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Abstract

Proportional hazards models have previously been proposed to analyse time-to-event
phenotypes in genome-wide association studies(GWAS). While proportional hazards models
have many useful applications, their ability to identify genetic associations under different
generative models where ascertainment is present in the analysed data is poorly understood.
This includes widely used study designs such as case-control and case-cohort designs (e.g.
the iPSYCH study design) where cases are commonly ascertained.
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Here we examine how recently proposed and computationally efficient Cox regression
for GWAS perform under different generative models with and without ascertainment. We
also propose the age-dependent liability threshold model (ADuLT), first introduced as the
underlying model for the LT-FH++ method, as an alternative approach for time-to-event
GWAS. We then benchmark ADuLT with SPACox and standard case-control GWAS using
simulated data with varying degrees of ascertainment. We find Cox regression GWAS to
underperform when cases are strongly ascertained (cases are oversampled by a factor larger
than 5), regardless of the generative model used. In contrast, we found ADuLT to be
robust to case-control ascertainment, while being much faster to run. We then used the
methods to conduct GWAS for four psychiatric disorders, ADHD, Autism, Depression, and
Schizophrenia in the iPSYCH case-cohort sample, which has a strong case-ascertainment.
Summarising across all four mental disorders, ADuLT found 20 independent genome-wide
significant associations, while case-control GWAS found 17 and SPACox found 8, consistent
with our simulation results.

As more genetic data are being linked to electronic health records, robust GWAS methods
that can make use of age-of-onset information have the opportunity to increase power in
analyses. We find that ADuLT to be a robust time-to-event GWAS method that performs on
par with or better than Cox-regression GWAS, both in simulations and real data analyses of
four psychiatric disorders. ADuLT has been implemented in an R package called LTFHPlus,
and is available on GitHub.

1 Introduction

Over the last decade, genome-wide association studies (GWAS) have successfully identified thou-
sands of genetic variants associated with human diseases[18, 54]. Most of these GWASs have
modelled the outcome as a binary case-control variable in a logistic (or linear) regression while
accounting for covariates such as age, sex, and genetic principal components. However, these
models are generally not suited for modelling time-to-event data, as they do not account for
certain types of missing or censored data. Time-to-event models are commonly used in epidemi-
ology and many other fields, and have proven useful for both accounting for censoring, changes in
disease incidence over time (cohort effects), and age-of-onset[23]. Time-to-event models can also
be used to estimate absolute time-dependent risk (i.e. the probability of developing the disease as
a function of time) conditional on individual features, and are therefore widely used to estimate
disease risk in clinical settings[24].

Although time-to-event models have been proposed for GWAS[19, 49, 37, 48], their adoption
has been limited in practice. One reason is that age-of-onset (AOO) information is often not made
available. However, time-to-event data is becoming more readily available as more genotyped
data are being linked to health records. Another reason is that fitting these models on large
data is computationally intensive. However, several computationally efficient survival analysis
GWAS methods have been proposed recently for large population-scale data. These include
efficient Cox regression implementations[5, 17], and an efficient frailty (random effects) model[11].
The frailty model inherits some of its advantages from the mixed model[53, 22, 30, 32], and
can both account for population structure and relatedness, as well as improve statistical power
when sample sizes are large. However, to the best of our knowledge, performance of Cox-based
regressions in a GWAS setting is limited and they have only been viewed in comparison to other
Cox-based regressions or logistic regression[48, 19]. Importantly, these benchmarks have focused
on the proportional hazards generative model and without significant case ascertainment, which
is common in GWAS. In practice, when collecting data for GWAS it is common to oversample
cases to increase the effective sample size and statistical power in the genetic analyses, leading
to a case-control or case-cohort study design.
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Here we examine to what extent case ascertainment in GWAS data affects Cox regression
GWAS and standard case-control GWAS. Inspired by how robust liability threshold models[10,
13] (LTM) have proved to be for ascertained data[55], we propose ADuLT (age-dependent liability
threshold) as a computationally efficient time-to-event model for GWAS, and examine how it
performs in the presence of case ascertainment. ADuLT is based on the liability threshold model
and is the underlying model for the recently proposed LT-FH++ method[1]. ADuLT accounts
for age-of-onset information, as well as sex and cohort effects by personalising the thresholds
used to infer the case-control status for each individual. These thresholds are personalised by
using population-based cumulative incidence proportions (CIPs) for the phenotype of interest as
a function of age and additional information, such as sex and birth year (to model sex and cohort
effects). We examine how ADuLT compares to SPACox and standard linear regression GWAS
in terms of both statistical power and computational efficiency, using both simulations and real
iPSYCH data, which is a psychiatric disorder case-cohort data with a strong case ascertainment
bias where cases are about 20 times more likely to be sampled[38, 6].

