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Abstract

Background: Diabetic Macular Edema (DME) is a complication of diabetes which, when
untreated, leads to vision loss. Screening for DME is recommended for diabetic patients every
1-2 years, however compliance rates are low. Though there is currently no high-efficacy
camera-agnostic system for DME detection, an AI system may improve compliance.

Methods: A deep learning model was trained for DME detection using the EyePacs dataset.
Data was randomly assigned, by participant, into development (n= 14,246) and validation (n=
1,583) sets. Analysis was conducted at the single image, eye, and patient levels. Model
performance was evaluated using sensitivity, specificity, and AUC.

Findings: At the patient level, sensitivity of 0.901 (CI 95% 0.879-0.917), specificity of 0.900 (CI
95% 0.883-0.911), and AUC of 0.962 (CI 95% 0.955-0.968) were achieved. At the image level,
sensitivity of 0.889 (CI 95% 0.878-0.900), specificity of 0.889 (CI 95% 0.877-0.900), and AUC of
0.954 (CI 95% 0.949-0.959) were achieved. At the eye level, sensitivity of 0.905 (CI 95% 0.890-
0.920), specificity of 0.902 (CI 95% 0.890-0.913), and AUC of 0.964 (CI 95% 0.958-0.969) were
achieved.

Interpretation: DME can be detected from color fundus imaging with high performance on all
analysis metrics. Automatic DME detection may simplify screening, leading to more
comprehensive screening for diabetic patients. Further prospective studies are necessary.
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Introduction
Diabetic Macular Edema (DME) is a complication of diabetes mellitus, closely associated with
Diabetic Retinopathy (DR)1. DME is characterized by the accumulation of excess fluid in the
extracellular space within the central macula2,3, and when untreated ultimately leads to vision
loss due to photoreceptor damage of the fovea, which is responsible for high resolution visual
acuity. DME has a major impact on the health of the general population as it affects
approximately 3.8% of the population4, with an incidence rate of over 25% within 25 years of
diagnosis of type 1 diabetes mellitus (T1DM)5 and over 25% within 9 years of type 2 diabetes
mellitus (T2DM) diagnosis6.

The Early Treatment Diabetic Retinopathy Study (ETDRS) defined clinically significant DME
(CSME) using specific anatomic criteria which include retinal thickening or existence of hard
exudates in the foveal area (500 μm around the fovea)7. Additionally, the ETDRS set forth a
treatment protocol treatment which now includes focal laser photocoagulation, intravitreal
anti-vascular endothelial growth factor (anti-VEGF) therapy and other emerging treatments,
which have shown significant improvement in prognosis and visual acuity restoration after
treatment8–10. Therefore, detection, and specifically early detection, is crucial in improving
patient outcomes.

Screening for DME is conducted as a part of regular screening and management for diabetic
retinopathy (DR), and typically involves slit lamp examination or fundus photography11.
Screening for DR and DME is recommended for diabetic patients every 1-2 years11,12. While
conventional diagnosis of CSME/DME has been based on fundus photography and fluorescein
angiography, more recently Optical Coherence Tomography (OCT) has been increasingly used
to detect diabetes-related  typical retinal thickening 13,14. However, this expensive modality is
mostly available at specialized eye clinics and not generally accessible for primary and
widespread screening purposes. Diagnosis of CSME/DME is also done using color fundus
imaging, based on patterns of DME which match the aforementioned criteria for CSME, and
specifically exudates and macular deformations10,15,16.

Access and scalability are crucial to any population health screening program. The need for a
specialized eye examination  and sophisticated equipment have presented significant obstacles
to streamlined DME screening and many patients go undiagnosed17–20. Machine learning and
deep learning algorithms are ideal tools to address this limitation and empower an efficient and
exponential screening process, at the level of primary non-specialized care delivery.

Methods for DR screening using deep learning algorithms which examine fundus imaging have
shown promising results21,22. Furthermore, autonomous DR screening has achieved FDA
approval23,24, showing a high potential for the implementation of further similar applications, such
as DME screening.

