
 

Fair Reinforcement Learning for Maternal Sepsis Treatment 

Siân Carey; School of Computing, University of Leeds, UK; mm16s4c@leeds.ac.uk 

Ciarán McInerney; School of Computing, University of Leeds, Leeds, UK 

Tom Lawton; Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK 

Ibrahim Habli; Department of Computer Science, University of York, York, UK 

Owen Johnson; School of Computing, University of Leeds, Leeds, UK 

Leila Fahel; York and Scarborough Teaching Hospitals NHS Foundation Trust, York, UK 

Alwyn Kotzé; Leeds Teaching Hospitals NHS Trust, Leeds, UK 

Marc de Kamps; School of Computing, University of Leeds, Leeds, UK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 28, 2023. ; https://doi.org/10.1101/2022.08.09.22278582doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.08.09.22278582
http://creativecommons.org/licenses/by/4.0/


ABSTRACT 

Objectives  

Reinforcement Learning is a branch of artificial intelligence (AI) which has the potential to support 

significant improvement in patient care. There is concern that such approaches may reinforce 

existing biases within patient groups. Understanding discrimination in AI models is important for 

building trust and ensuring fair and safe use. We explore the fairness of a published reinforcement 

learning model, used to suggest drug dosages for sepsis treatment of patients in critical care, on 

whether it safe to use with maternal sepsis patients.  

Methods  

We evaluate the current model using by a) comparing the results for a group of patients with 

maternal sepsis against a matched control group and b) using random forests to explore feature 

importance in the model.  

Results  

Our results show that the original clinicians’ decisions and model suggestions were similar across 

cohorts. Our feature importance ranking shows high variance for many of the features. 

Discussion  

In medical settings, different subgroups may have specific clinical needs and require different 

treatment however, in the absence of a clinical consensus on the most appropriate treatment, AI 

algorithms that give consistent treatment to patients regardless of subgroup could be judged as the 

safest and fairest option. 

Conclusion  

Our experiments showed that the evaluated model gave the same treatment to maternal and non-

maternal sepsis patients. The methods developed for evaluating fair reinforcement learning may be 

more generally applicable to understanding how clinical AI tools can be used for safely and fairly. 
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What is already known on this topic: The use of reinforcement learning to suggest drug dosages for 

sepsis patients in critical care is a well-researched area, with multiple open-source models available. 

It has not previously been considered whether these models can be used on maternal sepsis 

patients. 

What this study adds: The model studied behaves consistently on maternal and non-maternal sepsis 

patients, and appears to suggest an increased use of vasopressors compared with historical actions. 

 How this study might affect research, practice or policy: This study shows that it is possible to 

design models which are consistent across maternal and non-maternal sepsis patients, suggesting 

that a single model may be appropriate across a variety of patients with sepsis. 
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INTRODUCTION  

Sepsis is a life-threatening organ dysfunction caused by a patient’s response to an infection [1]. 

Sepsis is a leading cause of mortality across the world with an estimated 5.3 million deaths annually 

[2] and was recognised in 2017 as a global health priority by the World Health Organisation [3]. 

Sepsis patients are commonly treated using vasopressors and intravenous (IV) fluids, and despite the 

high mortality rate, there is currently no optimal plan for the administration these in the treatment 

of sepsis patients [4].  

When sepsis develops during pregnancy, during birth, after birth, or following an abortion, it is 

categorised as maternal sepsis [5]. In 2019, sepsis accounted for a quarter of maternal deaths in the 

United Kingdom [6] and was the second highest cause of pregnancy related death in the US between 

2014 and 2017 [7]. In low- and middle-income countries, deaths from maternal sepsis are reported 

at an even higher rate [8]. There are no internationally recognised diagnostic criteria specific to 

sepsis in pregnant patients [9] and many early signs of sepsis can be dismissed as common 

pregnancy symptoms. Due to this, clinicians are frequently more careful with pregnant patients and 

suspected sepsis, and the UK national criteria for sepsis are more stringent for pregnant patients 

than for non-pregnant patients [10].  

Sepsis is currently treated in a critical care setting with the use of both IV fluids and vasopressors. 

