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Abstract  
The misdiagnosis between schizophrenia (SCZ) and bipolar disorder (BPD) has been a challenge in 
psychiatry. It is also a long-time unsolved mislabeled learning problem in machine learning and AI fields. 
In this study, we propose a psychiatric map (pMAP) diagnosis, which is built upon a novel feature self-
organizing map (fSOM) algorithm, to tackle it. The psychiatric map summarizes the latent essential 
characteristics of each observation on a two-dimensional fSOM plane. It solves the misdiagnosis problem 
by providing high-accuracy psychiatric detection via automatically mislabeled observation identification. 
Furthermore, pMAP provides powerful and informative visualization for each observation in unveiling 
hidden psychiatric subtype discovery. This study also presents new insight into the pathology of 
psychiatric disorders by constructing the devolution path of psychiatric states via relative entropy analysis 
that discloses latent internal transfer and devolution road maps between different subtypes of the control, 
BPD, and SCZ groups. To the best of our knowledge, it is the first study to solve mislabel learning for high-
dimensional data in machine learning and will inspire more future work in this field. 
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1 Introduction 

Bipolar disorder (BPD) and schizophrenia (SCZ) are two severe worldwide psychiatric disorders [1]. They 
both are highly heritable, complex neuropsychiatric diseases that share some similar clinical symptoms 
[2][3]. Schizophrenia (SCZ) is a chronic and severe mental health disorder characterized by hallucinations, 
delusions, and disorganized thinking [4][5]. Bipolar disorder (BPD) is a chronic mental illness that causes 
dramatic shifts in a person’s mood, energy, and ability to think clearly [6][7]. People with BPD have high 
and low spirits, known as mania and depression. According to the National Alliance on Mental Illness, it 
is reported that about 1% and 2.9% of Americans are diagnosed with schizophrenia and bipolar disorder 
respectively each year. 
 
Schizophrenia (SCZ) and bipolar disorder (BPD) diagnosis remain a challenge in psychiatry though recent 
progress has been made from different perspectives [8]. Neuroimage studies show that SCZ patients can 



exhibit a more characteristic pattern in brain imaging than normal people [9][10]. Similarly, brain 
abnormalities are found in people with bipolar disorder [11]. SCZ was reported to be related to neuronal-
level changes causing cortical excitation-inhibition imbalance [12][13]. However, it can be difficult to 
conduct an accurate SCZ/BPD diagnosis only from the neuro-imaging perspective [14][15][16][17]. 
 
Molecular-based SCZ and BPD investigations from a translational approach have been surging recently 
with the development of omics [18][19][20][21]. It makes it possible to understand the molecular 
pathogenesis of SCZ and BPD, explore their genetic root, and provide a more robust clinical diagnosis via 
examining molecular signatures. For example, Sahu et al found that there were both unique and 
overlapping molecular signatures between SCZ and BPD from a systems biology perspective [22]. Li et al 
suggested the role of DNA methylation in the pathogenesis of BPD and SCZ [23]. Ellis et al reported that 
the BPD and SCZ transcriptomes were not significantly correlated [24]. 
 
Liu et al showed that SCZ and BPD shared common pathways and BPD could be a subtype of SCZ via 
manifold learning and pathway analysis. They also pointed out that the inevitable misdiagnosis issue 
between them from a translational bioinformatics perspective because their diagnoses are mainly based on 
clinical symptoms rather than real genetic differences. The label information generally contains a large 
portion of incorrect information because of the widely existed misdiagnosis between BPD and SCZ, which 
echoes their high misdiagnosis rates in clinical practice [25]. Therefore, it is equivalent to a mislabeled 
machine learning problem that is not well solved in AI and data science [26][27][28]. 
 
 It is challenging to solve a mislabeled machine learning (ML) problem in AI, especially for high-
dimensional data. First, such a problem is rarely investigated in classic ML domains, in which data is 
generally assumed to have correct labels. Second, dropping possible mislabeled data in the learning 
procedure may only work well for those with a large number of samples. However, data generally used in 
SCZ and BPD detection is high dimensional omics data that has relatively a few samples (e.g., ~O(102)) but 
a large number of variables (e.g., ~O(105) ) [31][32]. It is infeasible to drop data because of the very limited 
number of observations. Third, high-dimensional data itself may put hurdles in the problem solving 
because it can be hard to seek meaningful variables in BPD and SCZ diagnosis. Therefore, it can be almost 
unlikely for any learning machine to achieve good performance under such a situation. 
 
However, solving the problem will bring unpreceded impacts on psychiatry disorder detection and shed 
light on mislabel learning. It would provide more accurate BPD and SCZ diagnosis from a genetic level via 
an explainable AI resolution [31][32][33]. Furthermore, it would solve the challenging mislabeled learning 
problem for small-sized data (e.g., high-dimensional data) by enriching existing ML. Since small-sized data 
is challenging existing health, biomedical, and AI fields, the solution to their related mislabeled learning 
problem will be more valuable for the sake of more resilient and robust AI health [34]. 
 
In this study, we propose a novel psychiatric map (pMAP) diagnosis for BPD and SCZ detection. The 
psychiatric map can be viewed as a special characteristic map on a two-dimensional plane for each 
observation. It summarizes the essential characteristics of each observation by conducting novel feature 
self-organization maps (fSOM) learning. Unlike traditional self-organization map (SOM) [35], fSOM seeks 
the prototype of each observation in the subspace spanned by ‘condensed features’ on the fSOM plane 
rather than clustering them [29]. Technically, it is also a nonlinear dimension reduction to map high-
dimensional data to its low-dimensional embedding. The proposed pMAP provides powerful visualization 
on the fSOM plane that captures the essential characteristics of each psychiatric observation.  
 
Figure 1 illustrates the psychiatric maps of control, BPD, and SCZ under fSOM using SNP data, where the 



same type of observations demonstrates similar or same patterns [1][3]. It shows those psychiatric maps of 
controls demonstrate clear differences with those of the BPD and SCZ samples. The proposed pMAP 
unveils latent subtypes via fSOM learning, in which those discovered two control, two BPD, and three SCZ 
subtypes are illustrated. 

 
Fig 1. The psychiatric maps of control, BPD, and SCZ samples obtained under fSOM learning by using SNP 
data.  A psychiatric map is a characteristic map of each observation such as a BPD/SCZ/control sample on 
the fSOM plane.  The control psychiatric maps demonstrate clear differences from those of the BPD and 
SCZ. It also provides an effective latent subtype discovery in psychiatric analysis. The proposed pMAP 
diagnosis unveils latent two control, two BPD, and three SCZ subtypes: control_0/1, BPD_0/1, and 
SCZ_0/1/2. 
 