OCT-based machine learning methods have shown good results in DME detection25–27, with
some methods boasting almost 100% accuracy. Unfortunately, as stated, OCT is far less
accessible than fundus photography, and thus less suited for screening purposes.
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Other methods using fundus imagery and focusing on exudate detection were previously
developed28–32, as well as methods based on the entire CSME criteria33,34. The method
presented in this paper improves DME detection efficacy compared to previous works, while
complying with the full CSME definition. Additionally, this work expands analysis from the single
image level to the eye and patient level, which have better clinical relevance.

Methods
Data
The main dataset utilized for training and validation was compiled and provided by EyePACs35

and consisted of 45° angle fundus photography images and expert readings of said images. All
images and data were de-identified according to the Health Insurance Portability and
Accountability Act “Safe Harbor” before they were transferred to the researchers. Institutional
Review Board exemption was obtained.

A comprehensive dataset sampled from the EyePACs dataset , Two images were taken for each
eye from two different fields, one centered on the macula and another centered between the
macula and the disc. The average age of patients was 55.02 (10.21 S.D), 51% of the patients
were female (Table 1).

Each eye underwent expert reading, including but not limited to DME presence, DR level, and
image quality. It should be noted that image quality assessment was based on the overall
readability, meaning the ability to provide a DR/DME reading, of a given eye and does not
guarantee that all images of said eye are of the same quality. All images labeled as readable by
an expert were used, resulting in 32,049 images from 15,892 patients. Table 2 shows the
distribution of DME patients across DR levels; DME is only present for patients with more than
mild DR, with approximately 49% of all images being DME positive. Additional statistics are
provided in supplementary tables 1-2.

A secondary dataset used for validation was the Messidor-2 dataset36, also containing 45° angle
fundus photography images and expert annotations for DME presence and DR level. The
dataset consisted of 1748 macula centered images from 874 examinations, of which 151
images (8.6%) were DME positive. Additional information is provided in supplementary table 3.

Pre-Processing
Image pre-processing was performed in two steps. Firstly the image background was cut along
the convex hull which contains the circular border between the image and the background.
Figure 1 shows a sample result of this process. Secondly, images were resized to 512X512
pixels.

Quality assessment
A tool for image quality assessment was developed based on detecting visibility of fundus
specific characteristics. The given quality score for an image was an aggregation of the visibility
score from multiple areas within the fundus image. Figure 2 demonstrates a few examples of
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images and their respective scores, showing the correlation between score and visual image
quality.

Model training
The data was divided into training, validation, and test datasets consisting of 80%, 10%, and
10% of the data respectively.

A binary classification neural network was trained. The model architecture was automatically
fitted to best balance the model performance vs model complexity tradeoff. Hyperparameter
tuning was done over the validation set.

Using the aforementioned quality assessment tool, low quality images were filtered out before
training. The image quality threshold was set at the point at which model performances stopped
improving by filtering additional images, resulting in 1,978 images filtered (approximately 6.2%
of the data).

Statistical analysis
The metrics used for assessment were accuracy, sensitivity, specificity, and area under the
receiver operating characteristic curve (AUC). For each metric the bias corrected and
accelerated bootstrap method37 was used to produce a 95% confidence interval.

Analysis levels
DME detection was performed on three different levels. The first, namely detection at the
individual image level, was the basic task for which the model was trained. The second level
was detection at the eye level using both fields from a given eye, following the way DME is
detected by a human expert. In this approach, the best image for each eye (in terms of image
quality as assessed by the image quality tool) was selected for analysis. The third level was the
patient level. For clinical purposes, detection of DME in one eye is sufficient for referral to further
checks. Therefore, in this approach the results from both eyes were compared and the eye with
the higher model probability was selected to produce a patient level result.

Results
EyePACs dataset
The results for the different analysis methods were as follows (table 3): For the image level,
sensitivity of 0.889 (CI 95% 0.878, 0.900) and specificity of 0.889 (CI 95% 0.877, 0.900) was
achieved. For the eye level, sensitivity of 0.905 (CI 95% 0.890, 0.920) and specificity of 0.902
(CI 95%0.890, 0.913) was achieved. For the patient level, sensitivity of 0.901 (CI 95% 0.879,
0.917) and specificity of 0.900 (CI 95% 0.883, 0.911) was achieved.

