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Abstract 

Acute respiratory distress syndrome (ARDS), a life-threatening condition during critical illness, is 
a common complication of COVID-19. It can originate from various disease etiologies, including 
severe infections, major injury, or inhalation of irritants. ARDS poses substantial clinical 
challenges due to a lack of etiology-specific therapies, multisystem involvement, and 
heterogeneous, poor patient outcomes. A molecular comparison of ARDS groups holds the 
potential to reveal common and distinct mechanisms underlying ARDS pathogenesis. In this 
study, we performed a comparative analysis of urine-based metabolomics and proteomics profiles 
from COVID-19 ARDS patients (n = 42) and bacterial sepsis-induced ARDS patients (n = 17). 
The comparison of these ARDS etiologies identified 150 metabolites and 70 proteins that were 
differentially abundant between the two groups. Based on these findings, we interrogated the 
interplay of cell adhesion/extracellular matrix molecules, inflammation, and mitochondrial 
dysfunction in ARDS pathogenesis through a multi-omic network approach. Moreover, we 
identified a proteomic signature associated with mortality in COVID-19 ARDS patients, which 
contained several proteins that had previously been implicated in clinical manifestations 
frequently linked with ARDS pathogenesis. In summary, our results provide evidence for 
significant molecular differences in ARDS patients from different etiologies and a potential 
synergy of extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS 
pathogenesis. The proteomic mortality signature should be further investigated in future studies 
to develop prediction models for COVID-19 patient outcomes. 
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1. Introduction 

The ongoing SARS-CoV-2 induced coronavirus disease 2019 (COVID-19) pandemic has been a 
major impediment to human life globally1,2. One of the main complications of severe COVID-19 is 
acute respiratory distress syndrome (ARDS). ARDS is a common presentation of critical illnesses, 
including severe infections, major injury, or inhalation of irritants3. While COVID-19-related ARDS 
and ARDS originating from other pathologies (hereby referred to as non-COVID-19 ARDS) have 
overlapping clinical features, COVID-19 ARDS is characterized by a protracted 
hyperinflammatory state and higher rates of thrombosis4–13. The field currently lacks etiology-
specific therapies and reliable predictors of heterogeneous patient outcomes14.  

To address these critical knowledge gaps, we recently elucidated molecular differences between 
and within two ARDS etiologies - COVID-19 and bacterial sepsis15. Extending this blood-based 
ARDS comparison, we here performed a similar analysis on urine samples. It has been suggested 
that urine-based molecular profiles reflect an individual’s physiological changes16 and have the 
potential to be used as diagnostic and prognostic biomarkers17–20. Previous urine-based COVID-
19 studies have made substantial efforts to determine molecular markers distinguishing COVID-
19 from healthy controls or less severe COVID-19 cases21–24. However, a detailed comparison of 
the molecular differences between two ARDS groups has so far been missing.  

In this study, we analyzed urine samples from 59 ARDS patients, with COVID-19 (n = 42) and 
bacterial sepsis diagnosis (n = 17). We followed a two-step analysis workflow to elucidate the 
differences between the two ARDS groups. In the first part, we compared metabolomic and 
proteomic profiles between the two groups to identify differentially abundant molecules. For a 
systematic cross-omics analysis of these molecules, we performed a data-driven network 
analysis. In the second part of the study, we compared the molecular heterogeneity within each 
ARDS group. To this end, we associated the omics measurements with clinical manifestations, 
including acute kidney injury (AKI) incidence, platelet counts, PaO2/FiO2, and mortality. For 
further exploration and reproducibility of our findings, we share all results, analysis scripts, and 
de-identified omics data. 
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2. Results and Discussion 