The proposed approach has the following contributions. First, it effectively solves the long-term 
misdiagnosis issue between BPD and SCZ in psychiatry. It automatically detects mislabeled observations 
by generating psychiatric maps and relabels data with the help of density-based clustering (e.g., DBSCAN) 
[30]. It provides a novel path to solving mislabeled learning problems for high-dimensional data. It makes 
it possible to handle mislabeled learning problems for small-sized datasets. The small-sized datasets along 
with mislabeled information across data would fail almost all deep learning models because of the data 
scarcity issue [36]. Therefore, the proposed technology is especially valuable not only for psychiatry but 
also for most biomedical fields. 
 
Second, the proposed pMAP presents novel visualization for high-dimensional SNP psychiatry data 
besides unveiling the latent subtypes for psychiatry samples. It transforms each high-dimensional 
observation into its psychiatric map, a characteristic 2D image that captures the sample prototype described 
by the key SNPs. To the best of our knowledge, it is the first work in mislabeled learning, psychiatry 
disorder, and extremely high-dimensional SNP data visualization, which generally can have hundreds of 
million features. The built-in powerful visualization in the pMAP diagnosis makes it an explainable AI 
technique with transparency and trustworthiness. The pMAP-based visualization can be exploited to 
provide knowledge-discovery-based visualization in other biomedical fields that use high-dimensional 
data. The knowledgeable pMAPs will assist doctors to understand the latent disease statuses/subtypes, 



achieve high-accuracy diagnoses, and enhance clinical decision-making.  
 
Third, this work proposes a novel customized entropy analysis to explain the results of pMAP diagnosis 
in BPD and SCZ detection.  We find that both BPD and SCZ samples tend to have lower entropies than the 
control samples. It suggests that molecular patterns of the samples with psychiatric disorders should 
contain a ‘less random’ information pattern than the ordinary samples from SNP data analysis.  More 
importantly, we construct the devolution paths and internal transfers between different psychiatric states 
via relative entropy analysis to shed light on the pathology of psychiatric disorders.  
 
This paper is structured as follows. Section 2 introduces pMAP generation and the principle of pMAP 
diagnosis besides presenting fSOM learning. Section 3 covers data and data preprocessing and section 4 
conducts psychiatric map analysis from different perspectives, in which the novel devolution paths of 
psychiatric states via relative entropy analysis are unrolled for BPD and SCZ discovery. Section 5 presents 
the detailed results of pMAP diagnosis and compares it with the state-of-the-art ML and deep learning 
methods. Finally, we discuss the potential weakness and possible enhancements of our methods before 
concluding this study. 
   

2 The principle of psychiatric map (pMAP) diagnosis 

It can be technically hard to attain a satisfactory BPD and SCZ diagnosis by only applying existing ML or 
deep learning models to high dimensional omics data (e.g., SNP) with mislabeled information because of 
the widely existed misdiagnosis between BPD and SCZ in the clinical practice. The special mislabeled data 
handling techniques are urgent to solve this problem besides the effective high dimensional data feature 
selection.  
 
It is desirable to extract the prototype of each observation to distinguish possibly mislabeled samples from 
an unsupervised self-organizing approach under an effective SNP feature selection. The prototype contains 
the essential characteristics of each sample that can be a good discriminator to correct the mislabeled 
samples.  To achieve this goal, we propose a novel feature self-organizing map (fSOM) learning to obtain 
the prototype of each observation. Unlike traditional SOM which dynamically looks for similarities 
between input samples, the proposed fSOM seeks to condense thousands of SNP features on a low-
dimensional fSOM plane to derive all the prototypes of input data, which is called a psychiatric map 
(pMAP) in this study. 
 
2.1 Psychiatric map (pMAP) diagnosis 

The proposed pMAP diagnosis consists of three major steps: 1) pMAP generation with fSOM learning; 2) 
DBSCAN (Density-based spatial clustering of applications with noise) clustering for pMAPs; 3) Relabeled 
sample learning. We describe the detailed steps as follows. 
 
pMAP generation. The pMAP diagnosis is built upon the SNP dataset after preprocessing which can be 
found in the Data and preprocessing section.  The pMAP diagnosis first seeks a pMAP for each observation 
that is an SNP sample in our context. The psychiatric map (pMAP) is the corresponding prototype of each 
original observation in the input space ℝ!, in which n represents the number of SNPs that can reach  𝑂(10") 
before feature selection. 
 
It	 captures	 the	essential	 characteristics	of	each	sample	and	generates	 its	prototype	 in	 the	 low-dimensional	



fSOM	plane	through	proposed	fSOM	learning.	Mathematically	it	is	a	reference	vector	in	ℝ! , 𝑘 ≪ 𝑛,	representing	
the	characteristic	map	of	the	sample	on	the	√𝑘 × √𝑘	fSOM	plane. Since the pMAPs are the prototypes of the 
original samples, those with similar pMAPs should belong to the same group, but the mislabeled samples 
will demonstrate different pMAP patterns as the group it ‘belongs to’.  For example, a BPD sample that is 
mislabeled as an SCZ type will have a dissimilar pMAP as the true SCZ. On the other hand, it would have 
similar or even the same pMAP patterns as the true BPD. 
 
DBSCAN clustering for pMAPs. The pMAP diagnosis employs a DBSCAN (density-based spatial 
clustering of applications with noise) to cluster the pMAPs of input samples in the low-dimensional space 
that is represented as an fSOM plane geometrically. The clustering results are used to correct possible 
mislabeled samples. DBSCAN to conduct good clustering for its robustness and advantages compared to 
the widely used clustering methods such as K-means. K-means can be a good candidate for pMAP 
clustering because we already know the prior three groups of samples: control, SCZ, and BPD. However, 
there are two reasons for us to select the density-based clustering method DBSCAN rather than the popular 
K-means. The first is that K-means would require input data is convex. But we cannot guarantee the pMAPs 
generated from fSOM learning will satisfy it. Furthermore, we find that pMAPs can have concaved shapes 
on the fSOM plane. The second is that K-means would limit the possible new subgroup detection 
somewhat, i.e., the pMAP generation stage brings the prototypes of input samples that are not only limited 
to the original three types. Instead, the pMAPs generated from fSOM learning unveil new knowledge in 
the self-organizing learning process: the control, SCZ, and BPD groups all have their different subtypes. 
Thus, we do need a clustering algorithm that can automatically identify the number of clusters for input 
pMAPs for the sake of deep knowledge discovery. After the DBSCAN clustering, pMAPs will be grouped 
into different clusters for the following relabel sample learning. 
 
Relabeled sample learning. We relabel the original samples and their pMAPs according to the DBSCAN 
clustering result. Although we have found the subtypes for each psychiatric group, we still label those from 
the same group (e.g., BPD) as one type rather than dividing them into different types for the sake of learning 
and peer comparisons. After the relabeling procedure, an ML model is used to conduct a BPD and SCZ 
diagnosis for the relabeled psychiatric maps. Theoretically, any ML model can be employed, but we prefer 
the ML model to satisfy the following characteristics for high-performance psychiatric diagnosis.  
 