With an increasing integration between biobanks and electronic health records, it is important
to utilise additional information in the best way possible, and we believe that knowledge about
age-of-onset will be a common and powerful piece of information to include. Finally, ADuLT is
implemented in an efficient R package called LTFHPlus (github.com/EmilMiP/LTFHPlus), and
is made highly scalable by relying on parallelization and the R package Rcpp, which offers a
seamless integration of R and C++[12].

2 Methods

2.1 Model

The ADuLT model is an extension of the classical LTM[13, 10], and is the model underlying our
previously proposed LT-FH++ method[1]. To estimate an individual’s genetic liability, ADuLT
utilises birth year, sex, phenotype-specific age-of-onset for cases and current age for controls,
as well as population-based cumulative incidences (i.e. the probability of having developed the
disease at a given age). In contrast to LT-FH++, the ADuLT model does not incorporate family
history as presented here. Instead, we focus on comparing ADuLT to standard time-to-event
GWAS methods. ADuLT can account for cohort effects (changes in disease incidence by birth
year), as well as differences by sex. This however requires population-based estimates to be
available by age, sex and birth year for each phenotype of interest.

The ADuLT model extends the classical LTM by allowing the threshold used to determine
case-control status to depend on sex, birth year, and (if available) age-of-onset for an individual.
The LTM assumes that each individual has a liability ℓ that follows a standard normal distri-
bution in the population. When this liability is larger than a given threshold, ℓ ≥ T , where
P (ℓ ≥ T ) = K and K is the trait’s lifetime prevalence, then the individual is a case (z = 1),
otherwise it is a control (z = 0). This model does not account for time-to-event. Under the
ADuLT model, the trait prevalence K becomes the available population-based cumulative inci-
dence stratified by sex and birth year, if this information is available. In Figure S12, an example
of those CIPs can be seen for depression. Additionally, we assume that the liability can be
decomposed into two independent components, a genetic component, ℓg, and an environmental
component, ℓe, such that ℓ = ℓg+ℓe. The genetic liability ℓg is normally distributed with mean 0
and variance h2, where h2 denotes the trait heritability on the liability scale. The environmental
component is normally distributed with mean 0 and variance 1− h2 and independent of ℓg.

ADuLT aims to estimate an expected genetic liability. We do this by expressing the liability
as a 2-dimensional normal distribution given by:
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(ℓg, ℓ)
T ∼ N(0,Σ), Σ =

(
h2 h2

h2 1

)
The mean of the genetic component is given by

E
[
ℓg|z, h2,K(age, sex, birth year)

]
where the information we condition on, namely the case-control status and CIPs, result in

an interval of (full) liabilities to integrate over. The CIPs set the threshold and the case status
determines if the integration is above (a case) or below (control) the threshold.

2.2 Simulation Details

The default simulation setup uses two generative models, namely the Cox proportional hazards
model and the LTM. We simulate under both generative models in order not to favour one
method over the other.

Initially, genotypes are simulated for N = 1, 000, 000 individuals and M = 20, 000 indepen-
dent SNPs. The genotypes are sampled from a binomial distribution Binom(2, AF ) with the
probability parameter set to the allele frequency (AF) of a given SNP. The AFs are sampled from
a uniform distribution on the interval (0.01, 0.49). SNPs are standardised using the true AF,
and for the scaled SNPs, the effect sizes of causal SNPs were drawn from the normal distribu-
tion N(0, h2/C), where C denotes the number of causal SNPs and h2 denotes the liability-scale
heritability. In the simulations, we used h2 = 0.5 and either C = 250 or C = 1000 causal SNPs.
With the simulated genotypes and causal effect sizes, we then assigned synthetic phenotypes
using the two generative models.