2.1. Molecular associations differentiating COVID-19 and bacterial sepsis-induced ARDS  

To identify the molecular differences between COVID-19 ARDS and bacterial sepsis-induced 
ARDS, urine-based metabolomic and proteomic profiles from 59 samples were analyzed (n = 42 
COVID-19, and n = 17 bacterial sepsis). At a 5% false discovery rate (FDR), 220 molecules were 
significantly different between the two groups, representing 150 metabolites (70 higher in COVID-
19 ARDS and 80 lower), and 70 proteins (28 higher in COVID-19 and 42 lower) (Figure 1a). The 
results of this analysis are available in Supplementary Table 1. To aid the functional 
interpretation of these molecules, metabolites and proteins were annotated with ‘sub-pathway’ 
annotations provided by Metabolon and proteins were annotated with KEGG pathways25 
(Supplementary Table 2). Top ranking pathways are shown in Figure 1b. Two of the pathways 
we identified in this ARDS comparison, extracellular matrix (ECM) and cell adhesion molecules 
(CAMs), have also been implicated in previous urine-based studies comparing COVID-19 with a 
control group26. In addition, blood-based studies have reported several of these pathways in the 
context of COVID-19 ARDS when compared to healthy controls, including amino acid metabolism, 
lipid metabolism, urea cycle, MAPK, PI3K-Akt, and JAK-STAT signaling27–31. Taken together, we 
identified 220 molecules that were differentially abundant between the two ARDS groups, with 33 
distinct biological pathways that had three or more significant molecules.  
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Figure 1: Molecular signature of COVID-19 ARDS compared to bacterial sepsis-induced ARDS. a. Differentially 
abundant molecules (150 metabolites, 70 proteins) between the two ARDS groups. b. Functional annotations of 
differentially abundant metabolites and proteins at the pathway level. Overall, 33 metabolic and signaling pathways 
with three or more significant molecules were deregulated between the two ARDS groups. FA=fatty acid.  
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2.2. ARDS-related interaction of mitochondrial dysfunction and ECM organization 

Predefined pathway annotations provide context for already well-characterized biological 
processes; however, the insights they provide into cross-omics associations are limited. 
Therefore, we generated a data-driven multi-omic interaction network based on Gaussian 
graphical models (GGM)32. In earlier studies, we have shown that partial correlation-based GGMs 
reconstruct valid biochemical interactions from omics data in an unbiased fashion and can even 
identify previously unknown interactions between molecules33–35. The data-driven network 
contained 3,566 statistically significant interactions between the 708 metabolites and 266 proteins 
(Figure 2a). It was then annotated using the molecules that were differentially abundant between 
ARDS groups. An interactive version of the network is available in Supplementary File 1 for 
further exploration. 

We then generated a subnetwork focusing on several processes that have previously been 
implicated in COVID-19, namely mitochondrial dysfunction36, coagulopathy via cell-adhesion 
molecules (CAMs) and platelet activation37,38. To this end, we chose two molecules belonging to 
these processes which were also among the top metabolomic and proteomic hits in Figure 1a: 
Tiglyl carnitine, an acylcarnitine that represents mitochondrial function39, and glycoprotein 6 (GP6), 
which is involved in the extracellular matrix (ECM) and the platelet activation pathway. 

The subnetwork was constructed by including tiglyl carnitine, GP6, and all of their first- and 
second-degree network neighbors, i.e., nodes that were separated from the two molecules by 
one or two edges in the network. The resulting subnetwork consisted of 66 molecules (37 
metabolites, 29 proteins) with 106 interactions among them (Figure 2b). Within this subnetwork, 
tiglyl carnitine and GP6 were connected via MCP-3 and N-acetylcarnosine. The neighborhood of 
tiglyl carnitine consisted of other acylcarnitines, including butenoylcarnitine (C4:1), (S)-3-
hydroxybutyrylcarnitine, and 3-hydroxyhexanoylcarnitine, all of which were higher in COVID-19 
compared to bacterial sepsis-induced ARDS. The neighborhood of GP6 consisted of additional 
proteins related to ECM or CAMs, including EPHB4, CECAM8, and PECAM1, all of which were 
higher in COVID-19 compared to bacterial sepsis-induced ARDS. The mediating inflammatory 
MCP-3 protein was connected to other MCP proteins, which were higher in bacterial sepsis-
induced ARDS than in COVID-19. 

