
Machine learning with validation to detect diabetic microvascular complications 

using clinical and metabolomics data 

 

Feng He1,2, Clarissa Ng Yin Ling1, Simon Nusinovici, 1 Ching-Yu Cheng,1,3 Tien Y. Wong,1,3 *Jialiang 

Li2, *Charumathi Sabanayagam1,3 

 

1. Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 

2. Department of Statistics and Data Science, National University of Singapore, Singapore 

3. Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, 

Singapore 

*Joint Senior-authors 

 

  

 

Running title: Machine learning and DR and DKD 

 

Correspondence to: A/Prof. Charumathi Sabanayagam, Singapore Eye Research Institute, The Academia, 

20 College Road, Discovery Tower Level 6, Singapore, 169856.  

Tel: +65 6576 7286 Fax: +65 6225 2568  

Email: Charumathi.sabanayagam@seri.com.sg 

 

Word count, abstract = 343      Manuscript = 3194       Tables = 2     Figures = 3

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 12, 2022. ; https://doi.org/10.1101/2022.08.12.22278659doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 12, 2022. ; https://doi.org/10.1101/2022.08.12.22278659doi: medRxiv preprint 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 12, 2022. ; https://doi.org/10.1101/2022.08.12.22278659doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.12.22278659
https://doi.org/10.1101/2022.08.12.22278659
https://doi.org/10.1101/2022.08.12.22278659


ABSTRACT 

AIMS: Using machine learning integrated with clinical and metabolomic data to identify biomarkers 

associated with diabetic kidney disease (DKD) and diabetic retinopathy (DR), and to improve the 

performance of DKD/DR detection models beyond traditional risk factors.   

METHODS: We examined a population-based cross-sectional sample of 2,772 adults with type 1 or type 

2 diabetes from Singapore Epidemiology of Eye Diseases study (SEED, 2004-2011). LASSO logistic 

regression (LASSO) and gradient boosting decision tree (GBDT) were used to select markers of prevalent 

DKD (defined as an eGFR < 60ml/min/1.73m�) and prevalent DR (defined as an ETDRS severity level 

≥ 20) from an expanded set of 19 established risk factors and 220 NMR-quantified circulating metabolites. 

Risk assessment models were developed based on the variable selection results and externally validated in 

UK Biobank (n=5,843, 2007-2010). Model performance (AUC with 95% CI, sensitivity, and specificity) 

of machine learning was compared to that of traditional logistic regression adjusted for age, gender, 

diabetes duration, HbA1c%, systolic BP, and BMI. 

RESULTS: SEED participants had a median age of 61.7 years, with 49.1% female, 20.2% having DKD, 

and 25.4% having DR. UK Biobank participants had a median age of 61.0 years, with 39.2% female, 6.4% 

having DKD, and 5.7% having DR. Both algorithms identified diabetes duration, insulin usage, age, and 

tyrosine as the most important factors of both DKD and DR. DKD was additionally associated with CVD, 

hypertension medication, and three metabolites (lactate, citrate, and cholesterol esters to total lipids ratio 

in intermediate-density-lipoprotein); While DR was additionally associated with HbA1c, blood glucose, 

pulse pressure, and alanine. Machine-learned models for DKD and DR detection outperformed traditional 

logistic regression in both internal (AUC: 0.832-0.838 vs. 0.743 for DKD, and 0.779-0.790 vs. 0.764 for 

DR) and external validation (AUC: 0.737-0.790 vs. 0.692 for DKD, and 0.778 vs. 0.760 for DR). 

CONCLUSIONS: Machine-learned biomarkers suggested insulin resistance to be a primary factor 

associated with diabetic microvascular complications. Integrating machine learning with biomedical big 

data enabled biomarker discovery from a wide range of correlated variables, which may facilitate our 

understanding of the disease mechanisms and improve disease screening.    
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ABBREVIATIONS  

DKD: Diabetic kidney disease 

DR: Diabetic retinopathy 

EDIC: Epidemiology of Diabetes Interventions and Complications 

ETDRS: Early Treatment Diabetic Retinopathy Study 

GBDT: Gradient boosting decision tree  

IDL-CE%: Cholesterol easters to total lipid ratio in intermediate-density lipoprotein particles 

LASSO: Logistic regression with the least absolute square shrinkage operator 

LR: Logistic regression 

PP: Pulse pressure 

SEED: The Singapore Epidemiology of Eye Diseases study 

UKBB: UK Biobank 
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INTRODUCTION  

Diabetes is one of the most prevalent and serious health problems of our times. International Diabetes 

Federation estimated the global adult population with diabetes to be 536.6 million in 2021, and 

projected it to reach 783.2 million by 2045 [1]. With this rapid-growing population and the greater 

longevity over time, the burden of diabetic complications is expected to increase in parallel [2, 3].  