For the proportional hazards model, we opted for a simulation setup as similar as possible to
the one used in SPACox[5]. First, we simulated the censoring times, ci, for each individual i from
an exponential distribution with a scale parameter of 0.15. Next, we simulated onset times[4],
t̃i, using a Weibull distribution[2] as follows

t̃i =

√
− log(Ui)

λexp(ηi)

where λ is the event rate, Ui ∼ Unif(0, 1), ηi = XT
i β+ϵi, with ϵi ∼ N

(
0, 1− h2

)
, andXT

i β are the
scaled genotypes multiplied by effect sizes, corresponding to the genetic liability ℓg in the LTM.
The case-control status zi is then 1 if t̃i < ci, and 0 otherwise. The event time ti = min(t̃i, ci)
is the observed time. The event rate λ was chosen such that the lifetime prevalence is fixed
at e.g. 1% or 5%. The simulation of onset times depends on all causal SNPs, which deviates
from the simulations of onset times in the SPACox paper, where the onset times depended on a
single causal SNP only. This change was made in order for the full genetic load of an individual
to influence the onset times, instead of just a single SNP. Next, we calculated the CIP of the
simulated event times, i.e. the fraction of cases observed before a given point in time. then the
proportions were converted to the ages-of-onset (in years) using the logistic function given by
Equation (1) with median age-of-onset x0 = 50 and growth rate k = 0.2. Both age and age-
of-onset were used to calculate the cumulative incidence proportions, which in turn defines the
thresholds under the ADuLT model. For instance, with a lifetime prevalence of 1%, 90% of all
individuals had an age or age-of-onset between 17 and 57 years.

Under the LTM, we set the trait status zi equal to 1 if the liability exceeds the threshold, i.e.
if ℓi > T , and 0 otherwise, where ℓi = XT

i β+ ϵi = ℓgi + ϵi. The threshold T is determined by the
lifetime prevalence K. For instance, a lifetime prevalence of 5% and 10% results in thresholds
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T = 1.64 and T = 1.28, respectively. The relationship between the age-of-onset and the liabilities
above the threshold T , is given by the logistic function

ti(x) =
K

1 + exp (−k(x− x0))
, (1)

where K denotes the maximal attainable value, k denotes the growth rate, and x0 denotes the
median age-of-onset. Using the age of controls, we know how long they have lived without being
diagnosed. This information allows us to exclude liabilities, i.e. the period of risk lived through so
far. For both cases and controls, the personalised thresholds are calculated as Ti = Φ(1−CIPi),
where Ti is the personalised threshold and CIPi is the CIP for individual i. The liabilities below
the personalised threshold are considered for controls and the liabilities above the threshold are
considered for cases. If the population-representative CIPs are stratified by birth year and sex,
the full liaiblity for cases can be fixed at Ti. Ages for controls are sampled from a uniform
distribution between 10 and 90. This resulted in 90% of individuals having an age between 14
and 86.

2.3 The ADuLT survival model

As we showed previously[1], the age-dependent liability threshold model can be considered a
survival model. More specifically, consider the survival function Si(age) = P (agei > age), where
agei represents age-on-set for cases or censoring time for the ith individual. The probability
that an individual has not become a case for a given age is equal to the probability that the
individual’s liability is larger than the (individualised) liability threshold Ti(age), which is a
shorthand notation for the age-dependent threshold given by

T (agei, sexi,birth yeari) = Φ(1− CIP (agei, sexi,birth yeari))

. Here sexi and birth yeari are the i
th individual’s sex and birth year, respectively. If we assume

that the individual liability consists of a genetic and an environmental component, ℓi = ℓgi + ℓei ,
where ℓgi and ℓei are Gaussian distributed with mean 0 and variance h2 and 1−h2, respectively,
then we can write the survival function as follows

Si(age) = P (agei > age) = P (ℓi < Ti(age)) = Φ

(
Ti(age)− ℓgi√

1− h2

)
,

where Φ is the standard Gaussian cumulative distribution function and we assume that the
genetic liability contribution is known. In the last equality, we standardise the environmental
contribution with the known genetic contribution and the variance. From this we can derive the
event density, and the hazard function for the ith individual as

λi(age) =
−S′

i(age)