Multiple vasopressor and IV fluid treatment plans have been tested with a range of results in terms 

of patient mortality [11]. In our evaluation, we focus on the safety concerns around the rate of 

change of vasopressor dosages [4]. There is disagreement over whether maternal sepsis should be 

treated in the same way as it is for the rest of the population [6]. Anecdotal evidence for clinicians in 

the UK NHS suggest that although vasopressors would be expected to have similar effects in 

pregnant and non-pregnant patients, they are generally used less in pregnancy likely due to fear of 

effect on the baby or due to capabilities of the ward treating the patient. 

The optimal clinical pathway for sepsis treatment has not yet been found [4]. With the increasing 

use of electronic health records, research has been conducted using historic data into finding a gold 

standard treatment plan. In previous work [12–14] reinforcement learning, a branch of artificial 

intelligence (AI),  has been used with electronic healthcare records to find an optimal dosage for IV 

and vasopressor treatment in sepsis. Further work has also been done on the safety of this work. 

Notably, Jia et al. [15], modified Raghu et al.’s [13]  work for safety concerns by reducing the number 

of potentially dangerous large jumps in vasopressor dosage.  

One of the aspects of ensuring patient safety is to confirm that protected characteristic groups 

receive outcomes that are as safe as everyone else and therefore can be considered “fair”. One such 

protected characteristic is pregnancy and maternity, which has historically seen a lack of information 

and research [16,17]. Therefore, we evaluate the recommended dosage policy with respect to 

maternal sepsis patients.  

Most literature at the intersection of medical AI and identifying fairness concerns involves testing a 

model at the end of its creation [18,19]. Often this is done using what are known as fairness notions, 

such as statistical parity or equalised odds [20], which are statistical tests that show if particular 

standards are met in the results. Each fairness notion has particular requirements of the model or 

data, such as the availability of a ground truth or the cost of miss-classification [21]. However, due to 

the nature of reinforcement learning models there are not currently any notions suitable for use 

[20]. Alternative methods for testing discrimination include visualisation and interpretation of 

results and investigation of the original data.  
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METHODS   

Dataset Description and Pre-processing  

We used the MIMIC-III open access critical care database consisting of 53,423 distinct hospital 

admissions for patients admitted to a tertiary hospital in Boston, USA [22,23]. As previously done by 

Jia et al. [15] and Raghu et al. [13], for training of the model all participants met the sepsis-3 criteria 

[1] at some point during their time in critical care. Participants were excluded if: they were under the 

age of 18; their IV fluids or vasopressors were not recorded; treatment was withdrawn; or if they 

had extreme fluid intake. The latter reasoning was due to the likelihood of extreme fluid intake 

representing an incorrect chart rather than real events. There were 47 features recorded for each 

participant, for every 4 hours they were in the intensive care unit (ICU), as in the previously 

published work [13,15]. More information can be found in the addendum to Raghu et al. [13], whose 

previously published criteria we are reusing.  

As we were evaluating for maternal sepsis, the test group included all participants that were 

recorded as having one of the pregnancy related ICD-9 codes (630-679 and 760-779) [24]. The test 

group consisted of all relevant individuals found in the data, which gave a cohort of 74 patients. The 

control group, matched within 5 years of age and sex and randomly selected from the previous 

participants, was created consisting of 370 individuals.  

 A descriptive analysis of the cohorts is in Table 1, including Sequential Organ Failure Assessment 

(SOFA) scores and 90-day mortality. The SOFA score is a measurement of organ failure, where higher 

numbers indicate poorer outcomes. The 90-day mortality is a binary result for each patient, 

recorded as a 0 if the patient survives for 90 days post hospital and 1 otherwise.  

Reinforcement Learning  

We recreated the double deep duelling Q-network model presented in Jia et al. [15] to learn the 

optimal dosages for vasopressor and IV fluid given to sepsis patients in critical care.  

Reinforcement Learning involves an agent learning the best approach to deal with a situation by 

receiving feedback (in the form of rewards) from how a model environment (state) responds to 

actions the agent takes. A Q-network model takes feedback from multiple future possibilities 

predicted by the model, rather than just considering the rewards at the immediate next stage [25]. A 

deep Q-network model uses a neural network to find the best action to take, that is the action from 

which it receives the highest reward. A double deep Q-network model adds a second neural network 

to act as the target, so that the action to be tested is chosen by the target neural network instead of 

a table. This improves the stability of the learning. A double deep duelling Q-network allows for 

separation to consider whether the resulting state is a positive outcome because the action was well 

chosen, or because the initial state was already positive.  

