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Abstract 
 

Treatment-resistant depression (TRD), often defined by absence of symptomatic remission 

following at least two adequate treatment trials, occurs in roughly a third of all individuals with 

major depressive disorder (MDD). Prior work has suggested a significant common variant genetic 

component of liability to TRD, with heritability estimates of 8% when comparing to non-treatment 
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resistant MDD. Despite this evidence of heritability, no replicated genetic loci have been identified 

and the genetic architecture of TRD remains unclear. A key barrier to this work has been the 

paucity of adequately powered cohorts for investigation, largely because of the challenge in 

prospectively investigating this phenotype. Using electroconvulsive therapy (ECT) as a surrogate 

for TRD, we applied standard machine learning methods to electronic health record (EHR) data to 

derive predicted probabilities of receiving ECT. We applied these probabilities as a quantitative 

trait in a genome-wide association study (GWAS) over 154,433 genotyped patients across four 

large biobanks. With this approach, we demonstrate heritability ranging from 2% to 4.2% and 

significant genetic overlap with cognition, attention deficit hyperactivity disorder, schizophrenia, 

alcohol and smoking traits and body mass index. We identify two genome-wide significant loci, 

both previously implicated in metabolic traits, suggesting shared biology and potential 

pharmacological implications. This work provides support for the utility of estimation of disease 

probability for genomic investigation and provides insights into the genetic architecture and 

biology of TRD.  

 

Introduction 

Depression is a common, disabling mental illness, with lifetime prevalence estimates 

ranging from 6.6% to 21% globally1 and 16.9% in the United States2. Of the individuals with 

depression, more than 40% do not respond to 2 sequential antidepressant therapies and a third do 

not respond after 4 different treatments3. Treatment resistant depression (TRD) disproportionately 

accounts for the socioeconomic burden of depression, with over $25 billion spent annually in the 

United States4 and is associated with a significantly increased risk for suicide5,6. After decades of 
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stasis, novel interventions for TRD have begun to emerge; however, such treatments remain costly 

and challenging to access, highlighting the need to better understand risk factors for this outcome7,8. 

Despite decades of investigation9, the neurobiology of TRD is poorly understood. Prior 

studies have suggested a significant genetic component of TRD, with heritability estimates from 

common genetic variation ranging from 17% to 25% when compared to healthy controls10,11 and 

8% when compared to non TRD MDD11. However, no identified genetic risk locus has been 

replicated in genome-wide association studies (GWAS). This likely reflects two key barriers to 

discovery: first, the challenges of attaining sufficient power for a heterogeneous phenotype and 

second, variable criteria for treatment responsiveness in defining TRD12–15. Limited consensus 

exists on the exact measures of remission, length of adequate treatment trial duration, and adequate 

treatment dose needed to define TRD16.  

To address these challenges, we adopted two strategies. First, to increase power, we used 

large-scale clinical data to build risk prediction models where quantitative phenotypes can be 

generated for genetic samples in associated biobanks17. Secondly, to bypass the problems 

associated with categorizing treatment responsivity to specific medication classes or to specific 

number of antidepressant trials, we defined TRD on the basis of whether an individual with MDD 

had received a gold standard treatment indicated for TRD, electroconvulsive therapy (ECT)18.  

Together, these approaches enable the large-scale genetic analyses needed to characterize the 

genetic architecture of TRD and improve our understanding of its biological etiology. 

Specifically, using ECT as a surrogate for TRD, we applied prediction models to electronic 

health record (EHR) data to derive posterior probabilities of receiving ECT, as absolute numbers 

of ECT cases in individual health systems were modest. After internally and externally validating 

these models, we used the probabilities as quantitative phenotypes to perform GWAS on over 
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154,000 patients with MDD across four large biobanks. We quantified the genetic contribution to 

TRD and the genetic overlap with both psychiatric and non-psychiatric phenotypes and other 

definitions of TRD. Finally, we implicated specific loci associated to increased likelihood of 

having TRD and needing ECT. 

 

 

Methods 

 

Study Settings  

Clinical and genetic data were used from the EHRs and biobanks of Mass General Brigham 

(MGB), Vanderbilt University Medical Center (VUMC), Geisinger Health System (Geisinger; 

GHS), and the Million Veteran Program (MVP). MGB consists of 2 academic medical centers and 

4 community and psychiatric hospitals in Eastern Massachusetts that serve over 6.5 million 

patients, and electronic health data were extracted from the Mass General Brigham Research 

Patient Data Registry (RPDR)19 and the Enterprise Data Warehouse. VUMC is an academic 

medical center in Nashville, Tennessee that manages over 2 million patient visits across Tennessee 

and its neighboring states each year. Its deidentified clinical EHR data is stored in the Synthetic 

Derivative (SD)20. Geisinger Health System is an academic medical center in Danville 

Pennsylvania and serve over 3 million patients in Pennsylvania. Deidentified electronic health data 

for consenting patients is extracted and stored by the Geisinger MyCode Community Health 

Initiative21. The Million Veteran Program22 study is based on the largest integrated health care 

system in the United States (Veterans Health Administration; 9 million people) and has over 