Si(age)

We note that this survival model is unusual in a couple of ways. First, each individual has a
slightly different parameterisation of the model, which comes through the individualised liability
threshold Ti(age). Second, the genetic effects affect the hazard rate by shifting the individual
liability. Third, Ti(age) does not have to approach negative infinity as age approaches positive
infinity, but may instead simply become fixed for all values Ti(age) above some threshold, e.g.
if every individual in a cohort has died and no new event are possible. This is not necessarily a
problem for the interpretation as Ti(age) may still be piece-wise differentiable, and the hazard
rate for all values t above this threshold then becomes 0.
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2.4 GWAS in iPSYCH

With the second wave of genotyped individuals, the iPSYCH case-cohort reached ˜143,000 in-
dividuals, up from ˜80,000.[6] Both waves have been imputed with the RICOPILI imputation
pipeline[26], and were then combined into a single dataset. We restricted the analysis to SNPs
that passed RICOPILI quality controls for both waves, resulting in a total of 8,785,478 SNPs
for the GWAS. The analysis was restricted to a group of individuals with European ancestry,
which were identified by calculating a robust Mahalanobis distance based on the first 20 PCs and
restricting to a log-distance below 4.5[43]. We filtered for relatedness by removing individuals
(the second one in each pair) with a KING-relatedness above 0.088. Since the iPSYCH case-
cohort has a population representative subcohort and oversampled cases for six major psychiatric
disorders (here we focus on ADHD, autism, depression and schizophrenia), we restricted each
analysis to the individuals in the subcohort (which is a random sample of the entire population)
and the cases for the phenotype being analysed, i.e. oversampled cases from the other psychiatric
disorders were not used. The final number of individuals used for the GWAS of each phenotype is
presented in Table S2. The linear regression GWAS was performed using the bigsnpr package[41]
for R and SPACox GWAS was performed using the original implementation in the SPACox pack-
age for R. We used 20 PCs, sex, and imputation wave as covariates for all analyses. We included
age as a covariate when analysing case-control status. Age was not included as a covariate when
using the ADuLT phenotype or SPACox. We chose not to use a mixed model approach for
GWAS with case-control status or ADuLT phenotypes, as SPACox did not have a similar option
for random effects.

2.5 Cumulative Incidence Proportions

The CIPs can be interpreted as the proportion of individuals diagnosed with a certain disorder
before a given age. As a result, the CIPs are population and disorder specific and can be
stratified by sex and birth year. The CIPs used here were stratified by sex and birth year to
account for differences in incidences between sexes and for different birth years (cohorts). The
CIPs were estimated from Danish population-based registers. The Danish Civil Registration
System[39] was used to identify individuals and contains all 9,251,071 individuals that lived
in Denmark at some point between April 2, 1968 and December 31, 2016. The Danish Civil
Registration System has continually recorded information since its launch in 1968, and includes
information about sex, date of birth, date of death, and date of emigration, or immigration.
Each individual has a unique identifier that can be used to link information of several registers.
Information on psychiatric disorders was obtained from the Danish Psychiatric Central Research
Register[33]. It contains all admissions to psychiatric inpatient facilities since 1969 and visits to
outpatient psychiatric departments and emergency departments since 1995. From 1969 to 1993,
the International Classification of Diseases, eighth revision (ICD-8) was used as the diagnostic
system. From 1994 onwards, the tenth revision (ICD-10) was used. The four disorders of interest
were identified by the following ICD-8 and ICD-10 codes: ADHD (308.01 and F90.0), autism
(299.00, 299.01, 299.02, 299.03 and F84.0, F84.1, F84.5, F84.8, F84.9), depression (296.09, 296.29,
298.09, 300.49 and F32, F33), and schizophrenia (295.x9 excluding 295.79 and F20). The age-
of-onset was defined as the age of an individual at first contact with the psychiatric care system,
either inpatient, outpatient, or emergency visits. In the analyses, each individual was followed
from birth, immigration, or January 1, 1969 (whichever happened last) until death, emigration, or
December 31, 2016 (whichever happened first). The cumulative incidence function was estimated
separately for each sex and birth year, and the Aalen-Johansen approach was used with death
and emigration as competing events[15].
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3 Results

3.1 Overview of method

The age-dependent liability threshold model presented here was first introduced in our previous
paper extending the LT-FH method to account for family history as well as age-of-onset, sex,
and cohort effects among all individuals, including the family members[21, 1]. In this paper, we
focus on the ADuLT model as an alternative to commonly used time-to-event or linear regression
GWAS methods, without considering any family history.