This model does not learn from the clinicians actions directly, as the vasopressor and IV fluid dosages 

given by the clinicians are not features in the model, but from observations taken from the patient. 

However, there will be some indirect learning as it can only see the consequences of what did 

happen rather than what might have happened.  

This model was created on the full sepsis cohort with a split of 85:5:15 for the respective training, 

validation and test sets. Each patients’ ICU records were broken into four-hour blocks, with one 

block representing one state for the model. The intermediate rewards use 1) SOFA score, and 2) 
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arterial lactate, which is the level of lactate in the arterial blood. Combined these rewards range 

between +10 and −10. The final rewards are based on the 90-day mortality for each patient, with 

+15 for survival and −15 otherwise. At each point these rewards are combined, considering how 

soon each reward would happen, to decide the overall reward. The model recreated here is the 

same as that presented in Jia et al. [15]. Code was written in Python and can be found at 

https://github.com/SianC/Maternal_Sepsis.   

Visual Interpretations  

The first of the two ways we investigated the model is by comparing the predictions made with the 

original decisions recorded in the data set, for each of the cohorts. There are two cohorts that we 

use to test the model: pregnant sepsis patients, and a matched control group. We focus on the 

suggested vasopressor dosages, and present both heat maps and bar graphs that visualise the 

differences between the model suggestions and original decisions, as well as between the different 

cohort suggestions and original decisions.  

Anecdotally, it is widely debated between clinicians as to whether pregnant patients with sepsis 

should be treated differently to non-pregnant patients with sepsis, however the presumption is that 

they should be treated similarly unless evidence suggests otherwise. Therefore, we judged fairness 

partially on how similar the suggestions are for the different subgroups.  

Feature Importance  

Some features have different baselines in pregnant and non-pregnant patients and, therefore, if 

these features are deemed to have a higher importance by the model diagnostics, then it is more 

likely that the model will not work as well on maternal sepsis. We used a random forest classifier to 

order the features by their importance to the model, that is their effect on the output of the model. 

These importance levels will then be evaluated for their relation to pregnancy and the likelihood of 

different baseline results being normal. For example, it is well known, that white blood cell count is 

higher in pregnant patients than non-pregnant patients [26].  

We created ten models using the same framework and then found the feature importance for each 

model. On this basis we found an average importance score, and range, for each feature. 

 

RESULTS   

Data Description  

Table 1 shows a breakdown of the age, sex, 90-day mortality and SOFA score for each cohort. 

 Pregnancy Cohort Control Cohort 

Unique ICU admissions 74 370 

Mean age 32.4 32.4 

Mean initial SOFA score 6.7 6.9 

Mean 90 day mortality 0.3 0.3 
Table 1: Details about the cohort used in this report 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 28, 2023. ; https://doi.org/10.1101/2022.08.09.22278582doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.09.22278582
http://creativecommons.org/licenses/by/4.0/


Visual Interpretations  

Figure 1 shows heat maps that describe the results from testing the model on the pregnant and 

control groups. Each vertical set of two heat maps represents a different cohort, and each horizontal 

set of heat maps represents a different policy: the top row represents the original clinician’s policy; 

the bottom row represents the Reinforcement Learning model’s policy. The numbers across the 

bottom of the heat map represent categories of vasopressor dose given, where 0 is no vasopressor 

and 4 is greater than 0.45 mcg/kg/min of vasopressor. Similarly, the column represents categories of 

IV fluid dose, with the same ranking. The darker a square is on the heat map, the more often that 

vasopressor-IV fluid dose pairing was given (in the case of clinicians) or suggested (in the case of the 

model) to a patient. 

 

Figure 2 shows the same results with a focus on vasopressor dose. Each bar shows the percentage of 

patients from the relevant cohort and relevant decision maker who had that range of vasopressor 

dose. For example, the model gave 20% of the control cohort a dose of 0. 

Feature Importance  

The left-hand plot in Figure 3 shows the feature importance for the model created to produce the 

same results as the original clinicians and is shown as a benchmark. The right-hand plot in Figure 3 

shows the mean average feature importance for the deep Reinforcement Learning model presented 

in this paper. The error bars show the minimum and maximum importance score each feature 

received during the ten model runs. A high score indicates a higher level of importance. 