825,000 US veteran participants with genetic information available for over 650,000 individuals.  
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Clinical prediction model of TRD  

We extracted de-identified clinical data of individuals with current ages of 18-90 years 

from the VUMC SD and MGB RPDR (Figure 1A). Individuals with MDD were identified using 

International Classification of Diseases, version 9 (ICD-9) codes 311.*, 296.2*, 296.3*, and 300.4 

and ICD-10 codes F32.**, F33.**, and F34.1 with * as wildcard digits 0-9. Individuals with one 

or more ICD-9 or ICD-10 codes for bipolar disorders, schizophrenia, and psychotic disorders were 

excluded from analyses. Of the remaining individuals, TRD cases were defined using the CPT 

code for ECT (90870).  All data 24 hours before the date of ECT for cases or the last depression 

code for controls were right-censored to avoid surrogates for the outcome (for example, the 

possibility that particular laboratory studies or pre-anesthesia procedures would directly proxy 

ECT). A minimum of at least two unique visit dates over four weeks before censoring date was 

required for study inclusion.  

Structured clinical data were included as predictors for the clinical model, including: 

demographics (age in years, categorical sex [Male, Female, Unknown], categorical race [White, 

Black, Asian, Hispanic, Other]), area deprivation index (ADI), diagnostic codes (log-transformed 

counts of historical CCS counts)23, and medication (log-transformed counts of RXNORM-mapped 

ingredients). Of note, the VUMC ADI uses six features from the American Community Survey on 

the census tract level24, while MGB ADI includes 21 socioeconomic factors from the census on 

the zip-code level25.  

The VUMC dataset was split into training and test sets where the test sample was 

comprised of only patients in the biobank. The remaining sample was then randomly split into 80% 

for training and 20% for validation. In MGB, the dataset was randomly split into 80% for training 
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and 20% for testing regardless of biobank status. A LASSO model26 was trained separately at each 

site using Glmnet27 and hyperparameters were trained via a 10-fold cross-validation on the training 

data set (Figure 1B).  

Each prediction model was validated internally and then externally at the other partner site 

(Figure 1B). Both the MGB and VUMC TRD models were further validated at Geisinger and 

MVP. Model performance was evaluated with discrimination metrics: Area Under the Receiver 

Operating Characteristic (AUROC) and Area Under the Precision-Recall Curve (AUPRC). Each 

genotyped individual from VUMC, MGB, Geisinger, and MVP had two predicted probabilities of 

ECT from either the MGB or VUMC TRD model, and these probabilities were used as quantitative 

phenotypes for genetic association analyses (Figure 1C). 

 

Phenome-wide association study (PheWAS) 

ICD-9 and ICD-10 codes were mapped to phecodes using version 1.228. Cases were defined 

as those having more than 2 instances of the same phecode. Controls were patients never having 

documentation of the phecode. Patients were excluded if they had 1 instance of the phecode or 

were a case from a predefined list of excluded phecodes. Logistic regression was performed with 

presence or absence of phecode as the outcome. All phecodes with more than 100 cases and at 

least 1 case having received ECT were analyzed. The PheWAS R package29 was used to visualize 

results. 

 

Genotyping quality control, imputation and GWAS meta-analysis across four sites 

Genotyping quality control (QC), imputation and GWAS were performed separately at 

each site. Standard QC protocols were applied removing variants based on high levels of genotype 
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missingness or failing Hardy-Weinberg Equilibrium and removing individuals for excessive 

genotype missingness, high heterozygosity or sex discrepancies. Only individuals of European 

ancestries were retained as defined by the 1000 Genomes reference. Imputation and GWAS were 

performed using comparable reference panels and approaches. Site specific details are provided in 

the Supplementary Methods. 

GWAS of the VUMC and MGB TRD phenotypes in the individuals of European ancestries 

in 4 different clinical sites (VUMC, MGB, GHS, MVP) were meta-analyzed using inverse 

variance-weighted fixed effects model in METAL30. The weighted mean allele frequency was 

calculated weighted by the effective sample size per cohort. SNPs with a weighted minor allele 

frequency of < 1% or SNPs present in < 80% of total effective sample size were removed from the 

meta-analysis results.  

 

Heritability estimates and genetic correlation 

LD score regression31 was used to estimate the phenotypic variance in TRD explained by 

common SNPs (SNP-heritability, ℎ!"#$ ) from GWAS summary statistics. ℎ!"#$ was calculated on 

the observed scale. LDSC bivariate genetic correlations attributable to genome-wide SNPs (rg) 

were estimated between GWAS of the TRD phenotypes and previously published GWAS of ECT32 

or medication-defined TRD11, as well as other psychiatric and non-psychiatric risk factors. For 

previously noted epidemiological risk factors of TRD, the rg of TRD GWAS summary statistics 

with 29 other human diseases and traits was calculated using publicly available summary statistics 

(PMID listed in Table S6). The Bonferroni corrected significance threshold was P < 1.72x10-3, 

adjusting for 29 traits tested. Differences in rg between VUMC TRD meta-analysis and MGB TRD 

meta-analysis and differences in heritability between TRD meta-analyses before and after mtCOJO 
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conditioning for BMI were tested for deviation from 0, using the block jackknife method, 

implemented in LDSC software33.  