First, it should have good reproducibility so that the BPD and SCZ diagnosis would not change from run 
to run. Such good reproducibility has important clinical meaning to decrease false positive rates. In other 
words, we should avoid those ensemble learning methods such as random forests or deep learning models 
because their results may lack good reproducibility, though their learning performance can be good. 
 
Second, it should have a built-in advantage to handle high-dimensional data, especially high-dimensional 
data with a small number of samples. In other words, its complexity should not increase much for high-
dimensional data. The deep learning models generally need a large amount of data in the training stage to 
build sophisticated prediction functions, but they are not good for high-dimensional data with only a small 
number of samples in context [39].  
 
Therefore, we employ multi-class support vector machines (multi-class SVM) because it satisfies the above 
two well [40]. It has a very good reproducibility because it is equivalent to solving a deterministic nonlinear 
programming problem with the least randomness involved. Furthermore, it is good at handling high-
dimensional data because the kernel matrix calculated from high-dimensional data can be a relatively small 
and efficient one, which can speed up the whole SVM learning by avoiding possible computing overhead 



[40].  
 
Entropy analysis for relabeled psychiatric samples.  In the post-analysis of the pMAP diagnosis, we define 
a novel data entropy and relative entropy (KL divergence) to quantify each psychiatric map (pMAP) and 
investigate how entropies vary among different psychiatric subtype groups [41]. Traditionally, it is almost 
impossible to compute the entropy and relative entropy for a group of psychiatric samples, which is 
represented as a data matrix mathematically. With the help of the pMAPs, we have the following novel 
data entropy and KL divergence techniques for a group of psychiatric subtype samples. The details about 
entropy and KL-divergence calculation techniques can be found in the following section. We also examine 
the devolution paths of psychiatric states via relative entropy analysis. 

 
 
Fig 2. The flowchart of the proposed psychiatric map (pMAP) diagnosis. It employs feature self-organizing 
(fSOM) to generate a psychiatric map (pMAP) for each observation that can be a schizophrenia (SCZ), a 
bipolar disorder (BPD), or a control sample. The pMAPs are clustered under DBSCAN and further 
relabeled accordingly. Finally, the relabeled observations are inputted into the learning machine (e.g., 



multi-class SVM) for diagnosis. In the post-analysis of the pMAP diagnosis, entropy analysis unveils the 
distributions of relabeled psychiatric sample entropies and their K-L divergence patterns.  
 
Figure 2 illustrates the flowchart of the proposed pMAP diagnosis that consists of three major steps: 1) 
psychiatric map (pMAP) generation using the proposed feature self-organizing (fSOM) learning. 2) 
DBSCAN clustering for pMAPs. 3) Relabeled sample learning and entropy analysis. In this step, the 
psychiatric samples are further relabeled according to the DBSCAN clustering results for their pMAPs to 
correct the possible mislabeled samples before conducting psychiatry diagnosis with multi-class SVM. The 
following Algorithm 1 summarizes the proposed psychiatric maps (pMAP) diagnosis. The complexity of 
the proposed algorithm complexity is 𝑂(𝑛𝑚𝑘 +𝑚𝑙𝑜𝑔𝑚) + 𝑂(𝜃), where 𝑂(𝜃) is the complexity of the machine 
learning method used in psychiatric map diagnosis. 
 

Algorithm 1: Psychiatric map (pMAP) diagnosis 
Input: 

Data:	𝑋 ∈ ℝ"×$	with m observations across n features, n>>m	
Machine learning model: 𝜃 (default: multi-class SVM) 
The size of SOM plane √𝑘 × √𝑘 (default: k =  20 × 20	) 
Epoch of fSOM (default 1000) 
𝑚𝑖𝑛𝑝𝑡𝑠 (the minimum number of points in a core-point neighborhood: default 10)  
𝑒𝑝𝑠 (the minimum distance between two points in clustering: default 0.05)	

Output: 
Psychiatric maps (pMAPs):	𝑋%$&% 
Predicted labels of test data in 𝑋 
 

1. 𝑋%$&% ← 𝑓𝑆𝑂𝑀(𝑋, 𝑘, 𝑒𝑝𝑜𝑐ℎ) // Compute the psychiatric map (pMAP) for each observation 
2. 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥	 ← 𝐷𝐵𝑆𝐶𝐴𝑁(𝑋%$&%, 𝑚𝑖𝑛𝑝𝑡𝑠, 𝑒𝑝𝑠) // DBSCAN clustering for psychiatric maps (pMAPs) 
3. 

 
(𝑋%$&%, 𝑙𝑎𝑏𝑒𝑙) ←Relabel(𝑋%$&%,	𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥)	//Relabeling pMAPs according to clustering results 

4. 𝜃 ← 𝑓𝑖𝑡(𝜃, 𝑋%$&%'(&)" , 𝑙𝑎𝑏𝑒𝑙) // Train machine learning model θ using relabeled training data 
5. 𝑦'Q 	← 𝜃. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋%$&%'*+' ) // Prediction for test data  
6. Return 𝑦'Q  

 
 
2.2 Feature self-organizing map (fSOM) learning  

Feature self-organizing map (fSOM) learning is an unsupervised learning model rooted in neurobiology 
for high-dimensional data. Unlike traditional SOM, fSOM conducts self-organizing for features rather than 
observations. It produces a set of condensed features on the SOM plane rather than the clustering of original 
observations. More importantly, fSOM can produce the prototype of each observation in a low-dimensional 
space spanned by condensed features. It also contributes to the meaningful knowledge-based 
representation of each obversion.  
 
fSOM	consists	of	an	input	high-dimensional	dataset,	𝑋	 ∈ 	ℝ"×$	with	n	features	across	m	observations,	an	SOM	
plane	𝛲,	a	 two-dimensional	 lattice	 consisting	of	√𝑘 × √𝑘	(e.g.,	k=400)	neurons,	and	an	unsupervised	 learning	
algorithm:	𝜃:	𝑓𝑆𝑂𝑀 = (𝑋, 𝛲, 𝜃).	The fSOM plane	𝛲	is	a	set	of	neurons	placed	on	a	two-dimensional	lattice.	Each	
neuron	 i	 ,𝑖 = 1, 2⋯𝑘	on	 the fSOM plane	 has	 a	 reference	 vector	𝑤) ∈ ℝ$ . fSOM maps	 the	 original	𝑛	(𝑛 ≫ 𝑘)	
features	as	𝑘	characteristic	features	through	self-organizing	learning	on	the fSOM plane.		
	