The ADuLT model modifies the LTM by assuming that the threshold used to determine an
individual’s case-control status corresponds to the CIP at the age of diagnosis. In Figure 1,
we present the CIPs for ADHD for individuals born in Denmark in the year 2000. The CIPs
increase as the population gets older, which in turn leads to a decreased threshold. If additional
information, such as sex and birth year, is available, the population CIPs should be stratified
according to this additional information (as seen in Figure 1), as this improves estimation of the
genetic liability[1]. In the first step, a personalised threshold is assigned to each individual based
on their current age or the age-of-onset, as well as sex and birth year. In the second step, the
ADuLTmodel uses the liability-scale heritability to estimate a genetic liability for each individual.
The third step uses the ADuLT phenotype as a continuous outcome in a GWAS. There are no
restrictions on the choice of GWAS method as long as it accepts continuous outcomes, allowing
researchers to benefit from current and future advances in GWAS methods. Note that Figure 1
illustrates the use of CIP for cases. If an individual is a control, the area of possible liabilities
will instead be from negative infinity to the threshold identified from the CIPs.

3.2 Simulation Results

We used two generative models for the simulations, namely the LTM and the proportional
hazards model (see Methods). The performance of a simple case-control GWAS, SPACox, and
the ADuLT phenotype used as the outcome in a linear regression-based GWAS was assessed under
both generative models. Sex and age or age-of-onset were simulated for 1 million individuals,
each with 20,000 independent SNPs. To examine the effect of ascertainment of cases, which is
common in GWAS data, similar analyses were performed where the total number of individuals
was randomly downsampling from 1 million to 20,000 individuals, leaving 10,000 controls and
10,000 cases in each downsampled dataset.

Figure 2 displays the power for each method under both generative models with 250 causal
SNPs. A similar plot showing the power of the same generative models but with 1000 causal SNPs
can be found in Figure S1. Without downsampling, the power of all three methods is similar
under both generative models (Figure 2A). In Figure 2B, which is based on a downsampled data
set simulating case ascertainment, the power of all three methods decreased due to a reduced
sample size, but the power of SPACox was disproportionately affected by the downsampling.
For simulated traits that have been downsampled and have a lifetime prevalence of 5% or below,
SPACox performs worse than linear regression for both the case-control status and the ADuLT
phenotype by more than a factor of 10 in the worst case, and approximately 25% worse in the
best case. Under the proportional hazards model and a lifetime prevalence of 20%, and with
downsampling, SPACox has an average power on par with ADuLT.

In Table S1, which is based on data simulated under the LTM and without downsampling, the
relative power of all methods are within 3% of one another. ADuLT obtained the highest power
in all cases, while the lowest power was observed in connection to SPACox. With downsampling
and 1000 causal SNPs, the increase in power was 117% with ADuLT over SPACox across all
prevalences considered, and it was 96% for case-control status over SPACox. With downsampling
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Figure 1: Overview of ADuLT and illustration of the information it can account for.
Overview of the information used, and the different steps needed to perform a GWAS based on
the ADuLT phenotype. The cumulative incidence proportions (CIPs) stratified by sex and birth
year (here ADHD for individuals born in Denmark in 2000) are converted to a threshold for the
age-dependent liability threshold model. Females are represented by the red line, while males
are represented by the blue line. The CIPs has been marked at the age of 10 and 15 for both
sexes (dotted lines). Finally, a genetic liability is estimated for each individual, and this ADuLT
phenotype can be used as the outcome in a GWAS.
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and 250 causal SNPs, we observed an average increase of 34% in power over SPACox with ADuLT,
and a 29% increase in power with case-control status, showing that SPACox has a comparatively
low power for low effect sizes.