 

Conditional GWAS using mtCOJO 

The results of the GWAS of TRD were conditioned on the genetics of BMI using mtCOJO 

(multi-trait-based conditional & joint analysis using GWAS summary data)34, implemented in 

GCTA software35. mtCOJO estimates the effect size of a SNP on an outcome trait (eg. TRD) 

conditioned on exposure trait(s) (eg. BMI), using the genome-wide significant SNPs for the 

exposure trait as instruments to estimate the effect of the exposure on the outcome. It then performs 

a genome-wide conditioning of the estimated effect from the exposure, which provides conditioned 

effect sizes and P values for the outcome trait. We conditioned TRD on BMI, since higher BMI 

among TRD cases has been previously reported11.  mtCOJO analysis was performed on the TRD 

meta-analyses as the outcome traits with the GIANT European ancestries GWAS summary 

statistics36 as the exposure trait since mtCOJO requires an ancestry-matched LD reference panel. 

In the selection of SNPs as instruments, independence was defined as SNPs more than 1 megabase 

(Mb) apart or with an LD r2 value < 0.05 based on the 1000 Genomes Project Phase 3 European 

reference panel37.  

 

Polygenic risk scoring (PRS) 

PRS of the TRD meta-analyses were tested for association with ECT CPT code as well as 

the TRD phenotypes generated in independent target cohorts. The target cohorts were patients with 

MDD at VUMC and MGB. The meta-analysis of the TRD phenotypes was repeated excluding 

each cohort in turn to create independent discovery and target datasets. PRS analyses were 
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performed using PRS-CS which places a continuous shrinkage prior on SNP effect sizes using a 

Bayesian regression framework38. The continuous shrinkage priors adapt the amount of shrinkage 

applied to each SNP to the strength of the associated GWAS signal based on the LD structure 

estimated from an external reference panel. Posterior SNP effects were generated in each cohort 

using PRS-CS and the 1000 Genomes European reference panel was used to estimate LD between 

SNPs. The PRS were calculated for each individual of the target cohort using Plink 1.9.  PRS was 

tested for association with ECT cases vs control status in the target cohort using logistic regression 

model, covarying for PC1-PC10, sex, and age. PRS was also tested for association with MGB and 

VUMC TRD phenotypes using linear regression, covarying for PC1-PC10. 

 

Results 

 

Demographic and phenotypic characterization of patients with MDD receiving ECT across 

two healthcare systems 

Leveraging longitudinal clinical data from EHRs at MGB and VUMC (see Methods), we 

identified 185,409 patients (MGB: 78,620, VUMC: 106,789) with a diagnostic code of MDD or 

depressive disorder. Depressive disorder was included as prior work in these health systems and 

others indicated that it is commonly applied by non-psychiatrists to capture MDD. Among those 

patients, 467 (MGB: 242, VUMC: 225) had at least one procedural code for ECT. The prevalence 

of ECT among individuals with MDD was 0.26% (MGB: 0.31%, VUMC: 0.21%) which is similar 

to the published prevalence of ECT of ~0.25% among individuals with mood disorders39. The 

mean age at which VUMC cases received their first ECT CPT code was 53.8 ± 17.4 years, with a 
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median ECT trial number of 15 (SD = 16); at MGB the mean age was 57 ± 17 years with a mean 

ECT trial number of 16 (SD = 19).  

We identified multiple significant demographic differences between MDD patients 

receiving ECT and those who have not (Table 1). Consistent across the VUMC and MGB cohorts, 

ECT cases were 5 years older on average, 12% more likely to be male (although ECT was still 

more common in women), and 8.8% more likely to be white. However, while the VUMC ECT 

cases had lower mean body mass index (BMI) on average and at first ECT visit, BMI variables in 

the MGB cohort were comparable between cases and controls.  

 
 
Table 1: Demographic characteristics of MGB and VUMC cohorts 
In parentheses are percentages, standard deviations are reported after ±. Index time is 24 hours prior to first ECT for 
cases or last MDD code for controls. Age is defined as years between birth date and last EHR event. All non-listed 
races including unknown, and combinations are including in Other. BMI uses BMI values were cleaned for extreme 
outliers (> 80), unit mismatch and exclude individual measurements of age < 18. For ECT cases, the closest BMI 
measurement must have been within six months of the earliest ECT CPT code. Significance testing included t-test 
for quantitative values and two proportions Z-test for categorical variables 
 

 

As TRD is associated with increased suicidality and higher burden of comorbid psychiatric 

illnesses, we performed a phenome-wide association study (PheWAS) to test the relationship of 

ECT with other phenotypes (see Methods). PheWAS association results in the VUMC and MGB 

cohorts were highly correlated (r = 0.70. P = 4.19x10-54), with suicidality being the most 

significantly associated phenotype in both VUMC and MGB (VUMC: beta = 3.62, SE = 0.15, P = 

ECT case
(N=225)