The results for each DR level for which DME is present are displayed in table 4, showing
comparable results across all DR levels. The model archived 0.958 (CI 95% 0.952, 0.964) AUC
for DR level 2, 0.935 (CI 95% 0.923, 0.945) AUC for DR level 3, 0.940 (CI 95% 0.926, 0.952)
AUC for DR level 4 and 0.954 (CI 95% 0.919, 0.975) AUC for ungradable DR level. DR grades
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0 and 1 did not have any DME positive examples; thus most metrics are not defined; the model
achieved 0.981 (CI not defined) and 0.876 accuracy for grades 0 and 1 respectively.

Table 5 shows the results for images which passed (high quality) and did not pass (low quality)
the quality filter, showing significant differences between the populations. The results for images
which were filtered out were 0.671 (CI 95% 0.599, 0.737) sensitivity, 0.843 (CI 95% 0.790,
0.886) specificity, and 0.853 (CI 95% 0.811, 0.887) AUC. Results for images which passed the
quality filter were 0.902 (CI 95% 0.892, 0.912) sensitivity, 0.883 (CI 95% 0.871, 0.893)
specificity and 0.956 (CI 95% 0.952, 0.961) AUC. The filter allowed for a reading at the patient
level of 98% of the patient cohort.

Messidor-2 dataset
Messidor-2 contained readings for the image and patient levels, containing one image per eye.
The results on this data set were an AUC of 0.971 (CI 95% 0.955 - 0.982), 0.875 (CI 95% 0.811
- 0.922) sensitivity, and 0.954 (CI 95% 0.939 - 0.967) specificity, surpassing previous works
(table 6). At the patient level an AUC of 0.964 (CI 95% 0.936, 0.979), sensitivity of 0.897, (CI
95% 0.820, 0.947) and specificity of 0.932 (CI 95% 0.905, 0.953) were achieved.

Discussion
This work introduced a proprietary autonomous system for the detection of DME from fundus
images, which may shorten and simplify screening processes and allow for wider screening of
DME. Given the short (≤ 3 months) recommended referral time after DME detection11, and
potential threat to patients’ vision if untreated, widespread autonomous screening has the
potential to be of clinical importance.

The need to screen for DME independently from autonomous screening for DR stems from two
main factors. Firstly, the recommended referral time for DME is shorter than for most DR cases
without DME11. Secondly the treatment regime for DME differs from the treatment for DR without
DME38, emphasizing the importance of distinguishing DME cases from DR cases.

This work proposed analyzing DME on multiple levels, expanding on existing works which
focused on the single image level. On the image level, this method shows higher efficacy
compared to previous studies. Additionally, it showed comparable results between the
Messidor-2 dataset and the less curated (in terms of image quality) EyePACs dataset,
demonstrating its robustness across different image qualities. The model is capable of
producing a reading for the vast majority of examined patients, further supporting the possible
widespread capabilities and applications. Analysis at the eye level, using multiple images of the
same eye, may be more accurate and representative of clinical practice than image level
analysis. When multiple fields of the same eye exist, experts label images based on the
integration of present information. This may lead to the labeling of individual images being
misleading, especially if differences in image quality exist. For instance, an eye that appears
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healthy from one angle, often due to low image quality, might have DME in another, leading to a
seemingly healthy image being positively labeled. The presented eye-level analysis tackles this
issue by selecting the best field from each eye.

Analysis at the patient level may be the most clinically relevant, more than at the single image
level or the eye level, as the overall clinical criterion for referral is the existence of DME at the
patient level. This method combined the results from both eyes to produce a patient level result,
demonstrating high (~90%) sensitivity and specificity.

CSME with foveal involvement is also known as CMSE with Center Involvement (CSME-CI)2,11,
and the ability of graders to consistently detect this has been questioned39. Detection of CSME
remains common clinical practice and a referral marker. Despite CSME-CI being more severe
than non CI CSME,  all CSME cases are referable, thus making widespread screening of CSME
important. This paper therefore focuses on CSME detection and not CSME-CI detection.

The presence of hard exudates within one disc diameter of the macula has been used in many
works for automatic detection of DME. More specifically, Gulshan et al. showed comparable
results when using deep learning for DME detection according to this definition28. However, this
definition does not comply with the full CSME definition and thus does not cover all of the cases,
and the best method of exudate based DME analysis is up for debate40. Litvin Et al41 shows that
using exclusively hard exudates, in comparison to the entire CSME of exudates and swelling,
does not yield the same gradings, meaning that there are relevant cases which are missed by
this  method. Our work presents comparable results using a wider definition of CSME and a
more comprehensive screening tool.

