Distinctive features of lipoprotein profiles in stroke patients

Tomokazu Konishi 1, Yurie Hayashi 1, Risako Fujiwara 2, Shinpei Kawata 3, and Tatsuya Ishikawa 3

1Graduate school of Bioresource Sciences, Akita Prefectural University, Akita, Japan
2Cardiovascular internal medicine, Akita City Hospital, Akita, Japan
3Research Institute of Akita Cerebrospinal and Cardiovascular Center, Akita Prefectural Hospital Organization, Akita, Japan

Abstract

Classes of lipoproteins solubilize lipids in the blood, and their profiles are important for preventing atherosclerotic diseases. These can be identified by gel filtration HPLC, which has been analyzed in a manner that yields the same values as the de facto standard method, i.e., ultracentrifugation; however, previous studies have found that ultracentrifugation and its simplified alternatives, enzymatic methods, yield incorrect values. Here HPLC data of stroke patients and the controls were compared using data-driven analyses, without consideration for ultracentrifugation. The data well-separated patients from controls. In many patients, the level of HDL1 (a cholesterol scavenger) was low. The TG/cholesterol ratio of chylomicrons was found to be low in patients and high in the healthy elderly; the lower level may indicate a larger intake of animal fats. High levels of free glycerol in the elderly were hazardous, suggesting more dependence on lipids as an energy source. Statins had minimal effect on these factors. LDL cholesterol, the commonly-used risk indicator, was not a risk factor actually. Enzymatic methods failed to separate the patients from the control; hence, the existing guidelines for screening methods and medical treatment need to be revised. As an immediate step, glycerol would be an adaptable indicator.

Lipoproteins; HDL1; LDL1; chylomicron; free glycerol; TG/cholesterol ratio; animal fat; lipid/carbohydrate ratio; energy source preference; statins

Introduction

For many years, lipoprotein classes have been separated using isopycnic ultracentrifugation 1-5, and the quantification of the classes was based on this separation. Ultracentrifugation, however, is a time-consuming and expensive method that it is not suitable for examining large numbers of samples during medical screening. Simple kits

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
have been developed to overcome this situation that are expected to solubilize one of the classes with specific surfactants; the solved cholesterol is determined through enzymatic methods. These results reproduced the results of ultracentrifugation accurately. Newer methods such as high-performance liquid chromatograph (HPLC) and nuclear magnetic resonance interpret data by assigning peak signals to one of the lipoprotein classes in a process that was analyzed to coincide with ultracentrifugation results. Of course, this is because ultracentrifugation is the gold standard.

When HPLC data were analyzed in a data-driven manner and samples were divided into fractions for biochemical examinations, the results were significantly different than those of previous interpretations. For example, high-density lipoproteins (HDL) were much more minor than previously believed, while all classes of lipoproteins contained far more proteins than previously thought. Ultracentrifugation uses a large gravitational force onto a sample over a long period of time. While this is a good method for single molecules such as DNA, lipoproteins are inevitably fragile complexes wherein proteins and lipids are associated with hydrophobic bonds that could break down, which could have been actually occurring. This phenomenon was demonstrated in experiments with rats but was later found to occur in human samples as well. This error naturally affects the enzymatic methods and the measured low-density lipoproteins (LDL) and HDL values are mixtures of several classes.

This error raises the possibility that the measured values do not indicate medical conditions, although both LDL and HDL are factors that are expected to represent pathology. This may be the reason why LDL cholesterol is not always a significant risk factor, even in large cohort studies. Nevertheless, LDL cholesterol measured using the enzymatic method is used as a guideline for existing medical treatments. When it is high, statins (i.e., inhibitors of cholesterol synthesis) are prescribed to prevent strokes.

This study compared serum samples of patients who had suffered from untreated strokes to samples from healthy controls, using HPLC; HPLC data were analyzed in a data-driven manner. The quantity of some classes of lipoproteins was a clear indicator of the differences between the groups, although the current methods failed to find any of these differences.