MDD control 
(N=106,564) P-value ECT case

(N=242)
MDD control 
(N=78,378) P-value

Age Mean at earliest MDD 51.2 ± 17.5 46.6 ± 19.3 1.23E-04 56.7 ± 16.3 51.2 ± 17.1 6.70E-07
Mean at earliest ECT 53.8 ± 17.4 57 ± 17

Gender Female 121 (53.8%) 70979 (66.6%) 6.01E-05 145 (60%) 55,334 (71%) 0.002
Male 104 (46.2%) 35548 (33.4%) 6.00E-05 97 (40%) 22,819 (29%) 0.002

Unknown 0 (0%) 1 (0%) 1 0 (0%) 3 (<0.1%) 1
Race White 200 (88.9%) 88741 (83.3%) 0.031 220 (91%) 62,013 (79%) 9.03E-06

Black 9 (4.0%) 11552 (10.8%) 1.41E-03 5 (2.1%) 4,141 (5.3%) 0.025
Asian 3 (1.3%) 1064 (1.0%) 0.87 5 (2.1%) 1,664 (2.1%) > 0.9
Other 13 (5.8%) 5171 (4.8%) 0.63 12 (5.0%) 10,338 (13.2%) 2.17E-04

Ethnicity Hispanic 3 (1.3%) 2189 (2.1%) 0.60 4 (1.7%) 6,883 (8.8%) 1.38E-04
Non-Hispanic 213 (94.7%) 99769 (93.7%) 0.63 238 (98%) 71,273 (91%) 1.38E-04

Unknown 9 (4.0%) 4570 (4.3%) 0.96 0 (0%) 0 (0%) NA
BMI Mean 26.9 ± 6.81 28.2 ± 7.81 4.77E-04 28.1 ± 6.3 28.5 ± 6.6 0.4

Closest to index date 27.2 ± 6.81 29.8 ± 8.31 2.10E-07 28.0 ± 6.7 28.5 ± 6.8 0.3

Demographic

VUMC patients MGB patients
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2.67x10-128; MGB: beta = 2.57, SE = 0.18, P = 2.58x10-46). Other significantly associated 

phenotypes include psychiatric diseases like major depressive disorder, generalized anxiety 

disorder and other suicide-related traits (Supplementary Figures 1-2).  

 

Internal and external validation of TRD phenotype 

Models built to predict ECT separately at MGB and VUMC were tested both internally 

and externally (Figure 1). Internal validation of the TRD models showed discrimination 

performance metrics on the held-out test sets at MGB and VUMC of AUROC 0.81 and 0.9, 

respectively, and AUPRC of 0.03 and 0.04, respectively (Table 2). External validation of the MGB 

TRD model on VUMC data showed AUROC of 0.83, AUPRC of 0.03 and applying the VUMC 

TRD model on MGB data showed AUROC of 0.83 and AUPRC of 0.03.  

To increase sample size and power for genetic analysis, both models were applied to 

samples at two additional sites (Table 2), the Geisinger Health System (GHS: 353 cases, 190,841 

controls) and the Million Veteran Program (MVP: 600 cases, 259,925 controls). Prediction 

performance remained consistently high for both models at GHS (VUMC model: AUROC: 0.84, 

AUPRC: 0.021; MGB model: AUROC: 0.78, AUPRC: 0.023) and MVP (VUMC model: AUROC: 

0.81, AUPRC: 0.024; MGB model: AUROC: 0.81, AUPRC: 0.040). Features selected by LASSO 

with the highest weights included prescriptions of antipsychotics, diagnosis of mood disorders, 

and suicide in both models (Table S1, Table S2). 
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Figure 1: Schematic of the TRD clinical model generation and the genome-wide association study of the 
quantitative ECT prediction scores.  
A. TRD cases and non-TRD MDD controls were extracted from EHRs at VUMC and MGB B. Prediction models 
leveraging clinical data from the EHR were trained separately at VUMC and MGB and applied to 4 independent data 
sets to generate probabilities C. Probabilities were used as quantitative TRD phenotypes to perform two GWAS of 
TRD in 154,443 individuals. 
 

 

Table 2: Performance metrics of VUMC and MGB models across 4 sites. Test set is the independent sample both 
of the models were applied to. AUROC: area under the receiver operator curve; AUPRC: area under the precision 
recall curve. Bolded numbers are performance measures of internal validation. 
 

TRD phenotypes show significant heritability and shared genetic architecture with each 

other  

The posterior probabilities from the two TRD prediction models (VUMC and MGB) were 

rank normalized to generate two quantitative TRD phenotypes. Linear regressions of phenotype 

on genotype were performed separately on samples of European ancestries at VUMC (n = 15,305), 

MGB (n = 2,216), GHS (n = 39,353) and MVP (n = 97,649). Summary statistics from the four 

Site ECT cases Controls Prevalence AUROC AUPRC AUROC AUPRC
VUMC 59 33,248 0.18% 0.90 0.036 0.83 0.030
MGB 207 43,520 0.47% 0.83 0.030 0.91 0.080
GHS 353 190,841 0.18% 0.84 0.021 0.78 0.023
MVP 600 259,925 0.23% 0.81 0.024 0.81 0.040

