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Abstract. Objective: Cardiac auscultation is an accessible diagnostic screening tool that

can help to identify patients with heart murmurs for follow-up diagnostic screening and

treatment, especially in resource-constrained environments. However, experts are needed to

interpret the heart sound recordings, limiting the accessibility of auscultation for cardiac

care. The George B. Moody PhysioNet Challenge 2022 invites teams to develop automated

approaches for detecting abnormal heart function from multi-location phonocardiogram

(PCG) recordings of heart sounds.

Approach: For the Challenge, we sourced 5272 PCG recordings from 1568 pediatric

patients in rural Brazil. We required the Challenge participants to submit the complete

code for training and running their models, improving the transparency, reproducibility,

and utility of the diagnostic algorithms. We devised a cost-based evaluation metric that

captures the costs of screening, treatment, and diagnostic errors, allowing us to investigate

the benefits of algorithmic pre-screening and facilitate the development of more clinically

relevant algorithms.

Main results: So far, over 80 teams have submitted over 600 algorithms during the course

of the Challenge, representing a diversity of approaches in academia and industry. We will

update this manuscript to share an analysis of the Challenge after the end of the Challenge.

Significance: The use of heart sound recordings for both heart murmur detection and

clinical outcome identification allowed us to explore the potential of automated approaches

to provide accessible pre-screening of less-resourced populations. The submission of working,
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open-source algorithms and the use of novel evaluation metrics supported the reproducibility,

generalizability, and relevance of the researched conducted during the Challenge.

1. Introduction

Cardiac auscultation via stethoscopes remains the most common and most cost-effective

tool for cardiac prescreening. Despite its popularity, the technology has limited diagnostic

sensitivity and accuracy [1], [2], as its interpretation requires many years of experience

and skill, making it rather non-objective due to clinical disagreement between medical

personnel [3], [4]. Digital phonocardiography has emerged as a more objective alternative

for traditional cardiac auscultation, enabling the use of algorithmic methods for heart sound

analysis and diagnosis [5]. The phonocardiogram (PCG) is acquired by a combination of

high-fidelity stethoscope front-ends and high-resolution digital sampling circuitry, which

enable the registration of the PCG as a discrete-time signal.

As acoustic signals, heart sounds are mainly generated by the vibrations of cardiac

valves as they open and close during the cardiac cycle, and by the blood flow turbulence

within the arteries. The PCG typically captures the fundamental heart sounds during a

normal cardiac cycle, namely the first heart sound (S1) that is produced by the closure of

the mitral and tricuspid valves at the beginning of the systole, and the second heart sound

(S2) that is produced by the closure of the aortic and pulmonary valves at the beginning

of the diastole [6]. The interval between S1 and S2 is called the systolic phase and the

interval between the S2 and the S1 of the next cardiac cycle is the diastolic phase. During

these intervals, turbulent blood flow may create enough vibrations to make audible heart

sounds and abnormal waveforms in the PCG, which are known as murmurs. Different kind of

murmurs exist, and they are characterized by parameters such as location timing, duration,

shape, intensity, and pitch. The identification and analysis of murmurs provide valuable

information about cardiovascular pathologies.

Experts are needed to interpret the heart sound recordings, limiting the accessibility of

auscultation for cardiac care. Learning to correctly interpret PCGs for murmur detection or

to identify different pathologies requires time and broad clinical experience. Therefore, an

objective interpretation of the PCG remains a difficult skill to acquire.

The 2022 George B. Moody PhysioNet Challenge (formerly the PhysioNet/Computing

in Cardiology Challenge) provided an opportunity to address these issues by inviting teams

to develop fully automated approaches for detecting abnormal heart function from PCG

recordings in a pediatric population using multiple auscultation locations from the same

patient. We asked teams to identify both heart murmurs and the clinical outcomes of a

full diagnostic screening. The Challenge explores the diagnostic potential of automated

approaches for interpreting PCG recordings.
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2. Methods

2.1. Challenge Data

The CirCor DigiScope dataset [7] was used for the 2022 George B. Moody PhysioNet

Challenge. The dataset consists of one or more PCG recordings from different auscultation

locations on each patient’s body. The dataset was collected during two screening campaigns

in the state of Paraiba, Brazil, from July 2014 to August 2014 and from June 2015

to July 2015. The study protocol was approved by the 5192-Complexo Hospitalar

HUOC/PROCAPE Institutional Review Board, under the request of the Real Hospital

Portugues de Beneficencia em Pernambuco. A detailed description of the dataset can be

found in [7].

