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Abstract 
Introduction: Genetic associations for variants identified through genome-wide association studies 

(GWAS) tend to be overestimated in the original discovery dataset; as if the association was 

underestimated, the variant may not have been detected. This bias, known as winner’s curse, can 

affect Mendelian randomization estimates, but its severity and potential impact is unclear. 

Methods: We performed an empirical investigation to assess the potential bias from winner’s curse 

in practice. We considered Mendelian randomization estimates for the effect of body mass index 

(BMI) on coronary artery disease risk. We randomly divided a UK Biobank dataset 100 times into 

three equal-sized subsets. The first subset was treated as the “discovery GWAS”. We compared 

genetic associations estimated in the discovery GWAS to those estimated in the other subsets for 

each of the 100 iterations. 

Results: For variants associated with BMI at p<5×10-8 in at least one iteration, genetic associations 

with BMI were up to five-fold greater in iterations where the variant was statistically significantly 

associated with BMI compared to its mean association across all iterations. If the minimum p-value 

for association with BMI was p=10
-13

 or lower, then this inflation was less than 25%. Mendelian 

randomization estimates were affected by winner’s curse bias. However, bias did not materially 

affect results; all analyses indicated a deleterious effect of BMI on CAD risk. 

Conclusions: Winner’s curse can bias Mendelian randomization estimates, although its practical 

impact may not be substantial. If avoiding sample overlap is infeasible, analysts should consider 

performing a sensitivity analysis based on variants strongly associated with the exposure. 
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Introduction 
Mendelian randomization is an epidemiological approach in which genetic variants are used as 

instrumental variables to assess the existence and potential magnitude of the causal effect of an 

exposure on an outcome (1, 2). Due to the nature of Mendelian inheritance, there is inherent 

randomness in the transmission of genetic variants from parent to offspring (3, 4). This randomness 

has been shown to hold approximately at a population level for many common genetic variants (5, 

6). It is therefore possible to treat genetic variants associated with a modifiable trait as 

unconfounded proxies for the effect of altering that trait, thus mimicking treatment allocation in a 

randomized controlled trial (7). This makes Mendelian randomization a flexible and credible 

approach to make causal inferences for a wide range of exposure—outcome pairs. With the rapid 

expansion of publicly available summary statistics from genome-wide association studies (GWAS) 

over the recent decade (8), Mendelian randomization analyses using such statistics have become 

increasingly popular (9).  

The concept of winner’s curse originates from auctions where multiple bidders each have different 

private estimates on the value of the item for sale (10). Under the assumption that all bids are 

unbiased estimates of the true value of the item but with error, the winner’s bid price will generally 

be an overestimate of the true value, as the final selling price is the highest bid. This upwards bias in 

the winner’s bid compared to the true value is known as winner’s curse. In GWAS, the estimated 

associations of the reported significant variants for a trait are likely to be upwards biased, as they 

are identified based on a statistical significance threshold – only the ”winning” variants are reported 

as significant (11). While winner’s curse bias will be most severe for associations with the trait under 

investigation, genetic associations with any variable correlated with the trait will also tend to be 

over-estimated. In particular, in the context of Mendelian randomization, genetic associations with 

an outcome will likely also be over-estimated in the discovery GWAS dataset for an exposure, as 

exposures and outcomes are typically associated due to confounding. 

This bias can have a direct impact on Mendelian randomization estimates calculated using 

association estimates derived from the discovery GWAS. With a single genetic variant, the 

Mendelian randomization estimate can be expressed as the ratio of the genetic association with the 

outcome divided by the genetic association with the exposure (12). With multiple genetic variants, 

the standard combined estimate (the inverse-variance weighted estimate) is a weighted mean of 

these ratio estimates calculated for each variant (13). Hence, winner’s curse in the exposure 

association estimates would be expected to result in a deflation in the Mendelian randomization 

estimate, whereas winner’s curse in the outcome association estimates would be expected to result 

in an inflation in the Mendelian randomization estimate.  