 

Diabetic kidney disease (DKD) and diabetic retinopathy (DR) are diabetic microvascular 

complications known to decrease quality of life, cause disability or even premature death if 

undetected and untreated [4, 5]. However, timely and accurate diagnosis remains a challenge for those 

at risk because of the asymptomatic progression in early stages [6]. Age, gender, diabetes duration, 

HbA1c, systolic BP, and BMI have been identified as the major risk factors [7], yet they do not fully 

account for the variation in risk faced by different individuals. Evidence showed a connection 

between DR and DKD, suggesting some shared pathogenic pathways, or both being manifestations of 

a latent systematic microvasculature disease [3, 8]. However, previous studies in search of useful 

biomarkers were often hampered by inadequate data availability, lack of replication, and limited data 

analysis methods, unable to examined a wide range of variables simultaneously [4, 6]. As a promising 

solution, machine learning integrated with biomedical big data has been implemented for biomarker 

discovery for DKD and DR individually [9, 10]. However, to the best of our knowledge, few studies 

have used machine learning to investigate the commonalities and differences of these two 

tissue-specific complications in terms of metabolomic profiling, which may serve as a window to 

reveal the latent biochemical changes and hidden pathogenic pathways [6].  

 

Herein we aim to fill these gaps by implementing two classic machine learning algorithms - LASSO 

logistic regression (LASSO) and gradient boosting decision tree (GBDT), to simultaneously examine 

239 variables (19 established risk factors and 220 circulating metabolites) as predictors of prevalent 

DKD/DR in a retrospective Asian adult cohort with type 1 or type 2 diabetes. Risk assessment models 

were developed based on machine-learned biomarkers, and externally validated using UK Biobank 

data, against the traditional logistic regression in terms of AUC (95% CI), sensitivity, and specificity. 
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MATERIALS AND METHODS 

Datasets and inclusion/exclusion criteria 

We derived the study data from Singapore Epidemiology of Eye Diseases study (SEED), a 

population-based cross-sectional study conducted in Singapore from 2004 to 2011, with 

methodological details reported elsewhere [11]. In brief, we recruited participants aged 40-80 years in 

an age-stratified random sampling manner and asked them to take the interviewer-administered 

questionnaire, ocular examinations, and biochemical laboratory tests. 10,033 adults were successfully 

recruited, including 3,280 Malays (2004–2006, response rate 78.7%), 3,400 Indians (2007–2009, 

75.6%), and 3,353 Chinese (2009–2011, 72.8%). Of these, we excluded participants free of diabetes 

(n=7,069), which was defined as having an HbA1c% > 6.5, random blood glucose > 11.1 mmol/L, 

self-reported physician-diagnosed diabetes, or the use of anti-diabetic medication including insulin. 

We also excluded those missing metabolomics profiles (n=179), or missing more than 10% of the data 

(n=13), to get a final study population of 2,772 individuals (Figure 1).  

 

For external validation, we extracted data from UK Biobank (UKBB), an open access resource of 

prospective dataset collected in the United Kingdom from 2007 to 2010, with over 500,000 

participants [12]. Diabetes was defined the same as that of SEED, but additionally included those with 

DR if the aforementioned variables were not available. After data pre-processing, 5,843 participants 

were found eligible for the external validation.   

 

Both SEED and UKBB were conducted in accordance to the Declaration of Helsinki, with the ethics 

approval obtained from SingHealth Institutional Review Board and the North West Multi-Centre 

Research Ethics Committee, respectively. Written informed consent was provided by all participants.  