As a nonlinear dimension reduction method, fSOM maps high-dimensional data 𝑋 ∈ ℝ!×$ with 𝑛 features 
and 𝑚 observations to a low-dimensional dataset 𝑊 ∈ ℝ%×$, which is also called a reference vector matrix, 
by maintaining and capturing the most representative features. The 𝑖&'  column of 𝑊:𝑊(  is called the 
prototype of the original 𝑖&'  sample of 𝑋:𝑋(  that captures the essential characteristics of the original 
observation in a low-dimensional feature space. Thus, fSOM maps input data to its prototype in a 
condensed feature space, i.e., 𝑓𝑆𝑂𝑀:	𝑋 → 𝑊 ∈ ℝ!×$, 𝑘 < 𝑛.  The reference vector matrix 𝑊 = [𝑤),𝑤+⋯𝑤%]& 
after the SOM finishes learning, the reference vector matrix 	𝑊 is the extracted prototype data for the input 
dataset 𝑋 in the low-dimensional space. 
 
The fSOM learning procedures. The fSOM learning process follows the general self-organizing learning 
procedure that consists of loops of three stages: competition, cooperation, and adjusting.  In the competition 
stage, fSOM queries all neurons 𝑖, 𝑖 = 1,2⋯𝑘  on the fSOM plane to find a candidate 𝑗∗  with the closest 
reference vector 𝑊-∗ to a feature 𝑥 ∈ 𝑋 according to a specific distance measure (e.g., Euclidean): 𝑑d𝑥 −𝑊-∗f =
𝑚𝑖𝑛
)
{𝑑(𝑥,𝑊))}. The candidate 𝑗∗, the winning neuron in the competition, is identified as the best match unit 

(BMU) for the feature 𝑥. 
	
In the cooperation stage, the reference vectors of the winning neuron 𝑗∗ in the topological neighborhood of 
the BMU are updated as: 

 𝑊)(𝑡 + 1) = 𝑊)(𝑡) + 𝛼(𝑡)ℎ-∗)(𝑡)(𝑥 −𝑊)(𝑡)) (1) 
to make them more and more ‘similar’ to the feature 𝑥.  The 𝛼(𝑡) ∈ (0,1) is the learning rate at time phrase 
𝑡 . The ℎ-∗)  is the neighborhood function generally chosen as a Gaussian kernel function ℎ-∗)(𝑡) =
𝑒.("∗/(#.

$ 01$(')4 . The Gaussian function is more biologically meaningful and leads to the fast convergence. 
The 𝑟-∗ and 𝑟) are the topological locations of the best match unit (BMU) and 𝑖'5 neuron on the SOM plane, 
and the parameter 𝜎 denotes the radius of the topological neighborhood.  

 
In the adjusting stage, the learning rate is adjusted, and the neighborhood radius decreases with respect to 

time exponentially to localize the reference vector matrix iterations. That is, 𝜎(𝑡) = 𝜎(0)𝑒
%&
'(, 𝛼(𝑡) = 𝛼(0)𝑒

%&
'$, 

𝑡 = 0, 1,2,⋯. The 𝛼(0) and 𝜎(0) are the initial learning rate and neighborhood size respectively and 𝜏6 and 𝜏0 
are pre-selected time constants. 
 
The three stages are repeated until the reference vector matrix 𝑊  converges. The SOM learning is 
equivalent to a gradient-based optimization algorithm. If the objective function is defined as the local 
energy function at the time for a neighborhood centered in the winning neuron 𝑗:  

 𝑒(𝑡) =lℎ-)(𝑡)‖𝑥 −𝑊)(𝑡)‖0
!

)76

 (2) 

where the distance measure is any specified distance metric. Thus, the iteration scheme in the cooperation 
stage is equivalent to finding the optimal reference vector in a neuron to minimize the specified local energy 
function specified by the following gradient optimization problem: 

 𝑊)(𝑡) = 𝑊)(𝑡) − 𝛼(𝑡)𝐼
𝜕𝑒(𝑡)
𝜕𝑊)(𝑡)

 (3) 

where I is an identity matrix and 𝛼(𝑡)𝐼 is the learning rate matrix. Similarly, the global energy function 𝑒(𝑡) 
can be defined as the sum of all local energy for all entries in the training data set. The computing 
complexity of one epoch of training to minimize the global energy function is 𝛰(𝑛𝑚𝑘). 
 
The described learning algorithm in fSOM is called sequence learning. There is an acceleration learning 



algorithm called batch learning to speed up sequence learning. In batch learning, total data samples are 
involved in each update of the reference vector matrix 𝑊. Compared with the sequential learning, the batch 
learning algorithm converges fast and is free from learning rate adjustments but is more likely to trap in a 
local minimum. Batch learning is employed in our implementation for the sake of its powerful convergence 
speed. 
 
2.3 Density-based spatial clustering of applications with noise (DBSCAN) 

DBSCAN is a density-based clustering algorithm that handles arbitrary-shaped clusters with noise [41]. 
DBSCAN classifies points as core, reachable, and outliers (noise). A core point simply refers to a point 
whose neighborhood has enough points under a radius 𝜀. A reachable point is a point that can be reached 
by one or a sequence of core points and an outlier is an unreachable point, i.e., noise. In our context, it will 
be a transaction with exceptional trading behaviors that are potential to be trading markers. The core points 
form clusters because of their high densities, the reachable points form the edge of clusters, and the outliers 
stand out as noise in clustering.  
 
The primary idea of DBSCAN can be described briefly as follows. Given a point to be clustered, DBSCAN 
retrieves its ε-neighborhood. If the neighborhood size is ≥  the minimum number of points (minpts) 
required to form a ‘dense region’, i.e., a region with an enough number of close points, the neighbor will 
be initialized as a cluster and the point is marked as a core point. Otherwise, the point is marked as an 
outlier.  If the point is a reachable point for a cluster, its ε-neighborhood will be marked as a part of that 
cluster. All points in the ε-neighborhood will be added to the cluster until the density condition is satisfied. 
This procedure continues until all clusters and outliers are identified. The average running time complexity 
of DBSCAN is 𝑂(𝑛𝑙𝑜𝑔𝑛)  if a meaningful neighborhood radius ε is selected, though the worse time 
complexity is 𝑂(𝑛0). 

3 Data and preprocessing 

We briefly introduce SNP data and nonnegative singular value approximation (nSVA), which is an effective 
feature selection algorithm proposed by Han for high-dimensional data [38]. 
 
The original SNP data (GSE71443) downloaded from the NCBI GEO database includes 74 control, 65 
bipolar disorder (BPD), and 64 schizophrenia (SCZ) subjects [42][43]. To obtain the significant differentially 
expressed SNP loci, we first filter those SNPs with missing annotations, not on autosomes or sex 
chromosomes, or diverged from Hardy-Weinberg equilibrium (HWE) with 𝑝_𝑣𝑎𝑙𝑢𝑒 < 10/68 [42]. We still 
have a total of 627,693 SNPs left after the initial filtering. We further screen statistically significant SNPs 
using ANOVA with 𝐹𝐷𝑅 < 0.01 and remove those SNPs in the linkage disequilibrium (LD) using 𝑅0 > 0.25 
[42]. Finally, we have a total of 5,843 SNPs across 74 control, 65 BPD, and 64 SCZ samples.  
 