Test Set VUMC model MGB model

TRD cases

<1000

Non-TRD

100k-300k

Conversion to 
Quantitative phenotype 

Probability of ECT

Genetic analyses of TRD:
Meta-analysis, PRS associations

N = 154k 

A. Phenotyping TRD via ECT B. TRD Clinical Model C. TRD GWAS

ECT CPT code 

Binary clinical phenotype Genetic association of 
Quantitative phenotype 

MDD patient with genotype 
+ ECT probability

MDD patient 
with EHR data

Characterizing clinical and 
genetic characteristics associated with TRD



GWAS were then meta-analyzed across 154,433 samples using a variance-weighted fixed effect 

model. Significant heritability estimates of 0.042 (SE = 0.004, P = 4.90x10-23) for the MGB TRD 

meta-analysis and 0.020 (SE = 0.0036, P = 1.38x10-8) for the VUMC TRD meta-analysis were 

estimated using LD-score regression31 (Table 3). Significant genetic correlation between the 

VUMC TRD meta-analysis and the MGB TRD meta-analysis was observed (rg = 0.66, SE 0.05, 

P=1.3x10-34) (Table S3). The rg value reflects highly overlapping but non-identical phenotypes. 

 

Table 3: Heritability estimates of TRD GWAS within site and meta-analyses. Heritability was estimated with 
LD-score regression within each biobank site and the meta-analysis for both the VUMC and MGB TRD phenotypes.  
 
 

We then examined the genetic correlation of our TRD phenotypes with two prior GWAS 

of TRD (Table S3). The first defined TRD based on antidepressant prescriptions in the UK 

Biobank (UKB TRD)11 and the second used ECT but compared cases to healthy controls as 

opposed to those with non-TRD MDD (PREFECT)32. No significant genetic correlation was 

observed between the MGB TRD meta-analysis or the VUMC TRD meta-analysis with either 

PREFECT TRD (VUMC: rg = 0.14, SE = 0.12, P = 0.23; MGB: rg = 0.09, SE = 0.10, P = 0.31) 

or UKB TRD (VUMC: rg = 0.07, SE = 0.18, P = 0.65; MGB: rg = -0.05, SE = 0.13, P = 0.69). 

UKB TRD and PREFECT TRD were significantly correlated with each other (rg = 0.75, SE = 0.24, 

P = 0.003). Further, genome-wide significant loci from the previously published TRD GWAS32,40 

did not replicate at nominal significance in either of our TRD model meta-analyses (Table S4). 

 

Two novel genome-wide significant loci associated to TRD 

Cohort N SNP h2 SE p SNP h2 SE p
GHS 39,353 0.042 0.0117 1.66E-04 0.029 0.012 0.008
VUMC 15,305 0.017 0.025 0.248 0.0226 0.029 0.218
MGB 2,126 0.043 0.188 0.410 0.259 0.1939 0.447
MVP 97,649 0.026 0.0054 7.37E-07 0.050 0.0063 1.04E-15

Meta-analysis 154,433 0.020 0.0036 1.38E-08 0.0422 0.0043 4.90E-23

 

VUMC TRD MGB TRD



Two genome-wide significant loci were identified in the MGB TRD meta-analysis (Figure 

2). The most significant locus was located on chromosome 16 in the intronic region of FTO (index 

SNP = rs56313538, beta for G allele = -0.0220, SE = 0.0037, MAF = 0.4, P = 4.3x10-11, Cochran’s 

Q: 0.35, I2 heterogeneity index = 9.53) (Figure 3A, Table S5). No significant association was 

observed in the VUMC TRD meta-analysis (beta = -0.003, SE = 0.0037, P = 0.37). The SNP is in 

high LD (R2 = 1.0) with SNP rs9939609 that is strongly associated with BMI36 (beta=0.075, 

SE=2.9x10-3, P = 1.95x10-145) and weight41 via its regulation of IRX3 expression42. Therefore, this 

locus has an inverse effect on BMI and TRD. 

The second genome-wide significant locus was in an intergenic region on chromosome 22 

(index SNP = rs133082, beta for C allele = 0.0206, SE = 0.0037, MAF = 0.44, P = 1.82x10-8, 

Cochran’s Q: 0.71, I2 heterogeneity index = 0) (Figure 3B, Table S5). Significant association was 

observed in the VUMC TRD meta-analysis although it did not surpass genome-wide correction 

(beta = 0.0158, SE = 0.0037, P = 1.83x10-5). This variant is significantly associated with decreased 

expression of the nearest gene, melanin concentrating hormone receptor 1 (MCHR1, 15kb away) 

in the dorsal lateral prefrontal cortex and increased expression in whole blood and T cells43. The 

variant is in high linkage disequilibrium (R2 = 0.76) with a genome-wide significant locus linked 

to increased risk of bipolar disorder in a recent large GWAS which implicated the same gene44. 

Neither locus is significantly associated in prior published TRD GWAS. 



A.

 
B.

