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ABSTRACT: One of the most intriguing characteristics of cell-free DNA (cfDNA) from plasma is the 17 
sequence at the ends of the fragments. Previous studies have shown that these end-sequences are 18 
somewhat different in cancer patients than in healthy individuals. While investigating this characteristic, we 19 
noticed that the bases at the 5’-ends of a double-stranded fragment were highly correlated with the GC 20 
content of that particular fragment. This led us to develop a method, called MendSeqS (Modified End-based 21 
sequencing System), that incorporates the correlation between end-motifs and GC content into the analysis 22 
of shallow (0.5x) whole genome sequencing (WGS). When applied to plasma samples, MendSeqS was 23 
able to classify patients with a sensitivity of 96% at 98% specificity in a cohort comprised of 107 individuals 24 
evaluated in our laboratory (43 with cancer and 64 without). In cohorts evaluated in three other laboratories, 25 
comprising a total of 401 individuals (193 with cancer and 208 without), MendSeqS achieved a sensitivity 26 
of 87% at 98% specificity. MendSeqS could in principle be combined with other methods of cfDNA analysis 27 
to enhance cancer detection. 28 

INTRODUCTION: 29 

The earlier detection of cancer has the potential to substantially reduce cancer morbidity and mortality 30 
because all cancer treatments are more successful when there’s a lower tumor burden in the patient1-2. The 31 
evaluation of cell-free DNA (cfDNA) from plasma is one of the most promising approaches for such earlier 32 
detection. Numerous ways to use cfDNA have been described in the literature. Genetic alterations in cfDNA 33 
– such as mutations or copy number alterations – have been extensively used for this purpose. Epigenetic 34 
alterations, in particular changes in DNA methylation, have also been used to identify patients with cancer3-35 
6. Other types of epigenetic changes, reflecting chromatin organization rather than covalent modifications 36 
of DNA, have more recently gained attention3, 7-12. Because DNA is always wrapped in nucleosomes, 37 
whether in the cell or in the circulation, changes in chromatin structure result in changes of the fragments 38 
produced by nucleases in the cell of origin or in the circulation11, 13-14. This gives rise to different 39 
fragmentation patterns as well as differences in fragment sizes or the sequences at the ends of fragments. 40 
Because epigenetics, rather than genetics, is responsible for cell differentiation epigenetic patterns in 41 
plasma cfDNA can often reveal the cell of origin of the fragments.  42 

Though the results to date of these cfDNA-based technologies are promising, further research to increase 43 
the sensitivity of cancer detection while maintaining high specificity is a research and clinical priority. We 44 
here report a new heuristic, inspired by previous studies of cfDNA fragmentation patterns in cancer patients, 45 
particularly studies on fragment end-motifs, for classifying patients based on data from shallow whole 46 
genome sequencing13, 15-17. 47 

 48 
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RESULTS: 49 

We began by evaluating 43 cancer patients and 64 healthy individuals of similar age (Cohort 1, Table 1) 50 
Whole genome sequencing was performed on the cfDNA of each of these patients (Methods) to an average 51 
depth of 17 million high quality reads (~0.5x genome coverage). Two key observations about the sequences 52 
of the bases at the ends of fragments were made during this initial evaluation, which led us to evaluate 53 
more patients and develop algorithms for classifying cancer patients based on them.  54 

Observation 1: End-motif frequency is influenced by local GC content 55 

We first found that the frequencies of trimers at the 5’-ends of fragments correlated with the GC content of 56 
the entire fragment (i.e., the 3 base pairs at each of the two ends plus the ~70 to 350 bp (average ~170 bp) 57 
between the trimers). We made similar observations with the two bases at the ends (dimers) or the four 58 
bases at the ends (tetramers), but we focused on trimers in this study. We noticed a few general trends 59 
dependent on the GC content of the particular trimer (Fig. 1 and Supplementary Data 1). The frequency of 60 
fragments with ends containing two A:T bp and one G:C bp were negatively correlated with the GC content 61 
of the entire fragment (e.g., Fig. 1A). Conversely, the frequency of fragments with ends containing one A:T 62 
bp and two G:C bp were positively correlated with the GC content of the entire fragment (e.g., Fig. 1B). 63 
Figure 1C illustrates the trend when the trimer composition was extreme, with G:C bp at all three positions. 64 
Though a positive correlation with of the frequency of the extreme type of trimer and the GC content of the 65 
entire fragment was still evident, the relationship was exponential rather than linear. These trends were 66 
observed in plasma cfDNA derived from healthy individuals as well as from cancer patients in Cohort 1 (Fig. 67 
1A to 1D) as well as in publicly available data18 (Fig 1 E to 1H). The GC-dependent frequencies of all 64 68 
trimers in the cohorts used in this study are presented in Supplementary Table 2. To test whether these 69 
trends were specific to cell-free DNA, we performed in silico shearing of the hg19 reference genome. When 70 
the human genome was randomly sheared to the same fragment size distribution as cfDNA, the trends in 71 
end-motif trimer frequency as a function of GC content were similar to those of actual cfDNA (Fig 1 I to 1L).  72 

  73 

 74 
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 76 
Observation 2: Binning end-motifs by fragment GC content improves the distinction between 77 
healthy individuals and cancer patients 78 