It is desirable to seek the most important features from the preprocessed SNP data. We conduct an effective 
SNP feature selection by using nonnegative singular value approximation (nSVA) [38]. Unlike the 
traditional model-driven methods that generally assume SNP data subject to a specific probability 
distribution, nSVA feature selection is a purely data-driven feature selection method. It ranks the 
importance of each SNP by taking advantage of the nonnegativity of input SNP data. Our previous work 
shows that it can identify meaningful feature selection for high-accuracy downstream analysis such as 
classification and pathway analysis. Therefore, we conduct nSVA feature selection from the data with 5843 
SNPs to obtain the datasets with the top-ranked 10%, 20%, 30%, …, 90%, and 100% features.  The datasets 
will be employed in the proposed psychiatric map diagnosis. 



4 Psychiatric map analysis 

The pMAPs generated from the fSOM learning step unveil the latent subtypes of control, BPD, and SCZ. 
Unlike the original assumptions that samples are partitioned as control, BPD, and SCZ groups, the pMAPs 
discover that there are two subtypes for control, two subtypes for BPD, and three subtypes for SCZ. It 
suggests that the pMAP generation procedure provides a meaningful knowledge discovery process to 
disclose intrinsic data characteristics, which will be essentially important for mislabeled data. 

 
Fig 3. The pMAPs of control, BPD, and SCZ generated from fSOM learning.  (a) shows the type 0 and type 
1 pMAPs of control, BPD, and SCZ.  (b) illustrates the pMAPs of all the three discovered SCZ subtypes.  
The pMAPs of controls demonstrate obvious differences from those of the BPD and SCZ. The pMAPs of 
SCZ 0 (‘type 0’), SCZ 2 (‘type 2), and BPD 0 (‘type 0’) share very similar patterns indicating they are highly 
potentially mislabeled ones. 
 
4.1 Psychiatric subtype visualizations via pMAPs 

The pMAPs provide a powerful visualization technique to discover different new subtypes for the original 
control, BPD, and SCZ samples. Figure 3 illustrates the pMAPs of the three types of samples as well as their 
new subtypes discovered in fSOM learning. It shows that control has two types of psychiatric maps named  
‘control’ type 0 and type 1, both of which have blue regions, in which the reference vectors have small 
values, on the right boundary of the SOM plane. The pMAPs of the control samples demonstrate quite clear 
differences from those of the BPD and SCZ samples. It concurs with our previous results that general 



machine learning can achieve 98% diagnostic accuracy between control and BPD/SCZ, which is 
approximately a linearly separable problem.  
 
The pMAPs unveil subtypes with different patterns for those from the same group. For example, Fig 3 (a) 
illustrates the two different subtypes of pMAPs of the BPD samples, in which the red and blue regions lie 
on the right and left sides of the fSOM plane respectively. Similarly, Fig 3 (b) shows that the SCZ samples 
consist of three different hidden types of pMAPs, named SCZ 0, 1, and 2 respectively. 
 
However, it is possible that some pMAPs from different types share similar patterns because of widely 
existing misdiagnosis between BPD and SCZ [25][26]. Under this situation, it is rational to doubt they 
represent mislabeled samples due to possible misdiagnosis. For example, the pMAPs of SCZ 0 and BPD 0 
share very similar patterns, but they are labeled as different types. Since the pMAPs are obtained from 
unsupervised feature self-organizing map learning (fSOM), the pMAPs with similar patterns should stem 
from the same type rather than different ones. As the pMAPs are ‘discovered latent patterns’ from input 
SNP data, the label information of the samples should be consistent with their pMAPs. Therefore, those 
samples (e.g., SCZ 0 and BPD 0) with similar pMAPs but different labels are highly likely to be mislabeled 
ones. In other words, the pMAPs can unveil mislabeled samples via a unique visualization viewpoint and 
build a solid foundation for solving mislabeled learning problems. 
 
4.2 Psychiatric subtype probability density function investigation 

 
Fig 4.  The p.d.f.s of the different subtypes of the control, BPD, and SCZ samples. The subplots (a) to (c) 
illustrate the p.d.f.s of the subtypes of the three groups and suggest quite good differences between the 
control and two psychiatric groups for their different shapes as well as different skewness and kurtosis 
values. The subplots (d) to (i) illustrate the pairwise comparisons of the p.d.f.s of the BPD and SCZ subtypes. 
It also strongly suggests the similarity between the subtypes BPD 0, SCZ 0, and SCZ 2, which may indicate 
the occurrence of mislabeled types. 



 
The pMAPs also provide a powerful way for us to build the probability density function (p.d.f) for each 
type of sample, which will contribute to detecting mislabeled samples in a more rigorous way [44][45]. We 
apply Gaussian kernel density estimation to the reference vector matrix of each sample, which is reshaped 
as a 1-dimensional vector, to estimate the probability density functions of different types of samples 
[46][47]. Figure 4 compares the probability density functions of the control, BPD, and SCZ samples. It shows 
that the two control subtypes have clear differences with BPD and SCZ in their p.d.f.s.  
 
The pMAPs provide a more rigorous way to detect different discovered psychiatric subtypes by 
constructing the probability density function (p.d.f.) for each subtype.  Traditionally, it is almost unlikely to 
obtain the p.d.f.s of different psychiatric types for high-dimensional data due to the lack of rigorously 
statistical theory and techniques.  We estimate the p.d.f. of each subtype by employing the reference vector 
matrix of each psychiatric sample on the fSOM plane, which is reshaped as a corresponding 1-dimensional 
vector, via Gaussian kernel density estimation techniques [46][47].  
 
Figure 4 further compares probability density functions (p.d.f.s) of the subtypes of the control, BPD, and 
SCZ samples from different perspectives, where the horizontal direction represents the gene expression 
levels. The subfigures from (a) to (c) summarize the p.d.f.s of the subtypes in each group and indicate their 
obvious differences, where the p.d.f.s of the two control subtypes have very different skewness. For 
example, the skewness and kurtosis values of 'control 0' are 0.9946 and -0.3445, but those of 'control 1' are 
0.3517 and -1.3085.  
 
The subfigures from (d) to (i) pairwisely compare the p.d.f.s of the subtypes of the BPD and SCZ groups. It 
also strongly suggests the similarity between the subtypes BPD 0, SCZ 0, and SCZ 2, which may indicate 
the occurrence of mislabeled types. On the other hand, the ranges of the SNP expression levels of the 
different p.d.f.s of the subtypes fall in different intervals on the fSOM plane. For example, the range of the 
SNP expressions of p.d.f.s of the control 0 and control 1 fall in [20, 70] and [28,70] respectively.  It illustrates 
the good sensitivity of fSOM learning in uncovering the latent data characteristics of each group in a low-
dimensional space.  
 