Results

The results of principal component analysis (PCA) for each dataset in this research are displayed in a biplot that shows the PCs of the sample and the item simultaneously (see Fig. 1; lower PC data are shown in Fig. S1, while raw data and PCA results are shown in Tables S1–S3). The data is obtained as a sample × item (quantity of each class).
matrix; PCA finds common data movements within that matrix and sets axes to represent them. Each axis gives a unique PC for the sample and item. Since the PCs of the samples and items are complementary, it is clear which item affected which sample. Dots and single letters show PCs for samples—red dots indicate controls, blue dots indicate older controls, black letters indicate strokes, and ‘s’ indicates taking statins. The results of HPLC clearly separated controls from patients, although older patients had larger values in PC1 than the younger ones (see Figs. 1A and S1). In contrast, the conventional method resulted in virtually no separation, although patients and controls might have slightly different distributions (see Figs. 1B and S2).

PCs of the items indicate the classes that contributed PCs for samples (see Fig. 1, class names; only representative ones are shown). In Fig. 1A, orange letters represent triglycerides (TG) of the classes, blue letters represent cholesterol, and green letters represent the TG/cholesterol ratio; typical examples are shown as box plots (see Fig. 2). PC1 was formed by reduced HDL-1 as well as increased LDL-antiprotease-complex (LAC1) and TG of LDL1 in patients (see Figs. 1A, 2A, and 2B). Lp(a), a particularly cholesterol-rich class of VLDL, was shown to be a factor in PC1 (see Fig. 1A). Lp(a) is known as a risk factor.

Differences were observed also in lower PCs with respect to HPLC results. For example, the TG/cholesterol ratio of chylomicron (CM) is presented in PC2 (see Figs. 1A and 2D); this ratio was lower in patients and higher in healthy elderly individuals. Reduced TG-rich VLDL (TR), which is mostly made up of TG, may also be a risk factor (see Figs. 1A and 2E)—this may indicate that patients depend on TG levels from food and not from the liver; in contrast, healthy elderly individuals have higher TR levels. Even among lower PCs, those of some patients were more extreme than controls (see Fig. S1). This indicates that each patient had abnormal values for particular classes, which were not shown in PC1 and PC2, since the trend was different from that of HDL1/LAC1 and CM & TR. Each patient had a different pathology and since these phenomena occur only in a subset of the population, statistical tests between patients and controls would not necessarily always yield significant differences (see Fig. S3).

The existing method failed to separate patients from controls because each measure differed little between the classes (see Figs. 1B, S2, and S4). This is due to the fact that HDL and LDL measured by existing methods do not detect the classes for which they are intended but instead measure a mixture of several classes. Since such classes move separately, their summation becomes an ineffective indicator.

Free glycerol is a test that is rarely used for health screening but it showed certain PC
values relevant to this research (see Fig. S1). It can thus be a good indicator; in fact, patients and controls were well separated on a scatter plot of age vs. glycerol (see Fig. 3A)—0.6 mg/dL glycerol in individuals over the age of 65 is considered dangerous (see Fig. 3B and S3).

Statins did not show much difference in the amount of each class in PCA (see Figs. 1A and S1). In fact, they lowered cholesterol in Lp(a) and LDL-1; however, although Lp(a) would be a risk factor, LDL was not a factor that separated controls from patients. The level in stroke patients was found to be the same as that in the experimental controls (see Figs. 2F and S3).

Discussion

This was a retrospective study to assess the relationship between lipoproteins and pathophysiology in a short period of time by comparing stroke patients with controls and thus has certain limitations. Whether the factors presented in this study can actually be used for diagnoses should be validated and supported by prospective cohort studies; for example, it is not impossible for the lipoprotein profile to change rapidly after stroke. Nevertheless, such a change would require large alterations in synthesis or degradation, which is very unlikely. These factors may produce better results than adhering to the current guideline, which has been negated herein due to its ineffectiveness (see Fig. 1B).

The most frequently observed risk factor found by HPLC was a decrease in HDL1 levels (see Fig. 1A and 2A). This means that the scavenger was reduced, disturbing cholesterol recovery. Similarly, increased LAC1 and TG levels in LDL1 were risk factors; these phenomena were observed in many patients but it is noteworthy that they did not always occur at the same time and not all patients had them. Another type of patient had extreme values outside PC1 with different tendencies in the data. Interestingly, older volunteers had lower HDL1 and higher LAC1 and LDL1 TG (see Fig. 2A-C), with higher values for PC1 (see Fig. 1A). Ageing is another risk factor.

Statins did not show clear differences in PCA (see Figs. 1, S1, and S3). Although it is possible that statin-ineffective patients experienced a stroke, as cholesterol was actually lowered in Lp(a) and LDL-1 (see Figs. 2F and S3), this worked as an inhibitor of cholesterol synthesis. Statins had no effect on the other factors that separated patients from controls, as expected from the principle; this limited effect may not be sufficient to prevent a stroke.

