
1 
 

Autonomous Screening for Diabetic Macular Edema Using Deep 
Learning Processing of Retinal Images 

 

Idan Bressler [1], Rachelle Aviv [1], Danny Margalit [1], Gal Yaakov Cohen MD [2, 3], Tsontcho 
Ianchulev, MD MPH [1, 4], Shravan V. Savant, MD [5,6], David J. Ramsey, MD PhD [5,6], Zack 
Dvey-Aharon, PhD [1] 

 

[1] AEYE Health Inc.  

[2] The Goldschleger Eye Institute, Sheba Medical Center, Tel Hashomer, Israel 

[3] Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel 

[4] New York Eye and Ear, Mount Sinai Hospital, NY 

[5] Department of Ophthalmology, Lahey Hospital & Medical Center, Peabody, MA  
  
[6] Department of Ophthalmology, Tufts University School of Medicine, Boston, MA  
 

Abstract 

Background: Diabetic Macular Edema (DME) is a complication of diabetes which, when 
untreated, leads to vision loss. Screening for signs of diabetic eye disease, including DME, is 
recommended for all patients with diabetes at least every one to two years, however, 
compliance with this standard is low.  

Methods: A deep learning model was trained for DME detection using the EyePACS dataset. 
Data was randomly assigned, by participant, into development (n= 14,246) and validation (n= 
1,583) sets. Analysis was conducted on the single image, eye, and patient levels. Model 
performance was evaluated using sensitivity, specificity, and the area under the receiver 
operating characteristic curve (AUC). Independent validation was further performed on the 
IDRiD dataset, as well as new data. 

Findings: At the image level, sensitivity of 0.889 (CI 95% 0.878, 0.900), specificity of 0.889 (CI 
95% 0.877, 0.900), and AUC of 0.954 (CI 95% 0.949, 0.959) were achieved. At the eye level, 
sensitivity of 0.905 (CI 95% 0.890, 0.920), specificity of 0.902 (CI 95% 0.890, 0.913), and AUC 
of 0.964 (CI 95% 0.958, 0.969) were achieved. At the patient level, sensitivity of 0.901 (CI 95% 
0.879, 0.917), specificity of 0.900 (CI 95% 0.883, 0.911), and AUC of 0.962 (CI 95% 0.955, 
0.968) were achieved. 
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Interpretation: DME can be detected from color fundus imaging with high performance on all 
analysis metrics. Automatic DME detection may simplify screening, leading to more 
encompassing screening for diabetic patients. Further prospective studies are necessary. 

Funding: Funding was provided by AEYE Health Inc.  

Introduction 

Diabetic Macular Edema (DME) is a complication of diabetes mellitus, closely associated with 
diabetic retinopathy (DR).1 DME is characterized by the accumulation of excess fluid in the 
extracellular space within the central macula,2,3 and when untreated ultimately leads to vision 
loss due to damage to the microvasculature and photoreceptors of the fovea, which is 
responsible for high-resolution visual acuity. DME has a major impact on public health, affecting 
approximately 3.8% of the population4 with an incidence of more than 25% within 25 years of 
diagnosis of type 1 diabetes mellitus (T1DM)5 and 25% within nine years of the diagnosis of 
type 2 diabetes mellitus (T2DM).6  

The Early Treatment Diabetic Retinopathy Study (ETDRS) defined clinically significant macular 
edema (CSME) with specific anatomic criteria which include retinal thickening or the presence 
of hard exudates within 500 μm of the fovea.7 Interventions studied in the ETDRS treatment 
protocol, such as focal laser photocoagulation and intravitreal anti-vascular endothelial growth 
factor (anti-VEGF) therapy, have shown significant improvement in visual acuity and prognosis 
after treatment.8–10 Therefore, early detection and intervention are crucial in providing the 
opportunity to achieve good patient outcomes. 