4.3 Mislabeled sample detection and relabeling via pMAP clustering 

It is desirable to seek the ground truth labels and tackle the mislabeled issue by clustering the pMAPs, 
because those samples from the same psychiatric type will be more likely to be grouped in the same cluster 
for the similarities of their pMAPs patterns. As a widely used clustering algorithm with simplicity and 
good explainability, K-means could be a good candidate to accomplish it, especially because the general 
number of clusters is already known in our context [48]. However, K-means clustering only works well for 
convex data but may fail badly for non-convex data [49]. However, there is no guarantee that the pMAPs 
from the fSOM learning would be convex.  Furthermore, K-means clustering is sensitive to noise that can 
be interpreted as some mislabeled samples. Besides, it may lead to possible sub-optimal clustering results 
because of the trapping in the local minimum easily [50].  
 
Therefore, we may need a clustering algorithm that can handle both convex and nonconvex data as well as 
demonstrate robustness to noise.  DBSCAN is a state-of-the-art clustering algorithm that works well for 
arbitrary-shaped data and is robust to noise. More importantly, DBSCAN can automatically find the 
number of clusters for input data, which is particularly useful to seek different psychiatric subtypes and 
unveil latent clustering structures. Thus, DBSCAN prepares itself as a good candidate for pMAP clustering 
to screen the possible mislabeled samples to look for the ground truth. 



 
The results of DBSCAN clustering demonstrate that those originally mislabeled samples will be more 
highly likely to fall into the same cluster because of the proximity of their pMAPs. For example, a BPD 0 
sample will be clustered into the same cluster as an SCZ 0 or SCZ 2 sample because their pMAPs share 
good similarities that suggests the possible mislabel happen to them. Technically, they are misdiagnosed 
patients in clinical practice because of their similar psychiatric symptoms according to the current BPD and 
SCZ categorization standards [51]. 
 
Figure 5 shows the DBSCAN clusters the pMAPs of the three groups as 5 subclusters, where the control 
samples are separated well from those of the BPD and SCZ samples. However, the BPD 0, SCZ 0, and SCZ 
2 samples are clustered in the two close subclusters and BPD 1 and SCZ 1 samples are clustered as a 
relatively independent subcluster. Since the samples with different labels falling in the same cluster may 
indicate the possible mislabel issue, we relabel them to form new psychiatric groups BPD* and SCZ* 
separately to reflect the ground truth better, i.e., the cluster consisting of BPD 1 and SCZ 1 samples from 
the BPD* group and the clusters consisting of BPD 0, SCZ 0, and SCZ 2 generate the SCZ* group. 
 

 
 
Fig 5. The structure of the pMAP clustering.  The pMAP clustering result consists of 5 subclusters under 
DBSCAN:  the control group partitioned as the control 0 and 1 subclusters is clearly separated from the 
mixed BPD and SCZ groups consisting of three subclusters.  Different colors indicate different scales of the 
values in the pMAP, i.e., red and yellow symbolize the largest numerical values, and dark blue indicates 
the corresponding numerical values close to zero. The BPD 0, SCZ 0, and SCZ 2 samples, which are 
clustered in the two subclusters for their similar pMAPs, form a new psychiatric group BPD*. So are the 
clustered BPD 1 and SCZ 1 samples that generate another psychiatric group SCZ*.  
 



4.4 The devolution paths of psychiatric states via relative entropy analysis  

Devolution path and intrinsic transfer. To further demonstrate the possible pathological devolution path, 
we conduct a novel relative entropy analysis for the pMAPs after the relabeling procedure. The devolution 
path refers to the generic devolution process from a normal psychiatric state to dysregulated psychiatric 
states such as bipolar disorders or schizophrenia states. Similarly, we call the change between two subtypes 
of dysregulated psychiatric states an internal transfer. 
 
The devolution path can be inferred by calculating the relative entropy, i.e., the K-L divergence of the 
different psychiatric states. Unlike the traditional symmetric distances, the non-symmetry of the K-L 
divergence provides a good measure to evaluate the devolution distance between the two psychiatric 
states. It is almost theoretically impossible to achieve it using the original SNP data because the probability 
distribution of high-dimensional SNP data is unknown. However, we can define the K-L divergence by 
using the pMAPs of each psychiatric group as follows. 
 
Given	two	datasets	𝑋 = {𝑥)})76" , 𝑖𝑛	ℛ"×%	and	𝑇 = {𝑡)})76$ , ℛ$×%	representing	two	different	psychotic	groups,	the	KL	
divergence	between	them	is	defined	as,		

	 𝐾𝐿(𝑝 ∥ 𝑞) =l𝑝)𝑙𝑜𝑔
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%
-76 ,	𝑠- 	is	the	jth	singular	value	of	𝑋	and	𝑞- = 𝑢-/∑ 𝑢-

%
-76 ,	𝑢- 	is	the	jth	singular	value	of	𝑇.	

 
We use the pMAPs of each psychotic group (e.g., control 1) to represent their original one to calculate their 
K-L divergence. Figure 6 illustrates the K-L divergences from the two control subgroups to the other two 
dysregulated psychiatric states. The results seem to echo our previous relabeling result as well as provide 
more insights for possible devolution paths.  Figure 6 (a) shows that the control 1 subgroup is closer to BPD 
1 in terms of KL-divergence than control 0.  It suggests that the control 1 state tends to go devolution to the 
BPD 1 state more likely compared to the control 0 state. That both control 0 and control 1 have almost the 
same K-L divergence to the SCZ 0 suggests they have the same likelihood to devote to the ‘SCZ 0’ state. 
Similarly, the ‘control 1’ state seems to devote to the SCZ 2 with a higher likelihood than the ‘control 0’ 
state. Figure 6 (b) illustrates that the. The ‘BPD 1’ state is least likely to conduct an internal transfer to the 
SCZ 2 compared to other dysregulated psychiatric states. 

 
Fig 6. The K-L divergence analysis between the different psychiatric groups based on pMAPs. The 
subfigure (a) shows the K-L divergences of the controls 0 and 1 with respect to BPD 0, 1, and SCZ 0,1,2 
respectively. The subfigure (b) describes the K-L divergence relationships between BPD 0, 1, and SCZ 0,1,2. 
It suggests the possible devolution paths and internal transfers between different psychiatric states. 



 
We find that the control group demonstrates interesting devolution paths with respect to the BPD* and 
SCZ* groups according to their pMAP pattern analysis. The devolution path refers to the generic 
devolution process from a normal psychiatric state to a dysregulated psychiatric state such as bipolar 
disorders or schizophrenia states. We discover that the pMAP patterns of the control, BPD*, and SCZ* 
demonstrate a more and more complicated tendency even if the control & BPD* and BPD* & SCZ* 
somewhat show some level of similarity.  
 