Winner’s curse can be alleviated by selecting genetic variants and estimating genetic associations in 

non-overlapping datasets. However, it may not be possible to find distinct sets of summary statistics 

from independent datasets for the same trait. The degree of bias from winner’s curse depends on 

various factors, and is typically worse for genetic variants with associations close to the statistical 

significance threshold. Several methods have been proposed to correct for winner’s curse bias (14-

18). However, these methods can be overly conservative and result in a loss in power, or assume an 

underlying distribution that may not hold. 

A related phenomenon in Mendelian randomization is weak instrument bias, which arises due to 

chance associations of the genetic variants with confounders (19, 20). Even if a genetic variant is a 

valid instrumental variable (i.e. has no true association with confounders), correlations of the variant 

with confounders will not be exactly zero. If a genetic variant is strongly associated with the 
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exposure, then bias due to chance associations with the confounders is negligible. However, if a 

genetic variant is weakly associated with the exposure, then bias due to chance imbalances in the 

distribution of a confounder can be non-negligible. For a one-sample Mendelian randomization 

analysis, in which the same dataset is used for estimating the genetic associations with the exposure 

and the outcome, these chance correlations affect associations with both the exposure and the 

outcome in a related way, and bias (known as weak instrument bias) is towards the observational 

association between the exposure and outcome. For a two-sample Mendelian randomization 

analysis, in which genetic associations with the exposure and outcome are obtained from 

independent samples, these chance correlations will differ between the datasets and so affect 

associations with the exposure and the outcome independently, and weak instrument bias is 

towards the null (21). The magnitude of weak instrument bias depends on the instrument strength, 

which can be estimated as the F statistic from regression of the exposure on the genetic variants (22, 

23). 

Both winner’s curse and weak instrument bias are finite-sample biases, in that they reduce towards 

zero when the sample size gets large. However, while the expected magnitude of bias due to weak 

instruments can be approximated (and is typically slight when the genetic variants are associated 

with the exposure at a genome-wide level of statistical significance), the expected magnitude of bias 

due to winner’s curse in a Mendelian randomization investigation is typically unclear. This is 

important to study, as any analysis must balance concerns about winner’s curse and weak 

instrument bias against other biases, such as bias from instrument invalidity due to pleiotropy. 

Here, we provide an empirical investigation into the magnitude of bias from winner’s curse and 

weak instruments in an applied Mendelian randomization analysis considering the effect of body 

mass index (BMI) on coronary artery disease (CAD) risk. We picked this example because there is 

previous evidence supporting a causal relationship (24, 25), and several hundred genetic variants 

have been found to be associated with BMI in previous GWAS, meaning that we can compare 

genetic association estimates for a large number of variants. We took data from UK Biobank, which 

we randomly split into three equal-sized subsets to consider different scenarios in which the genetic 

variants were chosen based on their associations in one subset (the “discovery GWAS”), and 

associations with the exposure and outcome were either estimated in the same subset or a different 

subset. We repeated this splitting procedure to investigate the distribution of Mendelian 

randomization estimates. To compare the magnitude of bias in different situations, we also 

considered Mendelian randomization estimates obtained only using genetic variants that were 

statistically strongly associated with the exposure, as well as estimates obtained only using genetic 

variants that were not fully consistent in their association with the exposure across datasets. We 

conclude by discussing the relevance of these findings for bias in other Mendelian randomization 

investigations, and the implications for how Mendelian randomization investigations should be 

performed. 
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Methods 
STUDY POPULATION AND OUTCOMES 

All analyses were performed in the UK Biobank dataset, a prospective cohort study of around 

500,000 UK residents aged 40 to 69 years. We took data on 367,644 unrelated participants of 

European ancestries, as ascertained by a mixture of self-report and genetic information following 

quality control procedures previously described (26). BMI was calculated as weight in kilogrammes 

divided by height in metres squared. CAD was defined using International Classification of Diseases, 

Tenth Revision (ICD-10) codes as ICD-10 code I21-I25 or self-reported data from interview with a 

nurse practitioner.  