Overall, within the subnetwork, we observed cross-omics connections between clusters of 
CAMs/ECM and a group of acylcarnitines, mediated by a group of inflammatory MCP proteins. 
We speculate that the underlying interplay of these depicted biological processes might play a 
role in ARDS pathogenesis. 
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Figure 2: Multi-omic network and extracted ECM/CAM/acylcarnitine subnetwork. a. Gaussian graphical model 
(GGM) of metabolites and proteins. Shapes and colors of the molecules in the network are based on the two omics 
types. b. Subnetwork extracted from the full multi-omic GGM, built around tiglyl carnitine and GP6. The observed 
molecular interactions suggest an interplay of ECM derangement, inflammation, and mitochondrial dysfunction in ARDS 
pathogenesis. 
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2.3. ARDS-specific heterogeneity of molecular associations across clinical 
manifestations 

In the second part of our study, we tested ARDS group-specific molecular associations with four 
clinical manifestations: acute kidney injury (AKI), platelet count, patient’s oxygen in arterial blood 
to the fraction of the oxygen in the inspired air (PaO2/FIO2) ratio, and mortality. In the bacterial 
sepsis-induced ARDS group, no significant associations with any of these clinical manifestations 
were identified (5% FDR). In COVID-19 ARDS, there were 10 molecules associated with AKI, 
including 8 metabolites and 2 proteins, no molecules associated with platelet count, 6 metabolites 
associated with PaO2/FIO2, and 61 molecules associated with mortality, including 1 metabolite 
and 60 proteins. Thus, a molecular comparison of heterogeneous presentations across the two 
ARDS groups was not feasible. Detailed results are available in Supplementary Tables 3 and 4. 

In the following, we focused on the proteomic mortality signature distinguishing survivors and non-
survivors of COVID-19. Among 60 proteins that were significantly different between survivors and 
non-survivors, 22 were higher in survivors, 38 higher in non-survivors (Figure 3a, left). 
Remarkably, in our recent plasma-based study15, we did not find any proteins that were 
associated with mortality in the same COVID-19 patients (Figure 3a, right).  

For further investigation of the urine-based COVID-19 mortality signature, we selected significant 
proteins with log2 fold changes larger than 2 (Figure 3b). Interestingly, several of these 14 
proteins have previously been described as biomarkers of pathologies that are linked to ARDS. 
For example, NT-proBNP in the urine of preterm infants has been shown to inform about 
pulmonary hypertension40. IGFBP-2 is an indicator of pulmonary arterial hypertension (PAH)41 
and can predict a decline of kidney function in type 2 diabetes42. FABP4 has been implicated in 
proteinuria and has been discussed as a marker of kidney glomerular damage43. CXCL16 is 
considered a urinary marker of poor renal outcome in diabetic kidney disease44. HO-1 is a 
candidate biomarker for oxidative damage in obstructive nephropathy45. VEGFA leads to 
increased inflammation in severe COVID-1946. 

Taken together, these mortality-associated proteins have been implicated in ARDS-linked 
manifestations, including kidney dysfunction, pulmonary hypertension, and inflammation8,47,48. 
This provides insights into the potential pathophysiological processes behind the development of 
severe ARDS.  
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Figure 3. Proteomics-based mortality signature. a. Differentially abundant proteins in COVID-19 survivors and non-
survivors, as observed in two bodily fluids, urine and plasma. 60 proteins were significant in urine proteomic profiles, 
while none of the proteins measured in the plasma of the same patients were associated with mortality. b. Top 14 
differential proteins from COVID-19 urine-based mortality signature with log2 fold change larger than or equal to 2 at 
5% FDR. 
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2.4. Conclusion 

In this study, we presented a first urine-based multi-omic comparison of COVID-19 ARDS and 
non-COVID-19 ARDS. We compared 42 COVID-19 ARDS patients to 17 bacterial sepsis-induced 
ARDS patients using untargeted metabolomics (708 metabolites) and targeted proteomics (266 
proteins). There were two main findings from our work. First, the multi-omic network approach 
highlighted the interplay of mitochondrial dysfunction and ECM derangement in ARDS 
pathogenesis. Second, we identified a proteomics-based mortality signature in COVID-19 ARDS 
patients. Notably, within the bacterial sepsis-induced ARDS group, no metabolites or proteins 
were found to be associated with any of the four clinical manifestations tested. In the following 
paragraphs, we discuss the two novel findings from our study. 

Our multi-omic network-based analysis indicated an ARDS-related link between CAMs/ECM and 
mitochondrial dysfunction represented by acylcarnitines. In the analyzed subnetwork, the 
connections between these different biological processes were mediated by inflammatory 
proteins. Previous COVID-19 studies have already individually implicated these processes in 
ARDS, but have not proposed a link between these pathways in the context of ARDS26,36,39. 
Moreover, mechanistically, ECM, CAMs, and acylcarnitines have individually been linked with 
inflammation49–51. Our findings now highlight the potential synergy between these different cellular 
pathways in ARDS. 