During the data collection sessions, the participants answered a socio-demographic

questionnaire, followed by a clinical examination (anamnesis and physical examination),

a nursing assessment (physiological measurements), and cardiac investigations (chest

radiography, electrocardiogram, and echocardiogram) as appropriate. The collected data,

including physical examination, auscultation, and echocardiogram, were then analyzed by

an expert pediatric cardiologist. The expert could re-auscultate the patient or request further

complementary tests if necessary. At the end of the session, the patient was discharged if

there was no need for further investigation, i.e., no pathogenic cardiac conditions. Otherwise,

the patient was either directed for a follow-up appointment or was referred to cardiac

catheterization or heart surgery as appropriate.

The PCGs were recorded using an electronic auscultation device (Littmann 3200

stethoscope) from four prominent auscultation locations on the body: aortic valve,

pulmonary valve, tricuspid valve, and mitral valve. However, some patients have recordings

from fewer than four locations, and some have multiple recordings per location. Thus, the

number of recordings, location, and duration varies between patients. For each patient, the

PCGs were recorded by the same operator sequentially (not simultaneously) from different

locations on the patient’s body. The PCGs were then inspected for signal-quality and

annotated into segments by a cardiac physiologist. The segmentation was carried out

semi-automatically using the three algorithms proposed in [8], [9], and [10] and the cardiac

physiologist’s judgment. The segmentation was done for the identification of the fundamental

heart sounds (S1 and S2 sounds) and their corresponding boundaries. The signal quality

assessment and segmentation were performed by different experts.

The murmur annotation (present, absent, and unknown) and characteristics (location,

timing, shape, pitch, quality, and grade) were manually identified by a cardiac physiologist

independent of available clinical notes and PCG segmentation. The cardiac physiologist

inspected the PCGs by listening to the audio recordings and by visually inspecting the

waveforms. The murmur annotations indicate whether the expert annotator could detect

the presence or absence of a murmur in a patient from the PCG recordings or whether the
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annotator was unsure about the presence or absence of a murmur. The murmur annotations

were performed by a single expert.

The clinical outcome annotations indicate if the clinical outcome as diagnosed by the

medical expert is normal or abnormal. The clinical expert analyzed the PCG recordings

and considered all clinical notes, including patient history, physical examination, and

echocardiogram report.

The Challenge dataset consists of 5272 PCG recordings from 1568 patients, divided into

training, validation, and test sets. We have publicly released 60% of the data as the training

set and retained the remaining 10% as the validation and 30% as the test sets. The validation

and test sets are hidden and will be used to evaluate the entries of the 2022 Challenge and

will be released only after the end of the Challenge.

2.1.1. Challenge Data Variables Table 1 shows the available information in the training,

validation, and test sets of the Challenge data.

We note that the labels may have errors, but we have used the provided labels for

scoring. We also note that no ages were recorded for pregnant women. It is unclear if the

pregnant women belong to the age group of the rest of the patients, or if they had a set of

exclusion criteria that was different from the other patients.

2.2. Challenge Objective

We designed the Challenge to explore the potential for algorithmic pre-screening of abnormal

heart function with application in resource-constrained environments. We asked the

Challenge participants to design working, open-source algorithms for identifying heart

murmurs and clinical outcomes from PCG recordings. For each patient encounter, each

algorithm interprets the PCG recordings and/or demographic data.

2.2.1. Challenge Timeline This year’s Challenge was the 23rd George B. Moody PhysioNet

Challenge [12]. As with previous years, this year’s Challenge had an unofficial phase and an

official phase.

The unofficial phase (February 1, 2022 to April 8, 2022) introduced the teams to the

Challenge. We publicly shared the Challenge objective, training data, example classifiers,

and evaluation metrics at the beginning of the unofficial phase. We invited the teams to

submit their code for evaluation, and we scored at most 5 entries from each team on the

hidden validation set during the unofficial phase.