 

Outcomes and covariates 

DKD was defined as an eGFR<60 ml/min/1.73m� for both SEED and UKBB in participants with 

diabetes, where the eGFR values were calculated from blood creatinine concentrations using the 

chronic kidney disease epidemiology collaboration (CKD-EPI) equation [13]. DR severity in each eye 
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of SEED participants was graded from fundus photographs by certified ophthalmic graders according 

to the standard protocol of Early Treatment Diabetic Retinopathy Study (ETDRS) [2, 14]. Based on 

ETDRS severity score levels, DR severity was categorized into 5 stages: minimal (level 20), mild 

(level 35), moderate (levels 43 to 47), severe (level 53), and proliferative DR (levels > 60). For the 

current study, the outcome was “any DR” defined as an ETDRS level ≥ 20 in at least one eye. We 

also defined an alternative outcome in supplementary analysis – moderate and above DR (level > 43 

in at least one eye). In UKBB, DR severity was not graded, therefore, we defined “any DR” as those 

having ICD-10 code “H36.0” in their health-related outcomes (Data-Field: 41270) [12]. 

 

For variable selection, we included 239 variables (Table S1). Of these, 19 variables were identified 

by literature review, including 6 traditional risk factors (age, gender, duration of diabetes, HbA1c%, 

systolic BP, and BMI), and 13 extended risk factors related to lifestyle (alcohol drink and smoking), 

medication use (insulin, anti-cholesterol, and anti-hypertensive medication), clinic/biochemistry 

(diastolic BP, pulse pressure (PP), random blood glucose, cholesterol, HDL cholesterol, and LDL 

cholesterol), and comorbidity conditions (CVD and hypertension). Hypertension in both cohorts was 

manually defined as self-reported physician-diagnosed hypertension, systolic BP > 140 mmHg and 

diastolic BP > 80 mmHg, or the use of antihypertensive medication. Using NMR techniques 

(Nightingale Health, Helsinki, Finland), we quantified the concentration of 228 circulating 

metabolites from patients’ blood samples. Of these, glycerol, pyruvate, and glutamine were not 

available for Malays; Creatinine was used in eGFR calculation and DKD outcome definition; While 

four metabolites (total, HDL, and LDL cholesterols, and random blood glucose) were duplicated with 

those measured in biochemistry tests. Hence for the current study, we only included the remaining 

220 metabolites from 15 categories (amino acids, apolipoproteins, cholesterol, cholesterol esters, fatty 

acids, fluid balance, free cholesterols, glycolysis related metabolites, inflammation, ketone bodies, 

triglycerides, lipoprotein particle sizes, lipoprotein subclasses, lipoprotein lipid ratios, and other 

lipids).  
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Machine learning algorithms 

We used logistic regression with the least absolute square shrinkage operator (LASSO [15]) and 

gradient boosting decision tree (GBDT [16]) to derive and validate the risk assessment models of DR 

and DKD. LASSO is an extension of traditional logistic regression (LR) that does not require the 

independence of covariates. Therefore, this algorithm is often used in high-dimensional setting where 

multi-collinearity could be an issue. During the course of parameter optimization, LASSO 

automatically shrinks the coefficients of those less-important variables to zeros, while leaving those 

important variables with non-zero coefficients to achieve biomarker selection. Its strength was being 

relatively simple in computation complexity and parameter tuning as compared to other machine 

learning algorithms, but is limited to examining only the linear associations between continuous 

covariates and the log-odds. To account for possible non-linear terms and variable interactions, we 

additionally implemented GBDT, which essentially is a sequence of inter-dependent decision tree 

models. This algorithm is well-known for its adaptability to various data distributions in prediction 

and variable selection tasks. However, it is rather time-consuming in terms of hyper-parameter tuning 

and computation, also more likely to overfit data, and less transparent as compared to LASSO.  

 

Statistical analysis 

We conducted all analyses in R 4.0.2., and defined statistical significance as a p-value < 0.05. We 

described the population characteristics of SEED and UKBB using n (%), mean (SD), or median [IQR] 

as appropriate for the variable (Table 1). Some sub-categories may not add up due to the presence of 

missing data. Pearson’s Chi-square tests and Mann-Whitney “U” tests were used to compare 

characteristics of the two study populations, which indicated significant difference (p<0.001) in all 

aspects compared.  

 

In SEED, the missing proportions were controlled below 10% for each variable and below 6% for 

each participant. We assumed data missing at random and performed missing data imputation using 

mean values/modes as appropriate for each variable to maximize the sample size for variable selection. 