 
Figure 2: Manhattan plots of A. MGB TRD meta-analysis and B. VUMC TRD meta-analyses 
  

 

 



 

 

Figure 3: Forest plot of the genome-wide significant locus rs8050136 on chromosome 16 and rs133082 on 
chromosome 22. The points indicate the log odds ratio and the error bars show the standard error. The P value of 
association with each phenotype is shown above the error bars. 
 

TRD polygenic risk scores associate with TRD phenotypes 

Polygenic risk scores are a standard approach to collapsing aggregated risk from genome-

wide association studies45. We tested for association of polygenic risk scores generated using our 
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TRD meta-analyses and our TRD phenotypes in the VUMC or MGB samples after excluding them 

from the meta-analysis (i.e., always leaving out the target sample). Among VUMC patients, PRS 

generated from MGB TRD meta-analysis was significantly associated with both VUMC and MGB 

TRD phenotypes (VUMC P=2.15x10-5, MGB: P=1.06x10-11) and VUMC TRD PRS was 

significantly associated with the MGB TRD phenotype but not the VUMC TRD phenotype (MGB 

P=6.01x10-4, VUMC P=0.0619) (Table 4). Among the substantially smaller set of MGB patients, 

neither TRD PRS was significantly associated with either TRD phenotype. 

We next looked at whether PRS derived from relevant psychiatric traits including 

depression46, schizophrenia and bipolar disorder associated with our TRD phenotypes in VUMC 

or MGB patients. We identified that the depression PRS was significantly associated with the 

VUMC TRD phenotype (P=4.11x10-5) and nominally associated with the MGB TRD phenotype 

(P=8.96x10-3). Despite excluding patients with diagnoses of bipolar disorder or schizophrenia 

defined by at least one diagnostic code, we found that schizophrenia47 PRS was significantly 

associated with both the MGB and VUMC TRD phenotypes (Table 4, MGB: linear regression 

P=6.79x10-9, VUMC: P=7.24x10-7), and bipolar disorder44 PRS was significantly associated with 

MGB TRD phenotype (P=1.99x10-4) and nominally associated with VUMC TRD phenotype 

(P=0.036). Among the smaller set of MDD patients in MGB, schizophrenia and bipolar disorder 

PRS were not significantly associated with either site’s TRD phenotype. 



 

Table 4: Polygenic risk score association results. PRS were generated using psychiatric traits and TRD meta-
analyses as discovery GWAS and applied to TRD phenotypes based on models or medication in the VUMC and MGB 
patient samples. P-values are bolded if surpassing the multiple-test correction threshold. 
 

Medication-defined TRD corresponds with ECT-based TRD phenotypes 

To compare results from the ECT-based TRD phenotypes with a commonly used 

alternative definition of TRD, we defined case status based on antidepressant medication trial 

numbers and length. Cases were defined as having at least three unique antidepressants prescribed, 

requiring the time interval between the third and first antidepressant to be between 16 weeks and 

2 years to account for adequate and consecutive trial for each antidepressant. In the VUMC MDD 

cohort, individuals with medication defined TRD (med-TRD, n = 1181) had higher ECT-based 

TRD phenotypes than the remaining MDD patients (n = 21,400) for both VUMC TRD (med-TRD: 

0.358 ± 1.22, control: 0.015 ± 1.04, t-test P=1.28x10-20) and MGB TRD (med-TRD: 0.056 ± 1.21, 

control: -0.034 ± 1.04, t-test P=0.013). In the MGB MDD cohort (n = 7443), there were no 

significant differences in the VUMC TRD phenotype or the MGB TRD phenotype between med-

TRD patients (n = 501) compared to controls (n = 6942).  

We then tested for association of the ECT-based TRD meta-analyses and psychiatric 

diagnoses PRS with med-TRD status. In both the MGB and VUMC MDD cohorts, neither TRD 

Discovery GWAS Target trait BETA SE P BETA SE P
VUMC TRD 0.0159 8.51E-03 0.0619 -0.0026 2.36E-02 0.914
MGB TRD 0.0337 9.83E-03 6.01E-04 -0.0182 2.40E-02 0.449
Depression 0.0330 8.05E-03 4.11E-05 2.54E-03 2.18E-02 0.907
Bipolar Disorder 0.0172 8.19E-03 0.036 -0.0170 2.21E-02 0.443
Schizophrenia 0.0402 8.10E-03 7.24E-07 -0.0051 2.21E-02 0.819
VUMC TRD 0.0364 8.56E-03 2.19E-05 0.0138 2.38E-02 0.562
MGB TRD 0.0673 9.89E-03 1.06E-11 0.0100 2.42E-02 0.679
Depression 0.0212 8.11E-03 8.96E-03 0.0262 2.20E-02 0.233
Bipolar Disorder 0.0307 8.24E-03 1.99E-04 0.0282 2.23E-02 0.206
Schizophrenia 0.0473 8.16E-03 6.79E-09 1.56E-02 2.23E-02 0.484
VUMC TRD -0.0077 4.17E-02 0.853 0.0061 9.14E-02 0.947
MGB TRD -0.0765 4.81E-02 0.112 -0.0234 9.34E-02 0.802
Depression -0.0124 3.97E-02 0.756 0.0282 8.39E-02 0.737
Bipolar Disorder 0.0841 4.02E-02 0.036 0.1047 8.64E-02 0.226
Schizophrenia 0.0719 3.97E-02 0.070 0.0396 8.58E-02 0.644

VUMC TRD phenotype

MGB TRD phenotype

Medication based TRD

VUMC patients (n = 15,305) MGB patients (n = 2,126)



meta-analysis PRS was significantly associated with med-TRD (MGB: P = 0.112, VUMC: P = 

0.853), and there were no significant associations with PRS of the psychiatric traits. 