Between the unofficial phase and official phase, we took a hiatus (April 9, 2022 to

April 30, 2022) to improve the Challenge in response to feedback from teams, the broader

community, and our collaborators.
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Table 1: Demographic, murmur, and clinical outcome information provided with the training,

validation, and test sets for the Challenge data; nan values indicate unknown or missing

values.

Variable Short description Possible values Datasets
Age Age category Neonate, Infant, Child,

Adolescent, Young Adult, nan
Training,
validation, test

Sex Reported sex Female, Male Training,
validation, test

Height Height in centimeters Positive number or nan Training,
validation, test

Weight Weight in kilograms Positive number or nan Training,
validation, test

Pregnancy
status

Reported pregnancy status True, False Training,
validation, test

Murmur Indicates if a murmur
is present, absent, or
unidentifiable for the annotator;
a Challenge label

Present, Absent, Unknown Training

Murmur
locations

Auscultation locations for
observed murmurs

PV, TV, AV, MV, Phc, nan
(concatenated with +)

Training

Most audible
location

Auscultation location where
murmurs sounded most intense

PV, TV, AV, MV, Phc, nan Training

Systolic murmur
timing

Timing of the murmur within
the systolic period

Early-systolic, Mid-systolic,
Late-systolic, Holosystolic, nan

Training

Systolic murmur
shape

Shape of the murmur in the
systolic period

Crescendo, Decrescendo,
Diamond, Plateau, nan

Training

Systolic murmur
pitch

Pitch of the murmur in the
systolic period

Low, Medium, High, nan Training

Systolic murmur
grading

Grading of the murmur in the
systolic period according to the
Levine scale [11]

I/VI, II/VI, III/VI, nan Training

Systolic murmur
quality

Quality of the murmur in the
systolic period

Blowing, Harsh, Musical, nan Training

Diastolic
murmur timing

Timing of the murmur within
the diastolic period

Early-diastolic, Mid-diastolic,
Holodiastolic, nan

Training

Diastolic
murmur shape

Shape of the murmur in the
diastolic period

Decrescendo, Plateau, nan Training

Diastolic
murmur pitch

Pitch of the murmur in the
diastolic period

Low, Medium, High, nan Training

Diastolic
murmur grading

Grading of the murmur in the
diastolic period

I/IV, II/IV, III/IV, nan Training

Diastolic
murmur quality

Quality of the murmur in the
diastolic period

Blowing, Harsh, nan Training

Outcome Indicates normal or abnormal
clinical outcome as diagnosed
by the medical expert; a
Challenge label

Normal, Abnormal Training

Campaign Screening campaign attended
by the patient

CC2014, CC2015 Training

Additional ID Other patient identifier for
patients who attended both
screening campaigns

Patient identifier Training

The official phase (May 1, 2022 to August 15, 2022) allowed the teams to refine

their approaches for the Challenge. We updated the Challenge objectives, data, example

classifiers, and evaluation metric at the beginning of the official phase. We again invited

teams to submit their code for evaluation, and we will score at most 10 entries from each

5

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 16, 2022. ; https://doi.org/10.1101/2022.08.11.22278688doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.11.22278688
http://creativecommons.org/licenses/by-nd/4.0/


team on the hidden validation set during the official phase.

After the end of the official phase, we will ask each team to choose a single entry from

their team for evaluation on the test set. We will allow the teams to choose any successful

model from the official phase, but most teams will choose their highest-scoring entry. We

will only evaluate one entry from each team on the test set to prevent sequential training

on the test set. The winners of the Challenge are the teams with the best scores on the test

set, and we will announce the winners at the end of the Computing in Cardiology (CinC)

2022 conference.

The teams will present and defend their work at CinC 2022, and they will write four-page

conference proceeding papers describing their work. We will publicly release the algorithms

after the end of the Challenge and the publication of these papers.

2.2.2. Challenge Rules and Expectations While we encouraged teams to ask questions,

pose concerns, and discuss the Challenge in a public forum, we prohibited the teams from

discussing or sharing their work during the unofficial phase, hiatus, and official phase of the

Challenge to preserve the diversity and uniqueness of the teams’ approaches.