Integrating with the previous relabeling, we have the following interesting devolution path information.  
The control groups have a shorter devolution path genetically to the BPD* group for their relatively less K-
L divergence values. On the other hand, a longer devolution path can exist from the control to the SCZ* 
group because they have a larger K-L divergence.  
 
Figure 7 illustrates the possible devolution paths of the control groups to the BPD* and SCZ* respectively 
according to their K-L divergences as well as internal transfers between the disease states. Classic 
psychiatric studies seem to support the devolution path because a subject can start from a normal 
psychiatric state to a more dysregulated, complicated, or unstable state in a gradual or abrupt manner.  
Moreover, previous studies also support the finding because it was reported that bipolar disorder can be a 
transition state between the normal and schizophrenia states [52][53][54][55]. Figure 7 shows the possible 
devolution paths and internal transfers between different psychiatric states, where the KL divergence value 
is marked for each path or internal transfer. 

 
Fig 7. The possible devolution paths of the control groups to the BPD* and SCZ* according to their pMAP 
patterns. The pMAPs of the BPD* and SCZ* groups have more complicated patterns than those of controls. 
It indicates that the BPD* is an intermediate psychiatric state between the SCZ* and control.  
 

5 Comparisons of psychiatric map diagnosis with peer methods 

We conduct control, BPD, and SCZ diagnosis with the relabeled data to validate the correctness and 



effectiveness of the relabeling. The correct relabeling should lead to good improvements in diagnostic 
accuracy. We mainly employ multi-class support vector machines (SVM) to conduct the psychiatric map 
diagnosis for SVM’s good reproducibility, transparency, and interpretability in this study [40]. Although 
deep neural networks (DNN) and ensemble learning methods such as random forests (RF) and extremely 
randomized trees (Extree), can achieve decent performance also, they especially lack good reproducibility 
for their built-in randomness, which is essential for clinical psychiatric diagnosis [56][57][58][59]. We 
further employ nonnegative singular value approximation (nSVA) for SNP feature selection for its proven 
effectiveness and efficiency for high-dimensional data [60][61]. 
 
Since the traditional classification measures are neither efficient nor interpretable in assessing different 
machine learning models’ performance, we extend the proposed diagnostic index (d-index) measure under 
binary classification to provide a more explainable and sensitive learning performance evaluation. This is 
because the traditional classification measure assessment may only reflect one aspect of classification 
performance. As a result, it is inconvenient to compare many classification measures for different machine 
learning model performances on different datasets in a more explainable approach. The d-index definition 
of the binary classification can be found in the following section and more d-index information can be 
found in [61]. 
 
5.1 Diagnostic index (d-index) 

 
Fig 8. The comparisons of control, BPD, and SCZ diagnoses before and after relabeling under nSVA 
feature selection under four machine learning models.  
 
Given	 a	 prediction	 function	 𝑓~(𝑥): 𝑥 → {−1,1} 	constructed	 from	 training	 data	 𝑋( = {𝑥) , 𝑦)})$ 	under	 a	 machine	
learning	 model	𝛩, 	where	 each	 sample	 𝑥) ∈ ℛ% 	and	 its	 label	 𝑦) ∈ {−1,1}, 	 𝑖 = 1,2,⋯𝑚, 		 	 d-index	 evaluates	 the	
performance	of	𝑓~(𝑥)	in	predicting	the	class	of	test	data	𝑋+ = {𝑥-′, 𝑦-′}-9 .		It	is	defined	as		



	 𝑑 = 𝑙𝑜𝑔0(1 + 𝑎) + 𝑙𝑜𝑔0(1 +
𝑠 + 𝑝
2 )	 (5)	

where	𝑎, 𝑠 	and	𝑝 	represent	 the	 corresponding	 accuracy,	 sensitivity,	 and	 specificity	 in	 diagnosing	 test	 data	
respectively.	 The	 larger	 the	 d-index	 value,	 the	 better	 the	 predictability	 of	 𝑓~(𝑥), 		 i.e.,	 the	 better	 learning	
performance	 achieved	 by	 the	 machine	 learning	 model	 𝛩. 	The	 maximum	 value	 of	 d-index	 is	 2	 where	
classification	has	the	perfect	results.	The	minimum	value	of	the	d-index	is	2𝑙𝑜𝑔0(

:
0
)	if	there	is	no	underfitting 

[61].	
 
Figure 8 compares the d-index values and misclassification rates before and after relabeling in detecting 
control, BPD, and SCZ, under four machine learning models: SVM, RF, ET, and DNN, where training and 
test datasets have 80% and 20% samples of the total samples respectively. We employ nSVA to select p% 
(p=10, 20, …100) features to observe how the relabeling results impact those datasets with different 
percentages of SNP features. The d-index values of the diagnoses after relabeling are much higher than 
those before relabeling for all datasets across all four models under nSVA feature selection.  It strongly 
suggests the correctness and effectiveness of the relabeling. Furthermore, all the models have low 
misclassification rates after relabeling and SVM had the lowest ones, which indicates the strong 
reproducibility of the proposed psychiatric map diagnosis.  
 

 
Fig 9. Classification metric and entropy comparisons before and after relabeling under different 
percentages of top-ranked features by nSVA. The subfigures (a) and (b) compares the values of recall 
precision, F1-score before and after relabeling before and after relabeling under multi-class SVM. The 
subfigures (c) and (d) illustrate the differences of entropies of control, SCZ, and BPD.  
 
 



Figure 9 compares the precision, recall, and F1 values under multi-class SVM as well as entropy values 
before and after relabeling under different percentages of features selected by nSVA. The precision, recall, 
and F1 values are consistent with the d-index values well.  Interestingly, we have found that the BPD and 
SCZ groups have relatively smaller entropy values than the control group. However, the entropies of the 
relabeled subgroups demonstrate regular patterns: the relabeled BPD* subgroup regularly has the smallest 
entropies, and SCZ* has the second-smallest entropies under different SNP feature sets selected under 
nonnegative singular value approximation (nSVA). It not only validates the correctness of relabeling but 
also suggests that the psychiatric disorder samples may have more special SNP patterns than those of the 
normal ones. 
 
5.2 Comparison with state-of-the-art machine learning methods 

We compare our results with state-of-the-art deep learning methods that include one-shot learning [62][63], 
convolutional neural networks (CNN) [64][65], residual neural networks (ResNet) [66][67], long short-term 
memory (LSTM) [68][69], Transformer [70][71][72], and generative adversarial networks (GAN) [73][74], as 
well as support vector machines (SVM) [40].  
 