 

DISCUSSION  

The main novel contribution of this report is its study of maternal sepsis in relation to wider sepsis 

drug prediction models, as this is an area lacking from current literature. We explain the results and 

set them in context below. 

Visual Interpretations  

These results show that there is less difference in model-suggested treatment than in the clinician’s 

decisions. The top row of Figure 1 shows the clinician’s decisions for the two cohorts, for both IV 

fluid and vasopressor.  The main difference between the two cohorts is a higher amount of 

vasopressor being given to the control cohort, although this difference is slight. In comparison, the 

bottom row showing the models suggestions have less difference between the two graphs. The 

debate of how to treat maternal sepsis is still active within the medical field and some believe, as 

previously mentioned, that the safe and fair choice is to treat pregnant and non-pregnant patients 

the same until further research has been done. This model meets these expectations.  

The difference between the clinician’s decisions and model suggestions are visibly similar. In Figure 2 

the percentage of cohorts getting a certain vasopressor dosage can be directly compared. This also 

shows the similarities between the suggestions for the two cohorts seen above. The largest 

difference between the model and clinician is the number of patients suggested a vasopressor dose 

of “1” by the model. This is likely due to the limited cohort sizes, leading to a small lead appearing 

much larger when percentages are considered.  
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MIMIC-III was collected between 2001 and 2012. In the decade since then normal treatment has 

already moved in the direction suggested by the model, with higher amounts of vasopressor being 

used. However, as vasopressors can only be given on critical care wards within the UK this increase 

may not be as much as expected.   

Feature Importance  

The size and similarity of the error bars on the second graph of Figure 3 indicate how unstable this 

method is for evaluating a model. Although not all of the error bars are as wide as those featured at 

the top of the graph, the similarity in width among features lower on the graph suggests that any 

feature between Sp02 (oxygen level) and HR (heart rate) could swap with any other. Furthermore, 

those at the top between gender and SOFA score also have overlapping bars.  

It is notable that those features with the largest mean average also have the greatest variance 

between model runs. This is likely due to the variability within the model. Within a single model 

there is the possibility that one feature will be used more than others. As the top range of features 

all show similar mean average scores, it is understandable that they all experience being the primary 

feature when enough models are run. It would not be possible to make any reasonable conclusion 

using this method and expect it to be reproducible, other than this not being a useful evaluation tool 

in this situation.   

 

 

CONCLUSION  

Maternal sepsis is a life-threatening condition that can occur during pregnancy, birthing or abortion 

and is among the leading causes of maternal mortality across the world. There are multiple 

published models that look at the prediction of sepsis drug dosages, however none of them focus on 

maternal sepsis. The model recreated here, originally presented by Jia et al. [15], used 

Reinforcement Learning to recommend the amount of IV fluid and vasopressor that sepsis patients 

should receive in critical care. We have shown that this model suggests similar amounts of 

vasopressor to maternal and non-maternal patients, however due to the size of the cohorts 

involved, it is not possible to take this as a strong conclusion. This implies that the evaluated model 

is safe and fair to use on maternal sepsis patients, however further data would be required to 

strengthen this conclusion. 

Limitations  

The most significant limitations of this work relate to the size and provenance of this data. The 

primary cohort of pregnant patients contains only 74 records, which is too small a number to draw 

strong conclusions from. Additionally, the data is drawn from historic data from a single US hospital, 

and as such is unlikely to be ethnically (due to location) or class (due to the US healthcare system) 

diverse. This means that intersectional research has not been done. Finally, this data only consists of 

patients who spent time in intensive care, and does not take into account patients that did not enter 

intensive care.  

Future Work  

Continuing this work with larger and more representative data sets would allow for more 

trustworthy predictions and would certainly need to occur before results could be regarded as 
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clinically significant. Additionally, the data sets must be representative specifically for the population 

where the model is to be put into use.  

We have deemed that the model studied here behaves consistently on pregnant and non-pregnant 

patients, as there are no significant differences in results between the cohorts in the study and no 

risky features ranking highly in the feature importance list. However, this does not mean that it is 

not important to continue this area of study, as any models that are considered for use in clinical 

practice should be tested like this to ensure that there are no inherent biases in the system. The 

methods developed for evaluating fair reinforcement learning may be more generally applicable to 

understanding how AI tools can be used for safe and fair clinical use.   
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