For both phases of the Challenge, we required teams to submit their code for training

and running their models, including any code for processing or relabeling the data. We first

ran each team’s training code on the public training data to create trained models. We then

ran the trained models on the hidden validation and test sets to label the recordings; we ran

the trained models on the recordings sequentially to better reflect the screening process. We

then scored the outputs from the models.

We allowed the teams to submit either MATLAB or Python code; other implementations

were considered upon request. Participants containerized their code in Docker and submitted

it by sharing private GitHub or Gitlab repositories with their code. We downloaded

their code and ran it in containerized environments on Google Cloud. We described the

computational architecture of these environments entries more fully in [13].

Each entry had access to 8 virtual CPUs, 52GB RAM, 50GB local storage, and an

optional NVIDIA T4 Tensor Core GPU (driver version 470.82.01) with 16GB VRAM. We

imposed a 72 hour time limit for training the models on the training set without a GPU, a

48 hour time limit for training the models on the training set with a GPU, and a 24 hour

time limit for running the trained models on the validation set or test set either with or

without a GPU.

To aid teams, we shared example MATLAB and Python entries. These examples used

random forest classifiers with age group, sex, height, weight, pregnancy status, and the

presence, mean, variance, skewness (the first four order statistics) of the numerical values

in each recording as features. We did not design these example models to be competitive.

Instead, we used them to provide minimal working examples of how to read the Challenge

data and write the classifier outputs.
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2.2.3. Challenge Evaluation To capture the focus of this year’s Challenge on algorithmic

pre-screening, we developed scoring metrics for each of the two Challenge tasks: detecting

heart murmurs and identifying abnormal clinical outcomes from PCGs.

The murmurs are directly observable from the PCGs, but the clinical outcomes

reflected a more comprehensive diagnostic screening, including the interpretation of an

echocardiogram. However, despite these differences, we asked teams to perform both tasks

using only PCGs and routine demographic data to explore the diagnostic potential of

algorithmic approaches for interpreting PCGs.

The algorithms for both of these Challenge tasks effectively pre-screen patients for expert

referral. If an algorithm infers abnormal cardiac function, i.e., the classifier outputs are

murmur present, murmur unknown, or outcome abnormal, then it refers the patient to a

human expert for a confirmatory diagnosis and potential treatment. If the algorithm infers

normal cardiac function, i.e., if the classifier outputs are murmur absent or outcome normal,

then it does not refer the patient to an expert, and the patient does not receive treatment,

even if the patient has abnormal cardiac function that would have been detected by the

expert who provided the annotated labels. Fig. 1 illustrates algorithmic pre-screening in the

larger diagnostic pipeline.

For the murmur detection task, we introduced a weighted accuracy metric that assessed

the ability of an algorithm to reproduce the results of a skilled human annotator. For the

clinical outcome identification task, we introduced a cost-based scoring metric that reflected

the cost of human diagnostic screening as well as the costs of timely, delayed, and missed

treatments. The team with the highest weighted accuracy metric won the murmur detection

task, and the team with the lowest cost-based scoring metric won the clinical outcome

identification task.

We formulated versions of both of these metrics for both tasks to allow for more

direct comparisons; see the Appendix for the additional metrics. We also calculated several

traditional evaluation metrics to provide additional context.

Cost-based scoring is controversial because healthcare costs are an imperfect proxy

for health needs [14], [15]; we reflect on this important issue in the Section 4. However,

screening costs necessarily limit the ability to perform screening, especially in less-resourced

environments, so we have considered the ability of algorithmic pre-screening to defray costs

as an important part of improving access to cardiac screening.