It is recommended that all patients with diabetes are screened for DME every 1 to 2 years.11,12 
Screening is conducted as a part of regular screening and management for DR, and typically 
involves slit lamp examination of the dilated fundus or the use of color fundus photography.11 
While the diagnosis of DME is traditionally based on fundus photography and fluorescein 
angiography, optical coherence tomography (OCT) has increasingly been used to quantitate the 
extent of diabetes-related retinal thickening.13,14 This modality is expensive, however, and 
generally available only at specialized eye clinics that can afford this technology; as such, it is 
not widely accessible for primary screening purposes. Thus, screening for DME continues to be  
performed by detecting classic patterns of findings in color fundus imaging, namely exudates 
and associated macular thickening.10,15,16 

Access and scalability are crucial elements of any population-health screening program. The 
need for a specialized eye examination and sophisticated equipment have been significant 
obstacles for streamlined DME screening, causing many patients to remain undiagnosed.17–20 
Machine learning and deep learning algorithms are ideal tools to address this limitation and 
empower an efficient and exponential screening process at the level of non-specialized, primary 
care delivery.21–23 

Methods for DR screening using deep learning algorithms which examine fundus images have 
shown promising results.24,25 Furthermore, autonomous DR screening has received FDA 
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approval,26 opening the door to the implementation of further similar applications, such as DME 
screening. While OCT-based machine learning methods have shown good results in detection 
of DME,27–29 with some methods boasting almost 100% accuracy, the cost and limited 
availability of OCT technology limits its ability to be used as a screening tool on a large scale.  

Other fundus imagery-based methods which focus primarily on exudate detection were 
previously developed,30–34 as have been methods based on the entire CSME criteria.35,36 This 
study will expand on these works by being validated on multiple datasets, from multiple 
locations and using multiple definitions for CSME, showing good agreement with all of them. 
Furthermore, not only does the model developed exhibit excellent CSME detection, it does so at 
the patient level rather than by eye, making this work more clinically relevant from a functional 
screening standpoint. 

Methods 

Data 

The main dataset utilized for training and validation was compiled and provided by EyePACS37 
and consisted of 45° angle fundus photography images and expert readings of said images. All 
images and data were de-identified according to the Health Insurance Portability and 
Accountability Act “Safe Harbor” before they were transferred to the researchers. This study 
was conducted in compliance with the tenets of the Declaration of Helsinki and institutional 
review board exemption was obtained. 

The EyePACS dataset contained up to six images per patient visit: one macula centered image, 
one disk centered image and one centered image per eye (in which a central fixation image is 
fixated on the middle of a line connecting the foveola and the optic disc). Each eye underwent 
expert reading, which included but was not limited to detecting the presence of DME, grading 
the level of DR, and assessing the image quality. It should be noted that this quality assessment 
was based on the overall readability of a given eye and does not guarantee that all images of an 
eye were of the same quality. Images deemed unreadable by an expert were omitted from our 
analysis, as were disc-centered images, because these provide only a limited view of the 
macula. 

The method used to determine the presence of CSME in fundus images in the vast majority of 
the EyePACS dataset was Bresnick's criterion,38 which is defined as the existence of 
hard exudates within one disc diameter from the center of the macula. A different method used 
in a minority of the dataset was the criterion presented in Litvin et al;39 this defined CSME by 
dividing the macula into an eight sector "pie" within one disc diameter of the center of the 
macula. If three sectors of the pie have hard exudates, or if hard exudates are present within 1/3 
of a disc diameter from the center the macula, it was graded to have likely CSME. 

A comprehensive dataset for the purposes of training, validation, and testing was constructed 
from the EyePACS dataset, consisting of 32,049 images from 15,892 patients. Up to two 
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images were taken for each eye from two different fields, one centered on the macula and 
another centered between the macula and the disc. The average age was 55.02 (10.21 SD), 
and 51% of the patients were female (Table 1). Table 2 shows the distribution of DME patients 
across DR levels; DME was only present for patients with more than mild DR (mtmDR), with 
approximately 49% of all images being DME positive. Additional statistics are given in 
supplementary tables 1-2 

An additional dataset used for validation was the Messidor-2 dataset,40 also containing 45° 
angle fundus photography images and expert annotations for DME presence and DR level. The 
dataset consisted of 1748 macula-centered images from 874 examinations, of which 151 
images (8.6%) were DME positive. Additional information is provided in supplementary table 3. 

External validation was further performed on the IDRiD dataset, as well as a dataset comprised 
of patient images from Lahey Hospital and Medical Center.  