Existing enzymatic methods failed to separate patients—the currently used index was
irrelevant and needs to be revised. If HPLC is always available, it would be ideal; however, this is also a labor-intensive method that is not suitable for large numbers of samples. Therefore, the conventional method for measuring HDL and LDL levels should be improved immediately. If HDL1 and/or LAC1 can be measured, they can be used as primary indicators of danger. Similarly, if only LDL1 can be solubilized, TG would also be a good indicator. There are several new reports on the risk of LDL cholesterol, for example 16-19, but it would surely be a clearer conclusion if the factors presented here were examined. As shown in Figure 1B, patient and control groups were distributed slightly differently even in the conventional methods. In a large cohort study, the significance would be observed even with such faint differences; however, such statistical significance does not guarantee their importance.

How do the elderly volunteers adjust to their age? The effects of aging were observed at higher PC1 values (see Fig. 1A) but they exhibit some other remarkable characteristics. One was the high ratio of TG in CM (see Figs. 1A and 2D)—as CM is the primary particle produced from food in the intestine, it directly reflects ingredient uptake. Hence, a high ratio of TG means that the cholesterol they ingested was less; they seemed to avoid animal diets. The opposite was observed in the patients (see Fig. 2D)—cholesterol is synthesized in the liver anyway, but the irregular and excessive intake of cholesterol may increase the risk of the same even further. TR in healthy elderly people was higher (see Fig. 2E), probably because the necessary TG was supplied by the liver rather than by the diet and since it was not consumed as much. The opposite was again observed in the patients.

Fortunately, free glycerol represented the risk well, clearly separating patients (see Fig. 3). Glycerol can be measured easily, which is why these values should be used proactively to identify elderly people at potential risk. Unfortunately, the separation was not sufficient in younger people; therefore, it is desirable to have kits for HDL1, LAC1, and LDL-TG.

Low glycerol levels probably indicate lower dependence on lipids as fuel. The level of a substance is determined by the balance between the addition to and subtraction from the system. Glycogenesis in the liver is the main subtraction of glycerol. This is on a smaller scale than sugar intake from diet and is probably not strictly regulated. The main addition here is the breakdown of TG in adipocytes or lipoproteins. This increases when lipids are consumed or stored, which is important for homeostasis and regulation of energy balance. It is likely that this addition determines glycerol levels.

This study was conducted in a small area in Japan. Hence, there may not be many
variations in the lifestyles or genetic background of the population. For example, because obesity is more prone to obesity-induced diabetes, extreme obesity is rare in Japanese individuals. It is unexpected that LDL cholesterol was not found to be a risk factor in this study but a more diverse population may result in different conclusions.

Conclusion

Although this was a retrospective study that compared stroke patients with controls, the factors found may indicate the conditions and therefore should be targeted in future prospective cohort studies. The most frequently observed risk factor was decreased HDL, followed by increased LAC and TG levels in LDL; statins were found to be ineffective against these factors. The enzymatic methods failed to separate patients, and the currently used guidelines for medical treatment need to be revised. Although healthy elderly volunteers showed some signs of risk, they had other remarkable characteristics: TG-rich CM and higher TR. This suggests that there was less meat and sugars in the diet. Free glycerol represented the risk well, clearly separating patients. Glycerol can be measured easily and should thus be used to identify people at potential risk.

Materials and methods

For the experimental procedures and conditions, see our previous article on the younger volunteers under 60. As these volunteers were somewhat younger than the patients, we recruited 11 new older volunteers (see Fig. S5). For patients, we used data from people who were transported to the emergency room in 2018 at the Akita Cerebrospinal and Cardiovascular Center in Akita, Japan. TG and cholesterol levels were monitored over time for HPLC elution, and the amount of each class was estimated by curve-fitting the data with minimal normal distribution parameters. Data were compiled using PCA (see Fig. S6; raw data and the results are shown in Tables S1–3). CM1 and CM2 were removed from the PCA because we could not specify the time after meals, and their values thus fluctuated. The peaks of LDL2 and LAC2 overlapped, and they were added together since they could not always be reproducibly separated. Cholesterol for TR was omitted because it was too low to measure.