Weighted Accuracy Metric We introduced a weighted accuracy metric to evaluate the

murmur detection classifiers. This metric assesses the ability of these classifiers to reproduce

the decisions of a physician expert. This weighted accuracy metric is similar to the traditional

accuracy metric, but it assigns more weight to patients that have or potentially have murmurs

than to patients that do not have murmurs. These weights reflect the rationale that, in

general, a missed diagnosis is more harmful than a false alarm.
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Figure 1: Screening and diagnosis pipeline for the Challenge. All patients receive algorithmic

pre-screening, and patients with positive results from algorithmic pre-screening receive

confirmatory expert screening and diagnosis. (i) Patients with positive results from

algorithmic pre-screening and expert screening and diagnosis receive treatment; they are

true positive cases. Patients with positive results from algorithmic pre-screening and

negative results from expert screening and diagnosis do not receive treatment; they are

false positive cases or false alarms. Patients with negative results from algorithmic pre-

screening who would have received positive results according to the expert annotations have

missed or delayed treatment; they are false negative cases. Patients with negative results

from algorithmic pre-screening who would have also received negative results from expert

screening and diagnosis also do not receive treatment; they are true negative cases.

Murmur Expert

Present Unknown Absent

Murmur Classifier

Present mPP mPU mPA

Unknown mUP mUU mUA

Absent mAP mAU mAA

Table 2: Confusion matrix for murmur detection with three classes: murmur present, murmur

unknown, and murmur absent. The columns are the ground truth labels from the human

annotator, and the rows are the classifier outputs. Each entry of the confusion matrix

provides the number of patients with each classifier output for each ground truth label.
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We defined a weighted accuracy metric for the murmur detection task as

amurmur =
5mPP + 3mUU +mAA

5(mPP +mUP +mAP) + 3(mPU +mUU +mAU) + (mPA +mUA +mAA)
, (1)

where Table 2 defines a three-by-three confusion matrix M = [mij] for the murmur present,

murmur unknown, and murmur absent classes.

The coefficients were chosen to reflect the trade-off between false positives and false

negatives, where clinicians may tolerate multiple false alarms to avoid a single missed

diagnosis. In this case, murmur present cases have five times the weight of murmur absent

cases (and the murmur unknown cases have three times the weight of murmur absent cases)

to reflect a tolerance of five false alarms for every one false positive.

Like the traditional accuracy metric, this metric only rewards algorithms for correctly

classified recordings, but it provides the highest reward for correctly classifying recordings

with murmurs and the lowest reward for correctly classifying recordings without murmurs,

i.e., recordings that were labeled as having or not having murmurs, respectively. It provides

an intermediate reward for correctly classifying recordings of unknown murmur status to

reflect the difficulty and importance of indicating when the quality of a recording is not

adequate for diagnosis.

We used (1) to rank the Challenge algorithms for the murmur detection task. The team

with the highest value of (1) will win this task.

Cost-based evaluation metric We introduced a cost-based evaluation metric to evaluate the

clinical outcome classifiers. This metric explores the ability of these classifiers to reduce

the costs associated with diagnosing and treating patients, primarily by reducing expert

screening of patients without abnormal cardiac function. We emphasize that healthcare

costs are an imperfect surrogate for health needs [14], [15]. However, these costs are a

necessary consideration as part of a resource-constrained environment.

For each patient encounter, the algorithm interprets the PCG recordings and

demographic data for the encounter. If an algorithm infers abnormal cardiac function, then

it refers the patient to a human expert for a confirmatory diagnosis. If the expert confirms

the diagnosis, then the patient receives treatment, and if the expert does not confirm the

diagnosis, then the patient does not receive treatment. If the algorithm infers normal cardiac

function, then it does not refer the patient to an expert, and the patient does not receive

treatment, even if the patient has abnormal cardiac function that would have been detected

as indicated by the annotated labels. Fig. 1 illustrates algorithmic pre-screening in the larger

diagnostic pipeline.

We associated each of these steps with a cost: the costs of algorithmic pre-screening,

the costs of expert screening, the costs of timely treatment, and the cost of delayed or missed

treatment.
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Clinical Outcome Expert

Abnormal Normal

Clinical Outcome Classifier
Abnormal nTP nFP

Normal nFN nTN

Table 3: Confusion matrix for clinical outcome detection with two classes: clinical outcome

abnormal and clinical outcome normal. The columns are the ground truth labels from the

human annotator, and the rows are the classifier outputs. Each entry of the confusion matrix

is the number of patients with the classifier outputs for the ground truth labels.