In Figures S2 and S3, the average χ2-statistics for the null SNPs is reported. Plots were
achieved for 250 and 1000 causal SNPs, respectively, and each plot contains results for four
different lifetime prevalences, with and without downsampling, and for both generative models.
All models were well calibrated, since no inflation of the null statistics is observed. Figures S4
and S5 show the relative power with SPACox as the baseline method. As before each plot
holds the relative power for four lifetime prevalences, with and without downsampling and both
generative models. In addition, different plots were achieved for 250 and 1000 causal SNPs. For
250 causal SNPs and no downsampling, performance of all methods were similar. However, with
downsampling, SPACox only identified a few causal SNPs, which resulted in large relative power
gains for ADuLT and linear regression (see Figure 2B). In Table S1, simulation results for all
parameter setups are available, including the power, relative power compared to SPACox, and
mean chi-square statistic of null SNPs.

3.2.1 Computation Times

The computational time for estimating the ADuLT phenotype depends solely on the number of
individuals. The running time for the GWAS step depends heavily on the implementation of
the GWAS method used. In Figure 3, the combined running times of estimating the ADuLT
phenotype and performing a GWAS using the bigsnpr package[41] are reported. We used 4 CPU
cores for both steps, which is a conservative number of cores. The SPACox implementation does
not support parallelization, which is why SPACox was run sequentially. We find that ADuLT
together with a linear regression is faster than SPACox, even with only modest parallelization.
Logistic regression of a binary phenotype is slower than linear regression of the same pheno-
type[41], which means ADuLT together with a linear regression may be faster and have higher
power to detect causal SNPs.

3.3 GWAS of psychiatric disorders in iPSYCH

The iPSYCH data has been linked to the Danish registers, which means that detailed information
on age-of-onset, age, sex, and birth year can be assessed for all genotyped individuals that are part
of the iPSYCH cohort[6] This supplementary information was used to analyse four psychiatric
traits, namely ADHD, autism, depression, and schizophrenia. For each of these phenotypes,
population-based CIPs were obtained by birth year and sex (see Figures S6, S9, S12 and S15 for
plots of the CIPs used, and see Cumulative Incidence Porportions for details). The prevalences
were used to tailor the thresholds to each individual under the ADuLT model (see Methods).

We performed GWASs for each of the four phenotypes and for each of the methods considered,
i.e. using either the case-control status or the estimated genetic liability by ADuLT as the outcome
in a linear regression-based GWAS or SPACox (see Methods for details). Figure 4 displays
the Manhattan plots for ADHD for all methods, where the case-control GWAS included age
as a covariate, while the ADuLT GWAS and SPACox did not. To report nearly independent
findings, LD clumping was performed on the summary statistics with a r2 threshold of 0.1 and
a window size of 500kb, prioritising the SNPs with the lowest p-values. This was done for each
combination of phenotype and method. The lowest p-value LD-clumped SNPs that are unique
to ADuLT and ADHD can be found in Table S3 and the LD-clumped snps that are unique to
case-control status and ADHD can be found in Table S4. For ADHD, we found 12 independent
genome-wide significant associations when using the ADuLT phenotype as the outcome, while
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Figure 2: Power simulation results with 250 causal SNPs under both generative
models and varying prevalences. The power is shown for different population prevalence,
varying from 1% to 20%. A) The power, i.e. the fraction of causal SNPs detected for each
method, without downsampling. B) The power with downsampling, i.e. the number of
individuals is subsampled to 10k cases and 10k controls.
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Figure 3: Running times of ADuLT combined with a linear regression GWAS com-
pared to SPACox. Each point represents the mean value of 10 replications, while the error bars
are represented by the estimate ±1.96 standard errors. Run times were assessed for a varying
number of individuals and SNPs (M). SPACox uses a single CPU core, as no parallelization is
available. We used 4 CPU cores for estimating the ADuLT phenotype and performing the linear
regression GWAS for this phenotype. The means and corresponding standard errors of the run
times can be found in Table S1.

case-control status and SPACox found 11 and 5 associations, respectively. The ADuLT GWAS
had two independent associations that were not identified by case-control associations, and case-
control GWAS found one association that was not found by the ADuLT GWAS. One of the
associations unique to ADuLT is rs4660756. The gene closest to this SNP is ST3GAL3, which
has previously been associated with educational attainment[36] and ADHD[52]. SPACox also
identified ST3GAL3, but through rs11810109 instead. The association unique to case-control
GWAS is rs8085882 on chromosome 18. The closest gene is ZNF521, which has previously
been associated with education attainment[29], ADHD[46], and smoking initiation[27]. The
association with the lowest p-value that is shared among all methods is rs4916723 on chromosome
5 with LINC00461 as the closest gene. This gene has also been reported as being associated with
educational attainment[27] and ADHD[9].