Logarithms were taken for the amount of each class measured by HLPC or the enzymatic methods, as they are lognormally distributed. For some classes that were confirmed to be significant, the log ratio of TG/cholesterol was also included; it was important to include CM in the analysis. Free glycerol was calculated by multiplying the amount of glycerol measured as TG by 31.2/300, which is the inverse of the estimation of TG measured by its degradant, glycerol. These were subtracted by the robust (i.e., trimmed) mean and divided by the robust standard deviation (i.e., median.
absolute deviation) of the young control group to calculate the z-score.

Z-scores thus obtained were each approximately normally distributed; however, in some cases when the amount of a class was very small, the curve fit failed and ignored the residuals, producing a negative z-score as an outlier. For cases in which the z-score was < -4, it was replaced by -4, which was the lower limit at which the distribution broke down. PCA \(^{23}\) was calculated using these z-scores.

\[\text{Konishi, T. & Takahashi, Y. Lipoproteins comprise at least 10 different classes in rats, each of which contains a unique set of proteins as the primary component. PLoS ONE 13, e0192955 (2018).}\]

\[\text{Voet, D. & Voet, J. G. Biochemistry. 3 edn. (Wiley, 2004).}\]

\[\text{Konishi, T. et al. Human lipoproteins comprise at least 12 different classes that are lognormally distributed. medRxiv, 2021.03.19.21253934, doi:10.1101/2021.03.19.21253934 (2021).}\]

\[\text{Civeira, F., Ascaso, J. & Masana, L. Should we forget about low-density lipoprotein cholesterol? Journal of the American College of Cardiology 63, 1228-1229,}\]
277 13 Goff, D. C., Jr. et al. 2013 ACC/AHA guideline on the assessment of cardiovascular
278 risk: a report of the American College of Cardiology/American Heart Association Task
279 Force on Practice Guidelines. Journal of the American College of Cardiology 63, 2935-
281 14 Grundy, S. M. et al. 2018
282 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA
284 of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.
286 15 Nordestgaard, B. G. et al. Lipoprotein(a) as a cardiovascular risk factor: current status.
288 16 Valdes-Marquez, E. et al. Relative effects of LDL-C on ischemic stroke and coronary
289 disease: A Mendelian randomization study. Neurology 92, e1176-e1187,
292 Association between low density lipoprotein and all cause and cause specific mortality
293 in Denmark: prospective cohort study. BMJ (Clinical research ed.) 371, m4266,
294 doi:10.1136/bmj.m4266 (2020).
295 18 Duan, R. et al. Estimation of the LDL subclasses in ischemic stroke as a risk factor in a
297 19 Liu, L. et al. Association of LDL-C/HDL-C Ratio With Stroke Outcomes Within 1
298 Year After Onset: A Hospital-Based Follow-Up Study. Frontiers in Neurology 11,
300 20 Morimoto, A. et al. Impact of impaired insulin secretion and insulin resistance on the
301 incidence of type 2 diabetes mellitus in a Japanese population: the Saku study.
303 21 Institute_of_Medical_Informatics. in Diseases in view vol.3 Diabetes, Metabolism and
304 Endocrinology (Japanese) (MEDIC Media, 2019).
306 23 Konishi, T. Principal component analysis for designed experiments. BMC
Fig. 1 Biplot display of PCA. A. amount of each class and B. conventional enzymatic method (commonly used). Red dots: control samples; blue dots: elder controls, black: stroke patients, s; statin takers. In panel A, class names represent PC for representative items. Orange: TG, blue: cholesterol, green: TG/cholesterol ratio. In panel B, TG: total TG, CH: total cholesterol. In the panels, axes are for items; those for samples are omitted for simplicity (see Fig. S1).
Fig. 2 Boxplots. Each of these is an amount or a ratio for the class indicated. A. Largest difference was observed in HDL1 cholesterol, which was decreased in the patients. B and C. Higher LAC1 cholesterol and TG of LDL1 are risks. D. TG/cholesterol ratio of CM, showing this ratio in the diet. E. TR (TG-rich VLDL). F. LDL cholesterol, which is the target of statins. The y-axis is shown logarithmically.
Fig. 3 Glycerol levels and age. A. scatter plot; note the good separation between patients and controls. B. Box plot of free glycerol. There is a clear difference at least for those over 65 years of age. Free glycerol presumably depends on the rate of TG degradation, which occurs while storing or consuming fatty acids; the high level suggests that they rely much on lipids as an energy source.