Pre-Processing  

Image pre-processing was performed in two steps. First, the image background was cut along 
the convex hull which contains the circular border between the image and the background. 
Figure 1 shows an example result of this process. Secondly, each image was resized to 512 X 
512 pixels. 

Quality assessment  

A tool for image quality assessment was developed. The tool gives a quality score for an image 
using an aggregation of the visibility score from multiple areas within the fundus image. Figure 
2 demonstrates a few examples of images and their respective scores, showing the correlation 
between score and visual image quality.  

Model training 

The data was divided into training, validation, and test datasets consisting of 80%, 10%, and 
10% of the data respectively. 

A binary classification neural network was trained. The model architecture was automatically 
fitted to best balance the model performance vs model complexity tradeoff. Hyperparameter 
tuning was done using the validation set. 

A total of 1,978 images were filtered out (approximately 6.2% of the data).  
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Statistical analysis 

The metrics used for assessment were accuracy, sensitivity, specificity, and area under the 
receiver operating characteristic curve (AUC). For each metric the bias corrected and 
accelerated bootstrap method41 was used to produce a 95% confidence interval.  

Analysis levels 

DME detection was done on three different levels. The first level assessed detection at the level 
of each individual image, which was the basic task for which the model was trained. The second 
level was detection for each eye, using both macula-centered and mid-disc/macula centered 
image fields for a given eye. This method is akin to fundus-photo-based detection of DME 
performed by a human expert. In this approach the best image for each eye (in terms of image 
quality as assessed by the image quality tool) was selected for analysis. The third level was the 
patient level. For clinical purposes, detection of DME in one eye is sufficient for referral to 
further checks; as such, the “worst of two eyes” approached was used.  

External Validation 

The module was further validated by two external teams. The first external validation set was 
“real-world” data collected from 50 patients with DR at the Lahey Hospital and Medical Center. 
Of these patients, 19 had DME confirmed by OCT and 31 did not. One macula-centered image 
was selected from each eye for analysis, and the evaluation was done by an ophthalmologist 
based on Bresnick’s method. DME detection analysis was then performed on all images using 
the proposed model. Performance was judged using the metrics mentioned above.  
 
The assessment for the second external validation was conducted by an MD of The 
Goldschleger Eye Institute, Sheba Medical Center, Tel Hashomer, Israel, using the IDRiD 
training dataset,42 which is comprised of 400 macula-centered images. DME/CSME detection 
were performed based on the method presented in Wong et al,43 in which DME is defined via 
the existence of hard exudates one disc diameter from the macula and CSME is defined via the 
existence hard exudates 500 µm from the macula. The data was first annotated into three 
categories: DME positive (235), DME negative (142), and unreadable (23), and DME detection 
analysis was then performed on all readable images using the proposed model. Comparison 
was done using the metrics mentioned above.  
 

Results  

EyePACs dataset  

The results for the different analysis methods were as follows (table 3), (confidence intervals set 
to 95% in parentheses): on the image level, sensitivity of 0.889 (0.878, 0.900) and specificity of 
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0.889 (0.877, 0.900) were achieved. On the eye level, sensitivity of 0.905 (0.890, 0.920) and 
specificity of 0.902 (0.890, 0.913) were achieved. On the patient level, sensitivity of 0.901 
(0.879, 0.917) and specificity of 0.900 (0.883, 0.911) were achieved. 

The results for each DR level for which DME is present are displayed in table 4, showing 
comparable results across all DR levels. The model achieved 0.958 AUC (0.952, 0.964) for DR 
level 2, 0.935 AUC (0.923, 0.945) for DR level 3, 0.940 AUC (0.926, 0.952) for DR level 4, and 
0.954 AUC (0.919, 0.975) for ungradable DR level. DR grades 0 and 1 did not have any DME 
positive examples; thus, most metrics are not defined for these grades; the model achieved an 
accuracy of 0.981 and 0.876 (CI not defined) respectively. 