To reduce selection bias caused by training and test set split, we averaged the results across 200 
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random repeats of five-fold cross-validation. In each repeat, the imputed SEED dataset was randomly 

divided into 5 subsets (i.e., folds) of equal sample size and case rate by stratified sampling. Each fold 

(20%) took turns to be the validation set, while the remaining four (80% data) were used for model 

training and variable selection. From 200 replicates we generated 1,000 sets of selected variables, 

based on which we quantified the contribution of each variable to the model performance as a variable 

importance score, calculated the variable selection frequency (%) during the repeated cross-validation.  

 

Next, we ranked the variables according to their selection frequencies from high to low (Figure 2), 

and took the top-15 associated with DKD, and the top-10 associated with DR, respectively, to derive 

the disease risk assessment models using the same two machine learning algorithms. To evaluate the 

performance of these new models, we performed another 200 random repeats of 5-fold 

cross-validation but used only the complete cases (i.e., no missing data imputation). As a performance 

reference, we developed logistic regression (LR) models adjusted for the 6 traditional risk factors. The 

model performance metrics included the AUC with 95% CI (Figure 3), sensitivity at 70% specificity, 

and specificity at 80% sensitivity (Table 2).  

 

RESULTS 

Population characteristics  

SEED diabetic population included 2,772 individuals, with a median age of 61.7 [53.5, 69.4] years 

and 49.1% being female. UKBB diabetic population included 5,843 individuals, with a median age of 

61.0 [55.0, 65.0] years and 35.8% being female. SEED participants showed a higher prevalence of 

both DKD and DR as compared to the UKBB participants (DKD 20.2% vs. 6.8%, and DR 25.4% vs. 

6.1%). Moreover, around 6.6% of the SEED population developed both DKD and DR, while in 

UKBB, only 0.7% were found with both complications. The two study populations also differed 

significantly in terms of lifestyle, demographic factors, lab results, and comorbidities (Table 1, all 

p-values < 0.001, data not shown). 
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Variable importance ranking 

The selection frequency of 239 variables were used as an indicator of variable importance (Figure 2). 

For DKD, the top-8 variables selected by LASSO and GBDT were the same, with 100% selection 

frequency, including four traditional risk factors (duration of diabetes, CVD, hypertensive medication 

use, and age) and four metabolites (tyrosine, lactate, cholesterol esters to total lipid ratios in 

intermediate-density-lipoprotein [IDL-CE%], and citrate). The use of insulin was also selected by 

both but with slightly lower frequency by GBDT for DKD (=98.5%). For any DR, only the top-4 

variables selected by the two algorithms were the same, including insulin use, HbA1c, duration of 

diabetes, and blood glucose, all with 100% frequency. Additionally, age, PP and two metabolites 

(tyrosine and alanine) were found important for DR. For moderate and above DR, the same 6 risk 

factors and tyrosine were selected as top variables (Supplementary Figure S3, and S4). Based on 

Figure 2., we decided to use the top-15 variables for the development of DKD screening models, and 

the top-10 for DR. 

 

Model performance 

ROC curves in internal and external validation were shown in Figure 3. For DKD, LASSO and 

GBDT achieved similar performance improvement for SEED participants (AUC = 0.832 by LASSO, 

0.838 by GBDT, vs. 0.743 by LR), but for UKBB, LASSO performed significantly better (0.790 by 

LASSO, vs. 0.737 by GBDT, and 0.692 by LR). For DR, internal validation only showed insignificant 

differences, yet in external validation, machine learning was again significantly better (0.778 by 

LASSO, 0.778 by GBDT, vs. 0.760 by LR). We further compared the models in terms of sensitivity 

and specificity, and found GBDT being the best in internal validation – at 80% sensitivity, it achieved 

70.9% specificity for DKD, and 61.6% for DR. In external validation, however, LASSO was the best 

with specificity 62.8% for DKD and 61.7% for DR (Table 2). 
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DISCUSSION 

Principal findings  

Duration of diabetes, age, use of insulin, and circulating tyrosine were the most important markers for 

DKD and DR detection in SEED diabetic population. DKD was also associated with the use of 

antihypertensive medications, CVD, and three metabolites (lactate, citrate, and IDL-CE%); whereas 

DR was additionally linked to HbA1c, random blood glucose, PP, and alanine. Machine learning 

models outperformed the traditional LR in terms of AUC, sensitivity, and specificity, demonstrating 

their potential to discover novel biomarkers and enable disease screening when integrated with 

healthcare and metabolomics data. 