DISCOVERY GWAS AND OBTAINING MENDELIAN RANDOMIZATION ESTIMATES 

We split UK Biobank participants into three equal-sized groups at random, which we refer to as 

Group A (the discovery GWAS group), Group B, and Group C. Using data from Group A, we 

performed a genome-wide association analysis for BMI adjusting for age, sex and the first ten 

genomic principal components. Variants were filtered for a minor allele frequency of >0.01% and an 

INFO score (an imputation quality metric) of >0.4 (27). Variants passing these filters and reaching the 

conventional genome-wide significance threshold of p < 5×10
-8

 were selected. In order to ensure 

that selected variants are mutually independent, we clumped the selected variants into loci using a 

distance threshold of 1 megabase and a correlation threshold of r2<0.01 estimated within Group A, 

to ensure no two selected variants are too close or too highly correlated with each other. We 

selected the variant with the smallest p-value in each locus to create our discovery set. 

For each variant in our discovery set, we estimated its genetic association with BMI in each of 

Groups A, B, and C by linear regression adjusting for age, sex and the first ten genomic principal 

components. We also calculated genetic associations with CAD risk in each group by logistic 

regression with the same covariate adjustment. We combined these summarized genetic association 

estimates across variants to obtain Mendelian randomization estimates using the random effects 

inverse-variance weighted method (28). This estimate represents the log odds ratio for CAD per 1 

kg/m2 higher genetically-predicted BMI. This entire process was repeated for 100 iterations taking 

different random splits of the original dataset in each iteration.  

ANALYSIS SET-UP 

We considered five scenarios, corresponding to different situations in which winner’s curse and 

weak instrument bias should or should not occur (Table 1). We use the term “overlap” to indicate 

that genetic associations are estimated in the same participants as the discovery GWAS (Group A), 

and one-sample or two-sample to indicate whether genetic associations with the exposure and 

outcome are estimated in the same or different groups respectively. 

1. No overlap, two-sample: genetic associations with BMI are estimated in Group B and 

genetic associations with CAD in Group C, i.e. we have three distinct datasets for discovery, 

exposure associations, and outcome associations. This represents a scenario in which 

winner’s curse will not occur, and weak instrument bias will be towards the null. We treat 

this as the reference scenario for comparison purposes. 

2. Overlap with exposure, two-sample: genetic associations with BMI are estimated in Group 

A and genetic associations with CAD in Group B, i.e. we have overlapping discovery and 

exposure datasets. Winner’s curse will affect genetic associations with BMI, but not with 
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CAD risk, so Mendelian randomization estimates should be deflated. Weak instrument bias 

will be towards the null. 

3. Overlap with outcome, two-sample: genetic associations with BMI are estimated in Group B 

and genetic associations with CAD in Group A, i.e. we have overlapping discovery and 

outcome datasets. Winner’s curse will affect genetic associations with CAD risk, but not with 

BMI, so Mendelian randomization estimates should be inflated. Weak instrument bias will 

be towards the null. 

4. No overlap, one-sample: genetic associations with BMI and CAD were both estimated in 

Group B, i.e. we have no overlap between the discovery and estimation datasets, but genetic 

associations with the exposure and outcome were obtained in the same dataset. Winner’s 

curse will not occur, and weak instrument bias will be towards the observational association 

between BMI and CAD risk (which is positive). 

5. Overlap with exposure and outcome, one-sample: genetic associations with BMI and CAD 

were both estimated in Group A, i.e. all analyses were performed on the same dataset. This 

represents a scenario in which winner’s curse will occur for genetic associations with both 

BMI and CAD risk, so Mendelian randomization estimates will be subject to both inflation 

and deflation; it is not clear what the net effect will be. Weak instrument bias will be 

towards the observational association between BMI and CAD risk. 