Table 5 shows the results for images which passed (high quality) and didn't pass (low quality) 
the quality filter, showing significant differences between the populations. The results for images 
which were filtered out were 0.671 sensitivity (0.599, 0.737), 0.843 specificity (0.790, 0.886), 
and 0.853 AUC (0.811, 0.887). Results for images which passed the quality filter were 0.902 
sensitivity (0.892, 0.912), 0.883 specificity (0.871, 0.893), and 0.956 AUC (0.952, 0.961) for 
images that passed the filter. The filter allowed for a reading on the patient level of 98% of the 
patient cohort.  

Messidor-2 dataset 

Messidor-2 contained readings for the image and patient levels, containing one image per eye. 
The results on this data set were an AUC of 0.971 (0.955 - 0.982), 0.875 sensitivity (0.811 - 
0.922), and 0.954 specificity (0.939 - 0.967), surpassing previous works (table 6). On the 
patient level an AUC of 0.964 (0.936, 0.979), sensitivity of 0.897, (0.820, 0.947) and specificity 
of 0.932 (0.905, 0.953) were achieved.  

External Validation Datasets 

When tested on the first validation dataset of 100 images, the model achieved 0.880 accuracy 
(0.757, 0.955), 0.789 sensitivity (0.544, 0.939), and 0.935 specificity (0.786, 0.992). 
 
When tested on the second, larger validation dataset of 413 images, 23 were labeled as 
unreadable. Performance of the model on the remaining 377 images demonstrated 0.854 
(0.812, 0.883) accuracy, 0.851 (0.802, 0.893) sensitivity, 0.859 (0.794, 0.909) specificity and 
0.931 (0.900, 0.953) AUC.  
 

Discussion 

This work introduces a novel, proprietary autonomous system for the detection of DME from 
fundus images. This may shorten and simplify the screening processes and allow for wider 
screening of DME. Given the short (within three months) recommended referral time after DME 
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detection,11 and the potential threat to patients’ vision if left untreated, the widespread use of 
autonomous screening has the potential to be of clinical importance. 

The need to screen for DME independently from autonomous DR screening stems from three 
main factors. Firstly, the recommended referral time for DME is shorter than that of most DR 
cases without DME.11 Secondly, the treatment regime for DME differs from that of DR without 
DME,44 emphasizing the importance of distinguishing DME cases from DR cases. Third, the 
effect of DME is usually more visually significant than DR and has a higher risk of causing 
irreversible vision changes.45 

This work demonstrated good results on multiple validation datasets, from multiple locations and 
with different definitions for CSME. This expands on previous works by showing robustness in 
multiple different settings and across definitions used, demonstrating the applicability and 
general usability of this method.  

This work proposed analyzing DME on multiple levels, expanding on existing works which 
focused on the single image level, and shows higher efficacy on the image level as compared to 
previous studies. Additionally, it showed comparable results between the Messidor-2 dataset 
and the less curated (in terms of image quality) EyePACS dataset, demonstrating its robustness 
across different image qualities. The model can produce results for the vast majority of 
examined patients, further supporting the possible widespread capabilities and applications.  

Analysis on the eye level, i.e., analyzing a single eye with multiple images of the same eye, may 
be more accurate and representative of clinical practice than image-level analysis. When 
multiple fields of the same eye exist, experts label images based on the integration of present 
information. This may lead to the labeling of individual images being misleading, especially if 
differences in image quality exist. For instance, an eye that appears healthy from one angle, 
often due to low image quality, might have visible DME at another angle, leading to a seemingly 
healthy image being positively labeled. The presented eye-level analysis tackles this issue by 
selecting the highest quality field from each eye. 

The final model presented, which performs an analysis on the patient level, may be more 
clinically relevant than reporting findings at the single image or eye levels because the clinical 
criterion for referral is the existence of DME on the patient level. This method demonstrated high 
(~90%) sensitivity and specificity.  

CSME with foveal involvement is also known as CMSE with center involvement (CSME-CI),2,11 
and the ability of graders to consistently detect this has been questioned.46 Despite CSME-CI 
being more severe, all CSME cases are referable and detection of CSME remains common 
clinical practice and a referral marker, thus making widespread screening of CSME important. 
This paper therefore focuses on CSME detection and not CSME-CI detection. 