 

Strengths and limitations  

Our main dataset included a comprehensive set of 19 risk factors and 220 circulating metabolites 

measured in 2,772 individuals. The detailed patient profiling with adequate sample size allowed an 

opportunity to identify markers most relevant to DKD and DR, offering insights into the systematic 

alteration of metabolism and underlying pathogenic pathways. Such findings may facilitate novel 

treatment therapies for those at high risk because metabolites like tyrosine could be manually 

modulated via dietary intake. For biomarker discovery, traditional studies often rely on logistic 

regression models to examine metabolites one by one separately [17, 18], with stringent model 

assumptions and multiple testing correction [19]. Herein machine learning provided a simpler 

approach to simultaneously examine all variables for potential associations. Although LASSO was 

limited to detect only the linear associations, we had GBDT as a complementary to additionally 

evaluate the non-linear terms and complex interactions. As was shown in Supplementary Fig S1, 

metabolites in GBDT had higher selection frequencies than in LASSO, demonstrating the existence of 

such high-order associations in the circulating metabolite network. Still, external validation found 

LASSO models with the best performance, indicating a prominent contribution of linear associations 

to DKD/DR detection. Another highlight of our study was using repeated cross-validation to ensure 

the randomness of sampling data, thereby generating results more robust than those based on a fixed 

training set. Repeated cross-validation also allowed us to easily compare the variable relative 
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importance based on their selection frequencies, especially of those highly correlated variables. For 

instance, our models selected PP with a higher frequency than systolic BP for DR, implying the 

former to be more predictive of the disease outcome. To further increase the validity, we tested our 

models in 5,843 samples from UK Biobank, an independent study cohort with significantly different 

population characteristics from SEED. Results were consistent in that machine learning models based 

SEED still outperformed logistic regression in terms of AUC, sensitivity, and specificity. 

 

One limitation of the current study was that we did not separate study subjects by diabetes type. Since 

over 95% of the SEED participants had type 2 diabetes, the variable selection results would mainly 

reflect their associations with type 2 diabetes. Another issue was data availability – many SEED 

participants did not have data for albuminuria, an important indicator of kidney disease [4], and three 

metabolites (pyruvate, glycerol, and glutamine). Hence we did not include these variables for 

selection. UKBB did not provide ETDRS DR severity information needed to define moderate/above 

DR, hence we could not validate the supplementary models in UKBB. Finally, it is important to note 

that our results from a cross-sectional study could at best imply correlations and not causations. 

 

Implications of this study 

Major insights were gained through the evaluation and comparison of the 19 established risk factors 

and the 220 circulating metabolites (Supplementary Figure S1 and S2). For both disease outcomes, 

different machine learning algorithms identified the same three factors (diabetes duration, age, and the 

use of insulin), supporting the current consensus on DR and DKD risk factors [4, 20]. Moreover, we 

noted that a circulating metabolite, tyrosine, was also selected by machine learning with top frequency. 

This semi-essential amino acid can only be synthesized by the hydroxylation of an essential amino 

acid called phenylalanine, or supplied via nutritional intake [21]. In people with chronic renal failure, 

however, reduced phenylalanine hydroxylase activity may indicate impaired kidney function, known 

to increase the systematic risk of microvascular diseases [18, 21]. Tyrosine is important for molecular 

recognition mediating [22], and its increased level has been linked to insulin resistance and high 

diabetes risk in several populations [23, 24]. In SEED, the selection of tyrosine, along with insulin, 
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age and diabetes duration, may indicate prolonged insulin resistance as a primary risk factor of 

diabetic microvascular complications such as DKD [25]. 

 

For DKD prevalence, we additionally found CVD of high importance, pointing to the well-known 

association between CVD and DKD [26]. The selection of hypertension, PP, and antihypertensive 

medications underscored the importance of BP control to prevent and postpone disease progression 

[27]. Of the DKD-specific metabolites, IDL-CE% highlighted the change in IDL composition, 

pointing to the impaired kidney function for lipoprotein metabolism[28]; Higher citrate level has been 

found associated with the dysregulation of mitochondrial function in DKD [29]; while lactate 

metabolism in the kidney cortex, a crucial process for energy production and glucose formation for 

systemic and medullary use, may be affected by the use of diabetic medication [30, 31]. As citrate and 

lactate are both glycolysis-related metabolites, their selection may imply changes in glycolysis during 

the course of DKD, which has been linked to impaired adaptive responses to hypoxia, known to 

increase diabetic complication risks [32].  