 

Significant genetic overlap between TRD and psychiatric, cognitive, substance use and 

metabolic traits 

To study the genetic overlap between TRD and psychiatric and non-psychiatric traits 

previously associated to TRD, genetic correlations were estimated. Both TRD meta-analyses 

showed significant positive genetic correlations, after multiple test correction, with cognitive traits 

including years of education (VUMC: rg = 0.21; MGB: rg = 0.46) and intelligence (VUMC: rg = 

0.20; MGB: rg = 0.28), and significant negative genetic correlations with ADHD (VUMC: rg = -

0.27; MGB: rg = -0.40), alcohol dependence (VUMC: rg = -0.50; MGB: rg = -0.38) and smoking 

traits (VUMC: rg = -0.26; MGB: rg = -0.42) (Figure 4). Both TRD meta-analyses also showed 

significant negative genetic correlations with BMI (VUMC: rg = -0.33; MGB: rg = -0.65). While 

the two TRD meta-analyses shared substantial genetic architecture, there were noticeable 

difference in genetic correlations across a subset of traits. Traits with significantly stronger genetic 

correlations in the MGB meta-analysis, based on a block jackknife approach in LD score 

regression33 included negative associations with BMI (P = 3.00x10-11) and type 2 diabetes (P = 

4.67x10-8), and positive associations with educational attainment (P = 4.59x10-9) and marijuana 

use (P = 5.03x10-6). Traits that had a significantly stronger genetic correlation with the VUMC 

meta-analysis were neuroticism (P = 7.24x10-5), and multiple measures of alcohol use disorders, 

AUDIT-C (P = 3.54x10-6), and AUDIT-T (P = 3.67x10-6) (Figure 4). 



 

Figure 4: Genetic correlations of VUMC and MGB TRD meta-analyses with psychiatric and non-psychiatric 
traits. Unfilled points indicate genetic correlations that did not pass the Bonferroni-corrected significance threshold 
P<1.72x10-3 (29 traits tested). Error bars represent the standard error. P values indicate significance after Bonferroni 
correction. Bolded traits show significant differences in genetic correlations between the two meta-analyses. BMI-
body mass index, ADHD-attention-deficit/hyperactivity disorder, OCD-obsessive compulsive disorder, PTSD-post-
traumatic stress disorder, AUDIT-C-Alcohol Use Disorders Identification Test-C (measure of quantity of alcohol 
consumption), AUDIT-P- measure of problematic consequences of drinking, AUDIT-T-total score of AUDIT. 
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Since we observed strong phenotypic and genetic association between TRD and BMI, we 

further examined the role that the genetic factors of BMI were having on our results by 

conditioning our TRD meta-analyses on the genetics architecture of BMI (see Methods). 

Significant differences in genetic correlations were confined to BMI for both meta-analyses and 

Type 2 diabetes for MGB meta-analysis only (Supplementary Figures 3-4). Among the identified 

loci, chromosome 16 is a known BMI locus and was used as an instrument SNP for the 

conditioning analysis so was removed. However, the conditioning on BMI had limited effect on 

the association statistics from the locus on chromosome 22 in MGB (beta = 0.0194, SE = 0.004, P 

= 2.02x10-7) and VUMC (beta = 0.0154, SE = 0.004, P = 3.27x10-5) (Table S5).  

 

 

Discussion 

In this genetic study of TRD, we found low but significant heritability of TRD, with two 

novel genome-wide significant loci and significant genetic overlap with schizophrenia, cognitive 

and substance abuse traits, as well as BMI. Application of a computed phenotype from biobank-

linked electronic health records allowed detection of these effects in a total of 154,433 individuals 

across 4 sites. Understanding the genetic architecture of TRD is important for quantifying the role 

of genetics in treatment response to move beyond decades-old pharmacogenomic studies. Further, 

identifying risk loci could facilitate efforts to identify novel treatments considering the modest 

response rates observed for interventions other than ECT.  

