6 largely capture variation within clades 20A and 20B, and PC 7 
separates out 19A and 19B from the other clades.
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Figure S2. The robustness of gene-based association results to different ways of controlling 
for common mutations. P-values from logistic regression analyses of COVID-19 severity on 
burden scores in SARS-CoV-2 genes. Dotted line shows the nominal significance threshold of 
0.05, and the bold line shows the Bonferonni threshold of 0.004. Burden scores of missense 
variants are compared to scores for synonymous variants. The top row shows results from 
regressions using both clades and PCs as covariantes. The next two rows show results where 
only either clades or PCs are included.
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Figure S3. Changes in AUC resulting from adding Spike max-10 burden score and PC1 to 
predictions of COVID-19 severity from logistic regressions. Vertical lines show the AUC  𝚫AUC=0.008 95%CI=[0.001, 0.017]), no prediction improvement adding  
calculated by applying LOOCV to the full patient data. Distributions show AUC values  𝚫AUC=0.008 95%CI=[0.001, 0.017]), no prediction improvement adding  
calculated by applying LOOCV to bootstrap samples from the patient data. 95% confidence 
intervals are calculated from bootstrap samples.
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