The proteomics-based mortality signature distinguishing COVID-19 survivors and non-survivors 
is another potentially novel finding from our study. Surprisingly, the mortality signal was absent in 
plasma proteomics profiles of the same patients. This could reflect frequent kidney involvement 
in severe COVID-19, which leads to the poor renal outcomes observed in our COVID-19 
patients48. Moreover, the signature contains several proteins implicated in pathological processes 
that have been linked to ARDS, including inflammation, kidney dysfunction, and pulmonary 
hypertension8,47,48. In terms of clinical stratification approaches, a higher-powered study will be 
needed to assess whether machine learning models based on our signature are able to predict 
mortality in COVID-19 ARDS patients.  

We recognize that our study design has several limitations. (1) Since the patients of the two ARDS 
groups were collected several years apart, differences in sample collection and storage protocols 
may lead to unaccountable variation across measurements. (2) Our cohort has a limited sample 
size (n = 59), with imbalanced ARDS groups (42 COVID-19 versus 17 bacterial sepsis patients). 
This relatively small sample size could have led to false negatives in our analysis, especially within 
the bacterial sepsis group. (3) Since the coverage of the metabolomics and proteomics platforms 
is limited, there is potential for missed associations with unmeasured molecules. (4) Our study 
was limited to statistical associations in a single cohort since we did not have access to an 
independent cohort for replication.  

In conclusion, we presented a first urine-based multi-omic analysis of COVID-19 ARDS compared 
to bacterial sepsis-induced ARDS. Our analysis shows molecular similarities and differences 
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between the two ARDS groups. The most striking finding was a proteomics-based mortality 
signature specifically for COVID-19 ARDS, which will require further investigation as a potential 
early biomarker for mortality.  
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3. Methods 

3.1. Patient Population 

The cohort was derived from the Weill Cornell Biobank of Critical Illness (WC-BOCI) at 
WCMC/NYP. The process for recruitment, data collection, and sample processing have been 
described previously54–56. In brief, the recruits in the WC-BOCI database were patients admitted 
to the intensive care unit with valid consent between October 2014 to May 2021, including 59 
patients with COVID-19 ARDS (n=42) and bacterial sepsis-induced ARDS (n=17). Clinical data 
such as demographics, vital signs, labs, and ventilator parameters were obtained through the 
Weill Cornell-Critical Care Database for Advanced Research (WC-CEDAR) and the Weill Cornell 
Medicine COVID Institutional Data Repository (COVID-IDR). Additional clinical data were 
obtained through manual abstraction from the electronic health records.  

This cohort included 47 (79.7%) males and 12 (20.3%) females, with a median age of 58.3. The 
overall mortality rate was 27.1 %, with 10 out of 42 in COVID-19 ARDS and 6 out of 17 in bacterial 
sepsis-induced ARDS. 45.8% of patients suffered from acute kidney injury (AKI), with 15 out of 
42 in COVID-19 ARDS and 12 out of 17 in bacterial sepsis-induced ARDS. The sequential organ 
failure assessment (SOFA) index was comparable between the two groups, with a median of 10 
in the COVID-19 group and 9 in the bacterial sepsis group. Detailed demographics of the patient 
cohort are provided in Supplementary Table 5. 

3.2. Clinical manifestations 

Below are the definitions used to diagnose the clinical manifestations used in this study. 

Acute Respiratory Distress Syndrome (ARDS). ARDS was assessed using the Berlin definition57, 
and followed by a review of the subject’s history, arterial blood gas, and chest X-ray by two 
independent pulmonary and critical care attendings to adjudicate the diagnosis. For bacterial 
sepsis-induced ARDS, an additional criterion was used as outlined in The Third International 
Consensus Definitions for Sepsis and Septic Shock58. For diagnosis of COVID-19, a positive viral 
swab of the nasopharynx tested for SARS-CoV-2 via RT-PCR was required. 

Acute Kidney Injury (AKI). ‘Kidney Disease: Improving Global Outcomes’ definition (KDIGO) was 
used to diagnose AKI. To this end, either of the following criteria was required: (a) serum 
creatinine change of greater than or equal to 0.3 mg/dL within 48 hours, (b) serum creatinine 
greater than or equal to 1.5 times the baseline serum creatinine known or assumed to have 
occurred within the past 7 days, (c) urine output less than or equal to 0.5 mL/kg/hour for six 
hours59.  
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3.3. Sample handling 

Urine specimens were obtained from patients admitted to ICU at WCMC/NYP.  Briefly, urine 
samples were centrifuged, and the supernatant was stored at -80°C until the omics profiling was 
performed. An electronic informed consent was obtained from all subjects for inclusion. 