We briefly describe the deep learning models for the convenience of description. CNN is characterized by 
a partially connected layer structure and different layers have different functionalities such as 
convolutional, and max/average pooling.  It demonstrates powerful learning capabilities, especially for 
image data besides decent feature extraction. ResNet is an enhanced CNN using residual learning 
techniques to tackle the challenges of gradient disappearance and explosion in CNN learning. It 
demonstrates advantages over CNN in handling big and more complicated data.  LSTM, which is widely 
employed in time-series data analysis, overcomes the weakness of general recurrent neural networks 
(RNN) in handling long-time information dependence by employing LSTM cells that consist of three 
different gates. GAN employs two different neural networks: a generator and discriminator (e.g., CNN and 
LSTM) to contest with each other to accomplish learning. GAN stops at the point when the discriminator 
was completed ‘confused’ by the learning results from the generator. In addition, Transformer is a special 
feedforward neural network taking advantage of the self-attention mechanism in topology and learning. It 
improves the parallelism of the model and decreases its reliance on long-term memory. One-short learning 
aims to handle the data scarcity issue in deep learning, i.e., input data itself is small enough to satisfy the 
training demand for the number of observations in training. It creates models that can accurately identify 
test samples with a limited quantity of training data. More details about the models can be found in the 
literature [62][63]. 
 
Figure 10 compares the proposed pMAP diagnosis with the state-of-the-art deep learning models as well 
as SVM which is a representative of the classic learning method, under different levels of feature selection 
by nSVA. It is obvious that the pMAP diagnosis demonstrates its superiority to the rest of the methods no 
matter in learning effectiveness or stability. It suggests that all deep learning models show quite poor 
performance on the original data. For example, LSTM obviously fails the whole learning process by 
encountering overfitting.  
 
There are mainly two reasons to interpret the poor performance from the deep learning models. The first 
is the dataset is too small to take advantage of the powerful learning capabilities of the deep learning 
models. The second, which can be more important, is the problem itself is a mislabeled learning problem, 
but almost all deep learning models assume training data are correctly labeled and there are no techniques 
available to handle this in deep learning.  It also can explain why one-short learning encounters 
underfitting. 



 
On the other hand, why the pMAP diagnosis leads all the other methods lies in that it is a specifically 
designed algorithm for mislabeled learning. It exploits fSOM learning to gain the pMAP for each SNP 
observation and density clustering to seek the similarities between the pMAPs.  It takes advantage of the 
DBSCAN clustering results of the prototypes of the original observations to relabel data to decrease or even 
eliminate mislabeling information at the most level. Finally, the kernel method SVM is employed to conduct 
psychiatry prediction by exploiting its reproducibility and efficiency in learning. Therefore, the pMAP 
diagnosis is more effective, efficient, and robust in handling the mislabeling psychiatry learning problem 
than its possible peer methods.  

 
 

Fig 10 The comparisons of the proposed pMAP diagnosis with its peer methods: SVM, one-short learning, 
CNN, GAN, LSTM, ResNet, and Transformer. The pMAP diagnosis demonstrates stably leading 
performance compared to its peers under different levels of feature selections.  Almost all deep learning 
models show poor performance for the original data. Both one-short learning and LSTM encounter 
underfitting.  



6 Discussion and conclusion 

We point out that misdiagnosis between BPD and SCZ can be unavoidable due to the existing psychiatric 
standards in psychiatry. The existing behavior-based definition and categorization for BPD and SCZ do not 
include genetic analysis that should provide a more accurate classification. On the other hand, detecting 
BPD and SCZ using SNP or other bioinformatics data via ML is to handle a mislabeled learning problem 
for high dimensional data, because the label information provided from the psychiatry practice can count 
mislabeled information.  To the best of our knowledge, mislabeled learning is a rarely investigated but 
essentially important and challenging problem in modern AI and data science. With the surge of big data 
and AI, more and more mislabeled learning problems need serious investigations according to their ‘data 
background’. Simply assuming the label information is correct would cause ML to encounter mediocre or 
poor performance and produce a serious misdiagnosis that is happening in many AI-driven disease 
diagnoses such as mental disorder detection, especially for those data with a limited number of 
observations. 
 
The proposed psychiatric map diagnosis employs the feature self-organizing map (fSOM) learning to tackle 
the high-dimensional mislabel learning problem successfully. It generates the low-dimensional prototype: 
pMAP for each observation that synthesizes the essential characteristics of each observation. The pMAPs 
discover and unveil new knowledge for input data, i.e., it identifies different unknown hidden subtypes 
for each group. For example, it finds that there are two subtypes in the control group, 2 subtypes in the 
BPD, and 3 subtypes in the SCZ group. The pattern similarities between some subtypes from different 
groups further validate the existence of the mislabeled samples. We employ a novel relabel technique to 
correct label information according to DBSCAN clustering. Finally, we conduct reproducible SVM 
prediction based on the relabeled data and achieved leading performance in comparison with peer deep 
learning methods. To the best of our knowledge, it is the first time to handle misdiagnosis between BPD 
and SCZ via inventing novel ML methods to overcome the challenge of mislabeled learning from high-
dimensional data. 
 
Furthermore, the devolution path of psychiatric states via relative entropy analysis provides insights into 
existing pathological psychiatry. The novel devolution path analysis unveils latent internal transfer and 
devolution road maps between different subtypes of the control, BPD, and SCZ groups, which have been 
rarely investigated in the existing psychiatry studies and bioinformatics research. It will inspire more future 
studies on this topic via similar devolution path analysis ways. However, it still needs more data and 
experiments or genetic findings to validate its effectiveness furthermore. 
 
The proposed pMAP diagnosis is an explainable machine learning method for high-dimensional data 
mislabel learning, because of its transparent structure, good learning efficiency, and trustworthy learning 
results. Compared to the existing deep learning models with thousands of parameters, the pMAP diagnosis 
has only a few parameters that contribute to a more interpretable learning architecture and learning 
performance evaluation.  
 
Although this method is designed to tackle mislabeled learning for high-dimensional data, it can be easily 
applied or extended to more general mislabeled learning because the essential components of the pMAP 
diagnosis such as fSOM, DBSCAN, multiclass SVM can essentially apply to any kind of data.  However, it 
is noted that fSOM may need a huge computing demand in generating pMAPs especially because the 
dimensionality of input data is high. We have spent about 2 weeks completing fSOM learning on a 20x20 
fSOM plane to generate 203 pMAPs on an Intel Xeon E5-2620 machine under OS Ubuntu 20.04 LST (Focal 
Fossa) with RAM 128Gb and CPU speed 2.1Ghz. We are seeking to implement fSOM via an FPGA approach 



to tackle the high computing demands [75][76].  
 
In addition, there are quite a few aspects to be improved in the proposed pMAP diagnosis. For example, it 
is desirable to design more customized kernels in multiclass SVM rather than rely on some standard 
nonlinear kernels (e.g., Gaussian kernel), which can be especially important for other types of data.  
Furthermore, we are interested in exploring a hierarchical fSOM to decrease its complexity for the sake of 
its good adaptability, especially for big data besides enhancing the current batch processing [77]. 
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