For simplicity, we assumed that algorithmic pre-screening has a relatively small cost that

depends linearly on the number of pre-screenings. We also assume that timely treatments

and delayed or missed treatments have relatively large costs that, on average, depend linearly

on the number of individuals. Given our focus on the ability of algorithmic pre-screening to

reduce human screening of patients with normal cardiac function, we assumed that expert

screening has an intermediate cost that depends non-linearly on the number of screenings

as well as the infrastructure and capacity of the healthcare system‡ Screening far below the

capacity of the healthcare system is inefficient and incurs a low total cost but high average

cost. Screening above the capacity of the healthcare system is highly inefficient and incurs

both a high average cost and a high total cost.

Therefore, we introduced the following cost-based evaluation metric for identifying

clinical outcomes in this setting. We defined the total cost of diagnosis and treatment

with algorithmic pre-screening as

ctotaloutcome = falgorithm(npatients)+ fexpert(nTP +nFP, npatients)+ ftreatment(nTP)+ ferror(nFN), (2)

where Table 3 defines a two-by-two confusion matrix N = [nij] for the clinical outcome

abnormal and normal classes, npatients = nTP + nFP + nFN + nTN is the total number of

patients, and falgorithm, fexpert, ftreatment, ferror are defined below.

Again, for simplicity, we assumed that the costs for algorithmic pre-screening, timely

treatment, and missed or late treatments were linear. We defined

falgorithm(s) = 10s (3)

as the total cost of s pre-screenings by an algorithm,

ftreatment(s) = 10000s (4)

as the total cost of s treatments, and

ferror(s) = 50000s (5)

‡ Of course, the treatment costs should be non-linear as well for similar reasons, but non-urgent treatment

is better able to utilize the capacity of the broader healthcare system.

10

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 16, 2022. ; https://doi.org/10.1101/2022.08.11.22278688doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.11.22278688
http://creativecommons.org/licenses/by-nd/4.0/


0.00 0.25 0.50 0.75 1.00

Fraction x of patient cohort
receiving expert screenings

0

2000

4000

6000

8000

10000
M

ea
n

p
er

-p
at

ie
n
t

ex
p

er
t

sc
re

en
in

g
co

st
g e

x
p

er
t(
x

)

(a) Mean per-patient expert screening cost

gexpert(x), i.e., the total expert screening cost

for a patient cohort divided by the number of

patients in the cohort.

0.00 0.25 0.50 0.75 1.00

Fraction x of patient cohort
receiving expert screenings

0

2000

4000

6000

8000

10000

M
ea

n
p

er
-s

cr
ee

n
in

g
ex

p
er

t
sc

re
en

in
g

co
st

g e
x
p

er
t(
x

)/
x

(b) Mean per-screening expert screening cost

gexpert(x)/x, i.e., the total expert screening cost

for a patient cohort divided by the number

of patients in the cohort and the fraction of

screenings in the cohort.

Figure 2: The expert screening cost gexpert(x) defined for the Challenge: mean cost for

screening a fraction x of a patient cohort for cardiac abnormalities.

as the total cost of s missed or delayed treatments.

To capture the utility of algorithmic pre-screening, we assumed the cost for expert

screening was non-linear. We defined

fexpert(s, t) =

(
25 + 397

s

t
− 1718

s2

t2
+ 11296

s4

t4

)
t (6)

as the total cost of s screenings by a human expert out of a population of t patients so that

gexpert(x) = 25 + 397x− 1718x2 + 11296x4 (7)

is the mean cost of screenings by a human expert when x = s/t of the patient cohort receives

expert screenings; this reparameterization of (6) allows us to compare algorithms on datasets

with different numbers of patients. We designed (6) and (7) so that the mean cost of an

expert screening was lowest when only 25% of the patient cohort received expert screenings

but higher when screening below and above the capacity of the system. Figure 2 shows these

costs across different patient cohort and screening sizes, and the Appendix provides a fuller

derivation of (6) and (7).

To compare costs for databases with different numbers of patients, e.g., the training,

validation, and test databases, we defined the mean per-patient cost of diagnosis and
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treatment with algorithmic pre-screening as

coutcome =
ctotaloutcome

npatients

. (8)

We used (8) to rank the Challenge algorithms for the murmur detection task. The team

with the lowest value of (8) will win this task.

3. Challenge Results

We will share an analysis of the Challenge results in an updated version of this manuscript

after the Challenge concludes.