In addition to assessing winner’s curse in the Mendelian randomization estimates, we also 

considered the amount of winner’s curse in the genetic associations for individual variants, defined 

as the percentage difference in the mean beta-coefficient across iterations for which the association 

was significantly associated with BMI (at p < 5×10-8) divided by the mean beta-coefficient across all 

100 iterations: 

% difference 
  
Mean beta when signi�icant for BMI �  Mean beta across all iterations

Mean beta across all iterations
� 100. 

We define the absolute difference similarly: 

Absolute difference 
  Mean beta when signi�icant for BMI �  Mean beta across all iterations. 

Note that these measures are defined for genetic associations with BMI and with CAD risk, but in 

both cases, statistical significance is judged based on the genetic associations with BMI. This reflects 

that in a Mendelian randomization investigation, variants are selected based on their associations 

with the exposure, not the outcome. 

In secondary analyses, we considered two further strategies for selecting variants. First, we 

considered a stricter statistical significance threshold for variant selection of p < 5×10-11. Only 

variants meeting this threshold were included in the Mendelian randomization analyses. Second, we 

noted which genetic variants were selected into the discovery set for all of the 100 random splits of 

the original dataset. Loci from which a variant was selected in all 100 random splits were removed 

from these analyses. The motivation of this “no full replication” strategy is to assess the impact of 

winner’s curse for a trait when only variants with relatively weaker evidence of association are 

available. 

Genetic association analyses were performed using SNPTEST v2 (29) and Mendelian randomization 

analyses were performed using the MendelianRandomization package (30) in R v3.6.1 (31). 
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Scenario 

Group genetic associations 

estimated in for… 

 Winner’s curse affects genetic 

association estimates for… One-sample? 

Exposure Outcome  Exposure Outcome 

1 B C     

2 A B  �   

3 B A   �  

4 B B    � 

5 A A  � � � 

Table 1: Summary of scenarios considered in the empirical analysis. In each scenario, Group A was 

used as the discovery GWAS. 
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Results 
The mean age of the 367,644 participants at baseline was 57.2 years, and 54.1% of participants were 

female. Mean BMI was 27.4 kg/m2, and there were 29 330 CAD events. Overall, variants in 359 loci 

were associated with BMI at a genome-wide significance threshold (p < 5×10-8) in Group A for at 

least one iteration of the random splitting procedure. Of these, 7 loci contained a variant 

significantly associated with BMI in all 100 iterations, whereas variants in the remaining 352 loci 

were significantly associated with BMI in some iterations but not others. The median number of 

variants selected in each iteration was 39.  

Inflation of genetic associations due to winner’s curse for individual variants is illustrated in Figure 1. 

For genetic variants that had a minimum p-value for association with the exposure across iterations 

of around 5×10
-8

, the percentage difference for the association with BMI in iterations when they 

were statistically significant in their association with the exposure compared with its mean value 

across all iterations varied from 50% to 400%, suggesting that beta-coefficients for associations with 

the exposure were on average between 1.5 and 5 times too large in these datasets. For genetic 

variants that had a minimum p-value of around 1×10-13, the percentage difference varied from 10% 

to 25% (i.e. 1.1 to 1.25-fold inflation due to winner’s curse). A similar pattern was observed in the 

absolute difference in associations, which reduced in magnitude considerably as the minimum p-

value decreased. Inflation was also observed in the genetic associations with CAD risk. On the 

percentage difference scale, several variants had inflated associations with CAD risk up to and 

beyond 400% (Supplementary Figure S1). However, some of these percentage differences were 

large because the mean association with CAD risk across was all iterations was close to zero. On the 

absolute difference scale, associations with CAD risk were less inflated than those with BMI. 

Mendelian randomization estimates are summarized in Table 2. In the primary analyses using all 

variants, all Mendelian randomization estimates were positive and had p < 0.05 in each iteration. 