 

Among the DR-specific factors, three out of the top-4 (insulin, HbA1c, random blood glucose, and 

diabetes duration) were directly related to glycaemic control, highlighting the possible glucose 

intolerance and hyperglycaemia in those at high risk of DR [25]. Of the circulating metabolites, 

alanine was selected as the DR-specific metabolite. This amino acid plays a key role in 

gluconeogenesis, and its increased concentration in plasma has been linked to the glucose intolerance 

and insulin resistance in obesity [33]. 

 

Based on variable selection frequencies, we also gained novel insights into the established risk factors 

of high correlation (Supplementary Figure S2). Of the three correlated metrics of blood pressure 

levels, PP had a higher frequency than systolic BP and diastolic BP in DR models, agreeing with 

Yamamoto, M., et al. that PP is a better predictor of severe DR incidence than systolic BP [34]. Their 

hypothesis was that PP as a surrogate marker of arterial stiffness, reflected not only the elevated 

systolic BP but also reduced diastolic BP, thereby carrying more predictive information of DR than 
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other metrics. However, in DKD models based on GBDT, we did not observe a similar trend. Another 

pair of correlated indexes were HbA1c and random blood glucose for glycaemia control, of which 

HbA1c got higher frequency. This was probably because random blood glucose data contained more 

noises from life cycle changes and inter-individual variability than HbA1c. Interestingly, some 

well-established risk factors usually included such as gender disappeared from the top-ranking lists by 

machine learning, although this variable had been selected by traditional LR models on the same 

population in previous studies [35]. This could be because gender is an intrinsic component of other 

phenotypes. For instance, male gender was associated with CVD [36], well-known to be linked to DR 

[8, 37]. In DCCT/EDIC study, gender difference was also linked to the association between 

lipoproteins and DKD [38].  

 

CONCLUSIONS 

Current machine learning study in SEED diabetic population showed age, insulin, diabetes duration, 

and tyrosine of the highest importance for both DKD and DR detection. Integrating machine learning 

with biomedical big data allowed biomarker discovery from a wide range of correlated variables, 

which may facilitate our understanding of the disease and enable disease screening.  
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FIGURE LEGENDS 

Figure 1. Analysis flow diagram 

Figure 2. Bar plots showing the top-25 variables selected by machine learning. 

HDL: high-density lipoprotein; IDL: intermediate-density lipoprotein; LDL: low-density lipoprotein; 

VLDL: very-low-density lipoprotein; L: large; M: medium; S: small; XL: very large, XS: very small; 

XXL: extremely large; D: mean diameter; C: cholesterol; CE: cholesterol esters; FC: free cholesterol; 

L: total lipids; PL: phospholipids; TG: triglycerides; %: ratio to total lipids; FA: fatty acids; 

Figure 3. Receiver operating characteristic curves. 

LR adjusted for 6 traditional factors (age, gender, HbA1c%, systolic BP, BMI, and duration of 

diabetes). For DKD detection, both GBDT and LASSO used the corresponding top-15 variables, 

whereas for DR they both used top-10. 
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Table 1. Comparison of SEED and UKBB population characteristics 

 SEED (n=2772) UK Biobank (n=5843) 

Age, years 61.7 [53.5, 69.4]  61.0 [55.0, 65.0] 

Gender = Female  1361 (49.1)  2090 (35.8)  

Ethnicity Malay, Indian, Chinese British, Irish, African, etc. 