This work has a few limitations. Firstly, model training was performed on the single image level, 
thus hindering the training with the aforementioned image labeling problem. Secondly, the two 
methods used for ground truth may not be as accurate as a comprehensive eye exam using 
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OCT in addition to the color fundus images. Finally, some of the methods used for ground truth 
may have underlying limitations; for example, one retrospective study examining the Bresnick 
method showed low specificity versus a more established ground truth (ETDRS). However, by 
definition, any patient with more than mild DR should be referred and most patients who have 
findings that meet the Bresnick criterion would qualify on this basis.  
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Tables 

Field Images Patients Mean Age 
(SD) 

Gender (% 
Female) 

Ethnicity (fraction) 

Value 32,049 15,892 55.02 (10.21) 51 White = 0.55 (Hispanic = 0.93, non-
Hispanic = 0.07) 

ethnicity not specified = 0.13 
African Descent = 0.11 

Indian subcontinent origin = 0.10 
Asian = 0.03 
Other = 0.08 

Table 1. Patient numbers and population statistics for the EyePACS dataset 

 

DR grade 0 1 2 3 4 Ungradable 

Image count 1,461 116 16,707 7,806 5,051 908 

DME 0 0 8,405 4,060 2,632 498 

No DME 1,461 116 8,302 3,746 2,419 410 

Table 2. Patient number and DME prevalence across DR grades for the EyePACS dataset.  

 Accuracy (CI) Sensitivity (CI) Specificity (CI) AUC (CI) 

Image level 0.889 (0.881, 0.897) 0.889 (0.878, 0.900) 0.889 (0.877, 0.900) 0.954 (0.949, 0.959) 

Eye Level 0.903 (0.894, 0.912) 0.905 (0.890, 0.920) 0.902 (0.890, 0.913) 0.964 (0.958, 0.969) 

Patient level 0.898 (0.886, 0.909) 0.900 (0.879, 0.917) 0.900 (0.883, 0.911) 0.962 (0.955, 0.968) 

Table 3. Results for the EyePACS dataset across all three analysis levels, given in accuracy, 
sensitivity, specificity, and AUC with a 95% confidence interval.  
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DR grade 2 3 4 Ungradable 

Sensitivity (CI) 0.908 (0.893, 0.921) 0.900 (0.877, 0.918) 0.899 (0.875, 0.921) 0.860 (0.784, 0.917

Specificity (CI) 0.897 (0.881, 0.911) 0.826 (0.798, 0.880) 0.863 (0.828, 0.893) 0.920 (0.811, 0.978

AUC (CI) 0.962 (0.956, 0.968) 0.939 (0.928, 0.949) 0.943 (0.928, 0.955) 0.961 (0.926, 0.981

Table 4. Results on the EyePACS dataset across DR grades, given in sensitivity, specificity, 
and AUC with a 95% confidence interval. 

 Sensitivity (CI) Specificity (CI) AUC (CI) 

Filtered out 0.69 (0.611, 0.761) 0.858 (0.805, 0.900) 0.862 (0.819, 0.897) 

Remained 0.890 (0.879, 0.901) 0.883 (0.871, 0.894) 0.952 (0.948, 0.957) 

Table 5. Results for images who were filtered out and not filtered out by the image quality tool, 
given in accuracy, sensitivity, specificity, and AUC with a 95% confidence interval.  

 

 Accuracy (CI) Sensitivity (CI) Specificity (CI) AUC (CI) 

Sahlsten et al35 0.931 (0.915, 0.944) 0.69 (0.626, 0.750) 0.989 (0.980, 0.994) 0.932 (0.917, 0.946)

Li et al36 - 0.886 (0.881, 0.892) 0.908 (0.898, 0.912) 0.948 (0.943, 0.951)

Proposed, image level  0.943 (0.927, 0.955) 0.875 (0.811, 0.922) 0.954 (0.939, 0.967) 0.971 (0.955, 0.982)

Proposed, patient level 0.925 (0.898, 0.944) 0.897 (0.820, 0.947) 0.932 (0.905, 0.953) 0.964 (0.936, 0.979)

Table 6. Comparison between the proposed method and previous works on the Messidor-2 
dataset, given in accuracy, sensitivity, specificity, and AUC with a 95% confidence interval. 
Additionally, results on the patient level (not done in previous works) are given. 
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