The median estimate from Scenario 1 (no overlap, two-sample) was 0.0859, corresponding to an 

odds ratio of 1.090 per 1 kg/m
2
 increase in genetically-predicted BMI, similar to what has been 

observed previously (25). As expected, the median estimate from Scenario 2 (overlap with exposure, 

two-sample) deflated to 0.0720, and the median estimate from Scenario 3 (overlap with outcome, 

two-sample) inflated to 0.0950. Judging by the differences in median estimates, winner’s curse in 

genetic associations with the outcome affected Mendelian randomization estimates less strongly 

than winner’s curse in genetic associations with the exposure, although the difference was slight. 

Comparing Scenario 1 (no overlap, two-sample) and Scenario 4 (no overlap, one-sample) shows the 

impact of weak instrument bias separate from winner’s curse. The median estimate from Scenario 4 

was 0.0913, suggesting that the impact of weak instrument bias is less than the impact of winner’s 

curse in this example. Scenario 5 (overlap with exposure and outcome, one-sample) is the most 

complex scenario to predict, as here we have winner’s curse in the genetic associations with both 

exposure and outcome, plus weak instrument bias in the direction of the observational association. 

Winner’s curse with the exposure would be expected to deflate estimates, whereas winner’s curse 

with the outcome and weak instrument bias would be expected to inflate estimates. The median 

estimate from Scenario 5 was 0.0829, indicating that the competing biases approximately cancelled 

out. 

Results from the secondary analyses considering different strategies for selecting variants are 

presented in Figure 2. First, we see that median estimates in Scenario 1 (no overlap, two-sample) 

differ slightly between the three strategies. There is no systematic reason why these differences 

occur, other than that they are based on different variants that may affect BMI in different ways. In 
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this example, estimates using the strict strategy (blue boxes) are generally slightly smaller in 

magnitude than those from the primary strategy using all variants (red boxes), whereas estimates 

using the “no full replication” strategy (green boxes) are slightly larger. 

Compared with Scenario 1, the pattern of median estimates in Scenarios 2 to 4 is broadly the same 

for each variant selection strategy. Median estimates are deflated in Scenario 2, and inflated in 

Scenarios 3 and 4. The degree of variation due to bias was around 2 to 3 times larger for the “no full 

replication” strategy and much less for the strict strategy. In the primary and “no full replication” 

strategies, inflation was greater in Scenario 3 (due to winner’s curse) than in Scenario 4 (due to weak 

instrument bias). In contrast, in the strict strategy, inflation was slightly greater in Scenario 4 than 

Scenario 3, although the difference was minimal. Additionally in the strict strategy, no deflation was 

observed in Scenario 2. While there was some difference of median estimates in Scenario 5, this was 

not substantial for any of the strategies.  
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Figure 1: Scatter plot showing variants selected as associated with BMI in at least one iteration: the 

percentage and absolute differences in the mean beta-coefficient estimate in Group A between the 

mean value across all iterations and the mean across only those iterations for which it was 

significant for BMI calculated for associations with BMI (top row) and CAD risk (bottom row), plotted 

against its minimum p-value for BMI across iterations. Only one variant per locus is plotted. 9 

variants had a minimum p-value below 10
-20

; percentage and absolute differences were close to zero 

for these variants. Percentage differences for associations with CAD risk exceeded 400 for 31 

variants (maximum value was 6452); these points are not shown on these axes (see Supplementary 

Figure S1). 
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Scenario 
Median 

estimate 

Mean 

estimate 

Mean 

standard error 

Standard deviation 

of estimates 

1 No overlap, two-sample 0.0859 0.0846 0.0158 0.0123 

2 
Overlap with exposure, 

two-sample 
0.0720 0.0724 0.0164 0.0132 

3 
Overlap with outcome, 

two-sample 
0.0950 0.0948 0.0204 0.0152 

4 No overlap, one-sample 0.0913 0.0893 0.0204 0.0157 

5 

Overlap with exposure 

and outcome, 

one-sample 

0.0829 0.0829 0.0201 0.0142 

 