While ECT is indicative of TRD, it remains a rare occurrence with a prevalence among 

individuals with MDD of well below 1%. Even with 154,433 patients, a case-control approach 

comparing ECT cases to depression controls would have been underpowered with ECT case 



numbers of only a couple thousand across all four clinical sites. Leveraging models that can predict 

ECT from large repositories of clinical data and assign probabilities as quantitative phenotypes 

allows for substantial increase in power in genetic studies. We showed that our ECT-based 

prediction models trained both at MGB and VUMC were robust to external validation across three 

independent healthcare systems. With quantitative phenotypes, we increased power across the 

entire genotyped cohort of 154,433 patients which resulted in a significant SNP heritability of 2-

4% and significant genetic correlation between the two TRD meta-analyses. Both TRD meta-

analyses showed significant positive genetic overlap with cognitive traits, and significant negative 

genetic correlations with ADHD, alcohol and smoking traits, and BMI. We also saw modest 

evidence of genetic risk of schizophrenia and bipolar disorder even after removing patients with 

any diagnostic evidence of schizophrenia or bipolar disorder from our population, further 

implicating potential genetic risk of severe psychiatric disorders to likelihood of TRD. Despite the 

high genetic correlation across models, genetic overlap with other traits differed significantly 

representing potential differences in clinical population, general population and/or clinical 

decision making around ECT. While our quantitative TRD phenotypes were elevated among 

patients with medication-defined TRD, we did not see any genetic correlation with other genetic 

studies of TRD. However, the comparable ECT studies used healthy controls and these two studies 

were highly genetically correlated with each other pointing to the potential that they are 

predominantly capturing depression genetic architecture as opposed to TRD genetic architecture. 

Our work shows there is a significant but small contribution of genetics to TRD as defined by ECT. 

Large studies are currently underway to collect tens of thousands of ECT cases for a case-control 

study48 and the comparison to this more timely and efficient approach will be important. 



We discovered two genome-wide significant loci both with prior implications to metabolic 

traits. The most significant locus was in the intergenic region of the obesity and BMI-related FTO 

gene on chromosome 16. The index variant is in perfect linkage disequilibrium with the known 

BMI variant that regulates IRX3 and IRX5. This locus was not supported by the VUMC meta-

analysis, consistent with MGB model having stronger genetic correlation with BMI. Of note, the 

inverse genetic association between TRD and BMI – that is, low BMI being associated with high 

risk of TRD – is supported by the positive correlation between TRD with anorexia nervosa, a 

metabopsychiatric illness characterized by extremely low body weights and a notorious lack of 

antidepressant responsivity in those with comorbid depression. Interestingly, BMI has previously 

been shown to moderate treatment response in patients with MDD receiving intravenous ketamine, 

where patients with higher BMI and obesity demonstrated a more robust acute antidepressant 

response to ketamine49. Our study is in line with such findings and extends this to incorporate the 

metabolic genetic vulnerabilities underlying differential antidepressant treatment responsivity.  

The second risk gene MCHR1, encodes a G protein-coupled receptor protein linked to 

neuronal regulation of food intake as well as obesity and insulin resistance in mouse models50. 

This gene is highly expressed in the brain in regions that regulate body weight and appetite51 and 

has recently been implicated in bipolar disorder44, which is an illness associated with metabolic 

traits and severe depressive episodes. Moreover, inhibition of the MCH1 signaling pathway results 

in anti-depressant and anorectic effects in murine models52, which is in line with our findings that 

implicate MCHR1 in depression treatment responsivity phenotype along with association to lower 

BMI. This locus shares substantial support from the VUMC meta-analysis, and the effect size is 

largely constant even after conditioning on BMI. Together, our identification of FTO and MCHR1 

as genetic vulnerabilities for TRD supports a direct link between depression treatment responsivity 



and the complex metabolic regulatory pathways underlying energy balance including food intake 

and body weight homeostasis.  

We note several limitations of our study, particularly the potential confounding of ECT 

population characteristics in our TRD clinical models. There were significant demographic 

differences between cases and controls where a typical ECT case tended to be an older, white, 

male with a lower mean BMI compared to MDD controls. These demographic differences could 

be driven by ascertainment in medical decisions leading to a patient receiving ECT or 

socioeconomic factors like access to a caregiver as patients need accompaniment after the inpatient 

ECT procedure. Demographic differences between the region around Nashville and eastern 

Massachusetts could also contribute to the differences observed in the VUMC and MGB TRD 

phenotypes, but the two meta-analyses showed significant genetic overlap (rg = 0.66), and both 

prediction models performed robustly in independent clinical sites with different demographics, 

especially in the Million Veteran Program cohort, which is significantly more male and older than 

the other cohorts. Phenotypes based on prediction models are not always representative of the 

original phenotype and could differ in important ways that modify genetic architecture and power. 

We were able to identify significant but low SNP-heritability (2-4%), meaning that even with our 

substantial improvements in power many more patients will be required to enable identification of 

additional genome-wide significant loci. Given such low genetic contribution, an important 

question is whether ECT represents a generalizable form of TRD such that genetic contribution to 

TRD broadly is likely as low or whether there is a more biologically homogenous form of TRD. 

We note that previous estimate of SNP-heritability of TRD within MDD patients using prescription 

data was only slightly higher at 8% but with a wider confidence interval (SE = 0.04)11. 



Despite these limitations, this study supports the utility of investigating a proxy for TRD 

that can be readily extracted and predicted from electronic health records or administrative claims 

data. We confirm a significant but modest genetic contribution to TRD and provide insights into 

its overlap with other psychiatric and non-psychiatric phenotypes, in particular metabolic traits. 

This effort lays the groundwork for future efforts to apply genomic data for biomarker and drug 

development in TRD. 
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