Across the four psychiatric disorders, ADuLT found 20 independent genome-wide significant
associations, while case-control status found 17 and SPACox found 8. The Manhattan plots for
each of the methods, each of the remaining disorders (autism, depression, and schizophrenia),
and with and without age as a covariate can be found in Figures S7, S8, S10, S11, S13, S14, S16
and S17. Notably, SPACox consistently identified fewer associations than the ADuLT and case-
control status GWASs, and was the only method that did not identify any significant association
for major depression and schizophrenia.

4 Discussion

With biobanks such as the UK biobank[7], iPSYCH[6], FinnGen[25], or Biobank Japan[34] linking
electronic health records to genetic data, there is an increased incentive to develop methods
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Figure 4: Manhattan plots from GWAS with the ADuLT phenotype, SPACox, and
case-control status for ADHD. Manhattan plots for ADHD for all three methods. Case-
control GWAS uses the age of individuals as a covariate, whereas the ADuLT GWAS and SPACox
do not. The orange dots indicate suggestive SNPs with a p-value threshold of 5 × 10−6. The
red dots correspond to genome-wide significant SNPs with a p-value threshold of 5× 10−8. The
diamonds correspond to the lowest p-value LD clumped SNP in a 500k base pair window with
an r2 = 0.1 threshold.
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that can fully utilise this supplementary information. This includes details about age-of-onset,
which can be used in time-to-event analyses to improve power. In epidemiology, time-to-event
analyses are usually performed with a Cox-based regression, whereas time-to-event GWAS are
still relatively uncommon. This has in part been due to computational challenges of applying Cox
regression to GWAS, but recent developments of efficient Cox-based regression methods such as
SPACox or GATE have largely resolved this limitation[5, 11]. However, the performance of Cox-
based regressions for GWAS has only been viewed in comparison to other Cox-based or logistic
regression[48, 19], and not when the case-control cohort is sampled with ascertainment (e.g.
where cases are oversampled). Evaluating their performance in ascertained case-control cohorts
is important as such datasets are very common in genetics, e.g. the iPSYCH and FinnGen data.

In this paper, we have examined the proportional hazards model implemented in SPACox
and found that in situations where cases are ascertained or oversampled (which is often the case
in GWAS datasets), the proportional hazards based model was less powerful than a simple linear
regression. We proposed the age-dependent liability threshold (ADuLT) model as an efficient
and robust alternative to Cox-based time-to-event GWAS. The ADuLT model is the model
underlying the recently published LT-FH++ method[1], as presented here it does not incorporate
information on family members. However, the main focus of this paper was to compare the
ADuLT model to a computationally efficient time-to-event GWAS method, SPACox, without
accounting for information such as family history. ADuLT incorporates time-to-event information
into the LTM by using liability thresholds that vary with age and sex. These personalised
thresholds are derived from population-based estimates of the cumulative incidence proportions.
Using this information, ADuLT first estimates individual posterior genetic liabilities, which are
then used as a quantitative phenotype in GWAS. This final step can be performed with any
GWAS software, which allows for ADuLT to benefit from using advanced GWAS methods, such
as linear mixed models[30, 22, 32]. The computational cost of estimating the individual posterior
liabilities is neglectable when compared to the computational cost of performing even a simple
GWAS with linear regression.