3.4. Proteomic profiling 

Proteomic profiling was performed by the Proteomics Core of Weill Cornell Medicine-Qatar using 
the Olink platform (Uppsala, Sweden)15. Briefly, manufacturer's instructions were followed to 
profile the samples using four panels including Inflammation, Cardiovascular II, and 
Cardiovascular III panels. Thorough quality assurance/quality control (QA/QC) was performed to 
monitor the assay's incubation, extension, and detection steps. For (Ct) value extraction, 
Fluidigm’s reverse transcription-polymerase chain reaction (RT-PCR) analysis software was used 
at a quality threshold of 0.5 and linear baseline correction. Further processing of Ct values was 
performed using the Olink NPX manager software (Olink, Uppsala, Sweden). 

3.5. Metabolomic profiling 

Metabolic profiling was performed by Metabolon, Inc (Morrisville, NC) using ultrahigh performance 
liquid chromatograph-tandem mass spectroscopy (UPLC-MS/MS)15. Briefly, samples were 
subjected to methanol extraction and then divided into four aliquots for each of the mass 
spectroscopic methods. Rigorous quality assurance/quality control (QA/QC) was performed to 
monitor instrument performance and aid in chromatographic alignment. The four mass 
spectroscopic methods used were optimized for acidic positive ion hydrophilic compounds, acidic 
positive ion hydrophobic compounds, and basic negative ions, the fourth aliquot was analyzed via 
negative ionization. For metabolite identification, Metabolon’s proprietary software was used to 
deliver high-quality abundances of metabolites. 

3.6. Data processing 

Metabolomic and proteomic profiles were preprocessed before downstream analysis: Molecules 
with more than 25% missing values were removed, leaving 708 out of 1,112 metabolites and 266 
out of 276 proteins. Probabilistic quotient normalization60 was used to correct sample-wise 
variation in the data. Data was log2 transformed, followed by k-nearest-neighbor-based 
imputation61 for the remaining missing values. Abundance levels of the following ten proteins were 
measured in duplicates by Olink panels and were therefore averaged: CCL3, CXCL1, FGF-21, 
FGF-23, IL-18, IL-6, MCP-1, OPG, SCF, and uPA. All data processing was performed using the 
maplet R package62. 

3.7. Differential analysis of molecules 

For association analysis, we used linear models with metabolites/proteins as the dependent 
variable and diagnosis/clinical manifestations as independent variables. Further factors such as 
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age, sex, and BMI were not used as covariates in the models, since they are considered 
determinants of disease severity themselves63. To control the false discovery rate, the Benjamini-
Hochberg (BH) method64 was used to correct p-values. All analyses were performed using the 
maplet R package62. 

3.8. Pathway annotation and filtering 

For functional annotation of the differently abundant molecules, we used Metabolon’s ‘sub-
pathway’ groups and signaling pathways from KEGG25 for metabolites and proteins, respectively. 
Supplementary Table 2 contains the complete list of annotations. For our analysis, we 
considered Metabolon’s sub-pathways with the term ‘metabolism’ and non-disease KEGG 
pathways with at least 3 significant molecules. 

3.9. Multi-Omic network inference 

To generate a multi-omic data-driven network we created a Gaussian graphical model (GGM) 
using the GeneNet R package32. GGMs are a partial correlation-based approach for identifying 
statistical connections among the molecules. To construct the network, pair of molecules (nodes) 
with significant partial correlations at 5% FDR were included and were connected with an edge. 
Following this, these nodes were annotated based on the statistical association results between 
the ARDS groups. To this end, a 𝑝!"#$%	  was computed using the following formula: 𝑝!"#$% =
− log'((𝑝. 𝑎𝑑𝑗) ⋅ 𝑑, where 𝑝. 𝑎𝑑𝑗 is the adjusted p-value of the association, and d is the direction (-
1/1) of the association based on test statistic (positive or negative association with the outcome). 
This score was used to color the nodes in the network.   
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