This work has several limitations. Firstly, model training was still done at the single image level,
thus hindering the training with the aforementioned problem with image labeling. Secondly, this
work lacks prospective clinical experiments to validate the results.
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Figures and tables

Field Images Patients Mean Age
(s.d)

Gender (%
Female)

Ethnicity (fraction)

Value 32,049 15,892 55.02 (10.21) 51 White = 0.55 (Hispanic = 0.93, non
Hispanic  = 0.07)

ethnicity not specified = 0.13

African descent = 0.11

Indian subcontinent origin = 0.10

Asian = 0.03

Other = 0.08

Table 1. Patient numbers and population statistics for the EyePACs dataset

DR grade 0 1 2 3 4 Ungradable

Image count 1,461 116 16,707 7,806 5,051 908

DME 0 0 8,405 4,060 2,632 498

No DME 1,461 116 8,302 3,746 2,419 410

Table 2. Patient numbers and DME prevalence across DR grades for the EyePACs dataset.
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Figure 1. Example of image cropping, blue line represents the cropping boundaries

Figure 2. Example images and their accompanying image quality scores, ordered from worst
quality (left) to best quality (right)

Accuracy(C.I) Sensitivity(C.I) Specificity(C.I) AUC(C.I)

Image level 0.889 (0.881, 0.897) 0.889 (0.878, 0.900) 0.889 (0.877, 0.900) 0.954 (0.949, 0.959)

Eye Level 0.903 (0.894, 0.912) 0.905 (0.890, 0.920) 0.902 (0.890, 0.913) 0.964 (0.958, 0.969)

Patient level 0.898 (0.886, 0.909) 0.900 (0.879, 0.917) 0.900 (0.883, 0.911) 0.962 (0.955, 0.968)

Table 3. Results for the EyePACs dataset across all three analysis levels, given in accuracy,
sensitivity, specificity and AUC with a 95% confidence interval.
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DR grade 2 3 4 Ungradable

Sensitivity (C.I) 0.908 (0.893, 0.921) 0.900 (0.877, 0.918) 0.899 (0.875, 0.921) 0.860 (0.784, 0.917)

Specificity (C.I) 0.897 (0.881, 0.911) 0.826 (0.798, 0.880) 0.863 (0.828, 0.893) 0.920 (0.811, 0.978)

AUC (C.I) 0.962 (0.956, 0.968) 0.939 (0.928, 0.949) 0.943 (0.928, 0.955) 0.961 (0.926, 0.981)

Table 4. Results for the EyePACs dataset across DR grades, given in accuracy, sensitivity,
specificity and AUC with a 95% confidence interval.

Sensitivity(C.I) Specificity(C.I) AUC(C.I)

Filtered out 0.69 (0.611, 0.761) 0.858 (0.805, 0.900) 0.862 (0.819, 0.897)

Remained 0.890 (0.879, 0.901) 0.883 (0.871, 0.894) 0.952 (0.948, 0.957)

Table 5. Results for images filtered out and not filtered out by the image quality tool, given in
accuracy, sensitivity, specificity and AUC with a 95% confidence interval.

Accuracy(C.I) Sensitivity(C.I) Specificity(C.I) AUC(C.I)

Sahlsten et al [33] 0.931 (0.915, 0.944) 0.69 (0.626, 0.750) 0.989 (0.980, 0.994) 0.932 (0.917, 0.946)

Li et al [34] - 0.886 (0.881, 0.892) 0.908 (0.898, 0.912) 0.948 (0.943, 0.951)

Proposed, image level 0.943 (0.927, 0.955) 0.875 (0.811, 0.922) 0.954 (0.939, 0.967) 0.971 (0.955, 0.982)

Proposed, patient level 0.925 (0.898, 0.944) 0.897 (0.820, 0.947) 0.932 (0.905, 0.953) 0.964 (0.936, 0.979)

Table 6, Comparison between the proposed method and previous works on the Messidor-2
dataset, given in accuracy, sensitivity, specificity and AUC with a 95% confidence interval.
Additionally results on the patient level (not performed in previous works) are given.
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