Table 2: Summary of primary analysis results. Estimates represent log odds ratios for coronary artery 

disease per 1 kg/m2 increase in genetically-predicted body mass index. For each scenario, we report 

the median and mean estimates across 100 iterations, the mean standard error of estimates, and 

the standard deviation of estimates. All estimates are obtained from the random-effects inverse-

variance weighted method. 
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Figure 2: Boxplots of primary and secondary results. Estimates represent log odds ratios for coronary 

artery disease per 1 kg/m
2
 increase in genetically-predicted body mass index. Boxplot indicates the 

lower quartile, median, and upper quartile of estimates; error bars represent the range of estimates 

up to 1.5 times the interquartile range. Outliers outside this range are plotted separately. All 

estimates are obtained from the random-effects inverse-variance weighted method.  
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Discussion 
In this paper, we have explored the impact of winner’s curse bias on Mendelian randomization 

estimates for the effect of BMI on CAD risk. By dividing the UK Biobank study into three groups at 

random a large number of times, we were able to compare the distribution of Mendelian 

randomization estimates in scenarios where the discovery and estimation datasets were distinct, 

and scenarios where they overlapped. When the discovery dataset overlapped with the dataset used 

for estimating genetic associations with the exposure, Mendelian randomization estimates were 

typically deflated; whereas when the discovery dataset overlapped with the dataset for estimating 

genetic associations with the outcome, Mendelian randomization estimates were typically inflated. 

We were able to compare the magnitude of bias from winner’s curse to bias from weak instrument 

bias. In the primary analysis including all genome-wide significant variants, bias from winner’s curse 

was greater in magnitude. Bias from both weak instruments and winner’s curse was substantially 

lower when only including variants associated with BMI at a stricter significance threshold, and bias 

was substantially greater when excluding variants consistently strongly associated with BMI. In the 

latter case, winner’s curse bias was again greater in magnitude than weak instrument bias. In the 

former case, both biases were slight, although weak instrument bias was slightly larger than winner’s 

curse bias. Additionally, we showed that winner’s curse for individual variant associations can be 

very substantial in practice, with inflation in beta-coefficients for the exposure of 50% to 400% for 

variants that only just achieved the GWAS significance threshold (p ≈ 5×10-8). However, the degree 

of bias dropped off sharply for variants associated with the exposure at a stricter significance 

threshold. 

Despite bias from winner’s curse and weak instruments, Mendelian randomization evidence for a 

positive effect of BMI on CAD risk was obtained in all primary analysis iterations. While it would be 

unwise to conclude that winner’s curse bias is never substantial in Mendelian randomization 

analyses based on a single empirical analysis, some important lessons can be learned from this work. 

First, the magnitude of bias from winner’s curse depends sharply on the statistical strength of 

genetic associations. If genetic variants are strongly associated with the exposure (in terms of 

statistical strength of evidence), then there is little uncertainty in whether they will be selected or 

not from the discovery GWAS, and so winner’s curse bias is minimal. In contrast, if genetic 

associations with the exposure are close to the GWAS significance threshold, then bias will be more 

substantial. Second, bias from winner’s curse was generally greater in magnitude than weak 

instrument bias, but the two biases had a roughly similar order of magnitude in our empirical 

example. 

While winner’s curse bias in genetic associations with the exposure is unwelcome, in isolation it will 

not lead to inflated Type 1 error rates for Mendelian randomization estimates. Although the 

magnitude of a Mendelian randomization estimate depends on associations with the exposure and 

outcome, its significance only depends on the genetic associations with the outcome. This is because 

the null hypothesis that the Mendelian randomization estimate is zero is achieved exactly when the 

genetic association with the outcome is zero; if the genetic association with the outcome is zero, 

then the Mendelian randomization estimate will be zero regardless of the genetic association with 

the exposure. Additionally, winner’s curse in outcome association estimates typically inflates 

Mendelian randomization estimates, which is more worrying as it can lead to false positive findings, 

whereas deflation in estimates is typically conservative. Hence, winner’s curse bias is a more serious 

problem in practice when it affects genetic associations with the outcome. Fortunately, as shown in 

our example, the absolute bias in genetic association estimates due to winner’s curse is less for 

associations with the outcome compared to associations with the exposure, as genetic variants are 
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selected based on their associations with the exposure. However, the proportional bias can still be 

large. 