We received 294 entries from over 81 teams during the unofficial phase of the Challenge.

The official phase of the Challenge is currently ongoing.

4. Discussion

We will share a discussion of the Challenge in an updated version of this manuscript after

the Challenge concludes.

5. Conclusions

We will share conclusions about the Challenge in an updated version of this manuscript after

the Challenge concludes.

This year’s Challenge explored the potential for algorithmic pre-screening of abnormal

heart function in resource-constrained environments. We asked the Challenge participants to

design working, open-source algorithms for identifying heart murmurs and clinical outcomes

from phonocardiogram (PCG) recordings. By reducing human screening of patients with

normal cardiac function, algorithms can lower healthcare costs and increase screening

capacity for patients with abnormal cardiac function.
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Clinical Outcome Expert

Abnormal Normal

Murmur Classifier

Present oPA oPN
Unknown oUA oUN

Absent oAA oAN

Table A1: Confusion matrix for murmur detection task with three classes (murmur present,

murmur unknown, and murmur absent) using clinical outcomes with two classes (clinical

outcome abnormal and clinical outcome normal). The columns are the ground truth labels

from the human annotator, and the rows are the classifier outputs. Each entry of the

confusion matrix is the number of patients with the classifier outputs for the ground truth

labels.

Appendix A. Further Challenge Evaluation

Appendix A.1. Additional scoring metrics

We defined additional scoring metrics to allow us to make more direct comparisons between

methods and tasks.

In particular, we defined a weighted accuracy metric for the clinical outcome

identification task as

aoutcome =
5nTP + nTN

5(nTP + nFN) + (nFP + nTN)
, (A.1)

where Table 3 defines a two-by-two confusion matrix N = [nij] for the clinical outcome

abnormal and normal classes.

We defined the total cost of diagnosis and treatment with algorithmic pre-screening of

murmurs as

ctotaloutcome = falgorithm(npatients)

+ fexpert(oPA + oPN + oUA + oUN, npatients)

+ ftreatment(oPA + oUA)

+ ferror(oAA),

(A.2)

where Table A1 defines a three-by-two confusion matrix O = [oij] for the clinical outcome

abnormal and normal classes, npatients is the total number of patients, and falgorithm, fexpert,

ftreatment, ferror are defined above.

Appendix A.2. Mathematical derivation of the cost-based scoring metric

We defined the cost of expert screening to reflect the non-linear costs associated with a

limited screening capacity of healthcare systems. While few screenings incurs lower costs,
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the screenings are typically more expensive on a per-screening basis because of the wasted

capacity of the system. Similarly, while more screenings incur higher costs, the screenings

are also typically more expensive on a per-screening basis because of the inadequate capacity

of the system.

Let s be the number of expert screenings in a patient cohort of t patients, and let

x = s/t be the fraction of the cohort receiving expert screenings. We defined gexpert(x) =

a+ bx+ cx2 + dx4 as the mean expert screening cost for screening a fraction x of a cohort,

and we in turn defined fexpert(s, t) = gexpert(s/t)t = at + bs + cs2

t
+ ds4

t3
as the total cost for

s expert screenings in a cohort of t patients. These quantity are quartic functions with four

unknowns, allowing us to satisfy four criteria:

(i) We set gexpert(0) = 25 to define a cost for maintaining the ability to perform expert

screening incurs a cost, even when screening x = 0 of a cohort, i.e., screening none of

the cohort.

(ii) We set d
dx

gexpert(x)/x |x= 1
4
= 0 so that mean expert screening cost cost achieved its

minimum when screening x = 1
4
of a cohort, which was roughly half of the prevalence

rate of abnormal cases in the database,

(iii) We set gexpert(
1
2
) = 1000 so that the mean expert screening cost was $1000 when

screening x = 1
2
of a cohort, which is roughly the prevalence rate of abnormal cases

in the database.

(iv) We set gexpert(1) = 10000 so that the mean expert screening cost was $10000 when

screening x = 1, i.e., screening all of the cohort, which is ten times the cost of screening

half of the database.

The unique coefficients that satisfy these conditions are a = 25, b = 397, c = −1718, and

d = 11296.
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