Using simulations, we compared different GWAS methods, Cox regression as implemented in
SPACox and a linear regression with the ADuLT phenotype and the case-control status. As ex-
pected we found a Cox-based time-to-event GWAS to provide most power under the proportional
hazards generative model, however it was closely followed by the ADuLT GWAS and case-control
GWAS, especially when disease prevalence is low. Conversely, when simulating under the LTM,
the ADuLT GWAS had the greatest power, followed by Cox regression and case-control GWAS.
However, when considering ascertainment of cases, we found SPACox to have the lowest power
of all considered methods under both generative models and for all prevalences except one (the
least ascertained sample). We note that these results are in line with previously reported compar-
ison between Cox regression and linear regression in case-cohort studies[48]. When we applied
all three methods to the iPSYCH data, which has a high degree of case ascertainment, the
results were in agreement with the simulation results in that SPACox identified fewer genome-
wide significant variants than the case-control or the ADuLT GWASs. Therefore, for identifying
significant genome-wide associated variants, a Cox-regression GWAS can have less statistical
power than linear regression with case-control status or the ADuLT phenotype. As a result, we
recommend using more robust GWAS methods, such as on case-control status or the ADuLT
phenotype when performing GWAS in ascertained samples, which includes most case-cohort and
case-control datasets.

Although Cox regression GWAS may not be robust to ascertained samples, we note that it can
still improve power in population cohorts, and may still yield unbiased estimates. Furthermore,
several adjustments have been proposed to Cox regression when applied to ascertained data, such
as inverse probability weighting[45] (IPW). IPW results in unbiased estimates, but estimating

13

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 12, 2022. ; https://doi.org/10.1101/2022.08.11.22278618doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.11.22278618
http://creativecommons.org/licenses/by/4.0/


their variance (and association p-values) can be difficult[3]. Furthermore, to the best of our
knowledge, IPW is currently not implemented in computationally efficient Cox regression GWAS
methods (e.g. SPACox).

In contrast, we found ADuLT to be a computationally efficient and robust approach for time-
to-event GWAS. Moreover, using the LTM, it is possible to account for family history informa-
tion[1, 21], and it can be used in connection to risk prediction[20, 8, 47]. GWAS individual-level
data can also be used to build polygenic scores based on efficient penalized regression models[42];
a future direction of research for us is to investigate whether a penalized linear regression using
the ADuLT-inferred outcome would be preferable to using a Cox-based penalized regression as
implemented in e.g. snpnet-Cox[28]. As other possible future directions, the ADuLT model may
also provide an alternative framework for examining interactions between age and genetic vari-
ants[35], and provide insight into the genetics underlying disease trajectory. Like LT-FH[21] and
LT-FH++[1], ADuLT also has the advantage that it produces quantitative posterior liabilities
which can be treated as quantitative phenotypes and analysed with advanced GWAS method,
such as BOLT-LMM[30], fastGWA[22], or REGENIE[32]. However, ADuLT does have some
limitations. First, it requires population-representative CIPs to be available for the disorder of
interest, and preferably stratified by sex and birth year. Recent efforts to make such data pub-
licly available for all diseases is therefore of great interest[40]. Second, the assumption that early
onset cases have higher disease liability may not always be true. Although age-of-onset tends to
be negatively genetically correlated with case-control status, the correlation is not always very
strong[14]. Third, the model does not account for possible interactions between genotype (or
environment) with age, but exploring methods that model this relationship is a future direction.
Fourth, similar to LT-FH[21] and LT-FH++[1], ADuLT assumes the narrow sense (additive)
heritability is known a priori for the outcome of interest. These can either be obtained from
literature or estimated in the data, e.g. using family-based heritability estimates[56]. However,
we have also previously shown that the model we use is robust to misspecification of prevalence
information and heritability[1]. Finally, in this study we did not consider downsampling of cases
or ascertainment of healthy controls, which might be relevant for many genetic datasets such as
the UK biobank[7] or the Danish blood donor study data[16].

As age information becomes more readily available, we expect time-to-event methods for
GWAS that make use of such information to become more common. However, the benefit of
these methods may depend on how the data was collected, as well as their ability to account for
other confounders. We believe ADuLT provides both a robust, computationally efficient, and a
flexible approach for time-to-event analyses in population-scale datasets.

5 Data and code availability

iPSYCH is approved by the Danish Scientific Ethics Committee, the Danish Health Data Author-
ity, the Danish Data Protection Agency, Statistics Denmark, and the Danish Neonatal Screening
Biobank Steering Committee[38]. Code used to generate simulation results, analyse iPSYCH,
and generate plots and tables can be found at https://github.com/EmilMiP/ADuLTCode. LT-
FH++ can be found at https://github.com/EmilMiP/LTFHPlus.
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