For simplicity, we have only considered scenarios where there is either complete or no overlap 

between the discovery and estimation datasets. If there is partial overlap between datasets, 

winner’s curse bias will be less substantial. Given their international collaborative nature, many 

GWAS consortia have substantial overlap. Additionally, the same participants may have been 

recruited into multiple studies. Hence, even if genetic associations appear to come from non-

overlapping datasets, participant overlap may be non-zero in practice. 

The ideal situation is that Mendelian randomization analyses operate using a “three-sample” design, 

in which discovery GWAS, exposure associations, and outcome associations are assessed in non-

overlapping datasets (32). However, in practice it is rarely feasible to find three distinct large 

samples of participants that are sufficiently similar to combine into a single analysis (for example, 

same ancestry group). Even if it is possible, the loss in sample size (and hence power) from not 

including the discovery GWAS in the estimation of genetic associations may be unwelcome. 

Additionally, differences in participant characteristics between samples may mean that genetic 

variants discovered in one dataset are not the most relevant predictors of the exposure in a second 

dataset. Another possibility for avoiding winner’s curse bias is cross-validation, whereby a large 

dataset is divided into discovery and estimation subsets. This can be performed efficiently by 

dividing the dataset into tenths and performing discovery in 90% of the data, and then obtaining 

association estimates in the remaining tenth (33). By repeating this procedure for each tenth of the 

data separately and combining results, participant overlap can be avoided while minimizing loss of 

power. A further suggestion is to perform a sensitivity analysis only including variants that are 

statistically strongly associated with the exposure (say, those that achieve p < 10-11). However, this 

may again lead to an unwelcome loss of power. Alternatively, a method that attempts to correct for 

winner’s curse bias can be employed (14-18). 

Avoiding participant overlap between the discovery GWAS and the estimation dataset for 

associations with the outcome is an important factor in determining how to perform a Mendelian 

randomization analysis (28). However, pragmatic choices often have to be made to balance the 

possibility of a somewhat biased analysis versus the possibility of an uninformative analysis due to 

low sample size. Additionally, there are several other biases that could affect a Mendelian 

randomization analysis, the most important of which is pleiotropy (or more generally, violation of 

instrument validity). While analysts and reviewers should pay attention to all potential sources of 

bias, pleiotropy is the most critical consideration when assessing the validity of a Mendelian 

randomization investigation (28). Our investigation suggests that winner’s curse is a relevant 

consideration when deciding how to choose datasets for analysis, but winner’s curse may not bias 

estimates substantially or affect overall conclusions.  

In conclusion, bias due to winner’s curse affects Mendelian randomization estimates, and the 

magnitude of bias in our empirical investigation was similar in magnitude, but generally larger than 

that from weak instruments. Analysts should carefully consider the possibility of avoiding sample 

overlap between the discovery GWAS and the estimation dataset for associations with the outcome, 

particularly if most genetic variants are close to the statistical significance threshold, as well as 

performing sensitivity analyses that reduce winner’s curse bias. 
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SUPPLEMENTARY MATERIAL 

 

Supplementary Figure S1: Scatter plot showing variants selected as associated with body mass index 

(BMI) in at least one iteration: the percentage difference in the beta-coefficient estimate for the 

association with coronary artery disease risk in Group A between the average value across all 

iterations and the average across only those iterations for which it was significant for BMI, plotted 

against its minimum p-value for BMI across iterations. Only one variant per locus is plotted. This plot 

is identical to the bottom-left panel of Figure 1, except the y-axis is extended here to accommodate 

plotting of all points. 
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