CKD, %  555 (20.2)   377 (6.8)  

eGFR, ml/min/1.73m2 78.9 (23.0)  88.6 (17.1) 

Any DR, %  685 (25.4)   355 (6.1)  

Duration of diabetes, years 3.9 [0.0, 10.7]   5.0 [2.0, 10.0] 

HbA1c, % 7.7 (1.7)   7.0 (1.3) 

Blood glucose, mmol/L  9.8 (4.8)   7.6 (3.4) 

Systolic BP, mm Hg 145.5 (22.2) 142.9 (18.2) 

Diastolic BP, mm Hg  78.3 (10.5)  81.2 (10.4) 

Pulse pressure, mm Hg 67.1 (18.0)  74.3 (13.3) 

BMI, Kg/m2 26.9 (4.8)  31.3 (5.7) 

Total cholesterol, mmol/L  5.2 (1.2)   4.5 (1.0) 

HDL cholesterol, mmol/L  1.1 (0.3)   1.2 (0.3) 

LDL cholesterol, mmol/L 3.2 (1.0)   2.7 (0.7) 

Insulin = Yes 143 (5.2)  1245 (21.3)  

Anti-cholesterol medication = Yes  1183 (43.6)  4479 (76.7)  

Anti-hypertensive medication = Yes  1474 (53.4)  3727 (63.8)  

CVD = Yes 519 (18.7)   245 ( 4.2)  

Hypertension = Yes 2228 (80.5)  4164 (71.3)  

Current smoker = Yes 377 (13.6)  3193 (54.6)  

Alcohol consumption = Yes 204 (7.4)  5342 (91.4)  

*Data presented as count (%), mean (SD) or median [IQR] as appropriate for the variable 
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Table 2. Machine Learning Model Performance* 

  
Sensitivity at 

70% specificity 

Specificity at 

80% sensitivity 
n 

Number of cases 

(%) 

Diabetic Kidney Disease 

SEED LR 64.9 54.0 2,653 517 (19.5) 

 LASSO 80.0 70.3 2,666 532 (20.0) 

 GBDT 80.4 70.9 2,668 529 (19.8) 

UKBB LR 56.4 47.2 5,236 348 (6.6) 

 LASSO 74.5 62.8 5,089 336 (6.6) 

 GBDT 62.5 53.2 5,543 369 (6.7) 

Diabetic Retinopathy 

SEED LR 69.1 59.4 2,597 653 (25.1) 

 LASSO 71.7 59.6 2,514 628 (25.0) 

 GBDT 71.9 61.6 2,598 655 (25.2) 

UKBB LR 71.1 57.1 5,492 336 (6.1) 

 LASSO 73.3 61.7 4,678 280 (6.0) 

 GBDT 72.8 60.4 4,833 296 (6.1) 

* Results from complete case analysis (i.e., no missing values). Sensitivity and specificity scores were 

averaged over 1,000 replicates from 200 random repeats of 5-fold cross validation.  

LR models were adjusted for 6 traditional risk factors (age, gender, HbA1c%, systolic BP, BMI, and 

duration of diabetes). GBDT and LASSO models for DKD included top-15 variables, whereas the 

models for DR included top-10.  
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Raw data: Singapore Epidemiology of Eye Diseases study 
(n=10,033)

Diabetic kidney disease (DKD) study population (n=2,753)
Diabetic retinopathy (DR) study population (n=2,693)

Raw data: UK Biobank (n=574,650)

DKD external validation population (n=5,570)
DR external validation population (n=5,843)  

Missing data imputation
Split into 80% training + 20% test

Selection frequency ranking – Figure 2
• Top-15 variables for DKD
• Top-10 variables for DR

DKD/DR risk assessment models:
• Logistic regression (Benchmark)
• LASSO logistic regression
• Gradient boosting decision tree

MACHINE LEARNING

Excluded Participants:
• Free of diabetes (n=7,069)
• Without metabolites profiles (n=179)
• Missing > 10% data (n=13)

Excluded Participants:
• Whose records were not taken at 

baseline (n=72,146)
• Free of diabetes (n=480,707)
• Without metabolites profiles (n=14,568)
• Missing > 10% data (n=6)
• Missing key variable - Duration of 

diabetes (n=1,380)

DATA PREPROCESSING

Study population – Table 1 (n=2,772) 

Excluded Participants:
• Missing eGFR data (n=19), or
• Missing retinopathy data (n=79)

External validation population – Table 1 (n=5,843) 

Excluded Participants:
• Missing eGFR data (n=273), or
• Missing retinopathy data (n=0)

Performance Evaluation by:
• AUC with 95% CI – Figure 3
• Sensitivity and specificity – Table 2

Variable selection by:
• LASSO logistic regression 
• Gradient boosting decision tree

1,000 random repeats

Complete case analysis
Split into 80% training + 20% test

1,000 random repeats
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