It has previously been demonstrated that the frequencies of trimers at the 5’-ends of cfDNA fragments from 79 
healthy individuals is different than those derived from patients with cancer13, 17, 19-20. In this study, we 80 
observed that cancer-specific differences in end-motifs are substantially more pronounced if the GC content 81 
of the entire fragment is taken into account. This is illustrated in Fig. 2 for each of the four trimers shown in 82 
Fig. 1. For each trimer, the frequency of fragments containing that trimer was determined from the WGS 83 
data of Cohort 1. Using the frequencies in the 64 healthy individuals in this cohort as a reference distribution, 84 
Z-scores for each sample in Cohort 1 could be calculated, with a Z-score of zero corresponding to the 85 
average frequency of that trimer in the healthy individuals. The average Z-scores for the 43 cancer patients 86 
in Cohort 1 are represented by the horizontal blue lines in Fig. 2. Similarly, Z-scores could be calculated for 87 
each trimer present in bins of fragments with similar GC contents. Sixty such Z-scores were obtained for 88 
each trimer, corresponding to bins of 20% to 21% GC content, 21% to 22%, etc. all the way up to 79% to 89 
80%. The average Z-scores for the 43 cancer patients in Cohort 1, as a function of the GC content of the 90 
underlying fragment (x-axis) are represented by the orange lines in Fig. 2.  91 

As an example, with trimer TGT the average Z-score was -0.619 without consideration of GC (blue line in 92 
Fig. 2A) while the average Z-scores ranged from -2.0 in fragments with a GC content of 29% to +0.6 in 93 
fragments with a GC content of 60% (orange line in Fig. 2A). The maximum absolute Z-score for the TGT 94 
trimer, when considering GC contents, was three times as high as the Z-score for the same trimer when 95 
GC contents were not considered. This translated to an improved distinction between cancer patients and 96 
healthy individuals with TGT trimers (Mann-Whitney p-values of 1.1e-11 vs. 0.002 with and without GC 97 
content consideration, respectively; Supplementary Table 2).  98 

 99 

Figure 1. Correlations between end-motif frequencies and GC-contents of the fragment from which the ends were 
derived. (A-D) End-motif trimer frequencies in healthy individuals and cancer patients in Cohort 1. The dotted lines represent 
the frequencies of the indicated end-motif trimers regardless of the GC content of the fragment from which the trimer was 
derived and are therefore horizontal lines in this plot. The solid lines represent the frequencies of the indicated trimers as a 
function of the GC content (x-axis) of the fragments containing them. (E-H) Similar patterns were observed in cfDNA samples 
from Cohort 3 and in in silico-generated fragments from the hg19 genome (I-L).  

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.02.22278319doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.02.22278319


MendSeqS, Curtis et al., Page 4 

 100 

The distinction between cancer patients and normal individuals was also observed with trimers GAG and 101 
GCG, though the patterns were different (Fig. 2B, C). At low or high fragment GC contents, these trimers 102 
displayed relatively low Z-scores, with no improvement in Z-scores evident after consideration of GC 103 
content. However, at GC contents between 35% and 65%, there was a large increase in Z-scores when 104 
GC contents were considered, with mean Z-scores as high as 5.9 and 3.5 for GCG and GAG, respectively 105 
– as much as three-fold higher than obtained without consideration of GC content. As with the TGT trimer, 106 
this translated to an improved distinction between samples from cancer patients and healthy individuals 107 
(Mann-Whitney p-values of 8.3e-14 vs. 5.7e-5 with and without GC content consideration, respectively, for 108 
GCG; 3.3e-14 with GC content vs. 3.3e-8 with and without GC content consideration, respectively, for GAG, 109 
Supplementary Table 2).  110 

Fig 2D illustrates a trimer (ATT) in which there is relatively little change in the Z-scores as a function of GC 111 
content of the fragment. However, there were still cancer-specific differences in the frequencies of ATT 112 
end-motifs, with a max z-score of 1.55 with GC content consideration and mean Z-score of 0.77 without 113 
GC content consideration (Mann-Whitney p-values of 5.4e-05 and 0.006 with and without GC content 114 
consideration, respectively; Supplementary Table 2).  115 

A classifier. Based on the two observations described above, it was clear that a subset of trimers exhibited 116 
GC-dependent, cancer-associated differences in frequencies. To incorporate the relationship between GC 117 
content and trimer frequencies into a classifier, we performed feature selection on the basis of their mutual 118 
information and Mann-Whitney p-values using leave-one-out cross validation. We thereby selected an 119 
average of 2293 features from the set of 3840 possible features (64 trimers x 60 GC intervals; Table 2 and 120 
Methods). These 2293 features included all 64 trimers and an average of 36 GC contents per trimer. To 121 
avoid information leakage, all feature selections were performed within each fold of cross-validation. This 122 
heuristic was named MendSeqS, for Modified end-based Sequencing System. For comparison, we 123 
selected 47 trimers using the same criteria (Mutual Information and Mann Whitney p-values) without 124 
considering GC content of the underlying fragments, referring to this conventional heuristic as EndSeqS 125 
(Table 3). We then used logistic regression to assign weights (coefficients) to each of the selected features 126 
in MendSeqS and EndSeqS. Logistic regression yielded a single score for each heuristic in each patient 127 
(Fig. 3A). The most obvious difference between the performance of MendSeqS and EndSeqS was the 128 
tighter distribution of scores in MendSeqS (Fig. 3A). This translated to a lower binary cross-entropy in 129 
MendSeqS (0.16) than in EndSeqS (0.21) (Methods). MendSeqS also was significantly more accurate than 130 
EndSeqS in ROC analysis (p-value of 0.015, Venkatraman’s test22, Fig. 3B). This improvement was 131 
particularly significant in the high specificity realm most important for earlier detection, where MendSeqS 132 
achieved a sensitivity of 95% (41/43) at 98% specificity whereas EndSeqS achieved a sensitivity of only 133 
84% (36/43) (p-value of 0.024, Pepe’s test23, Fig. 3C). 134 

Figure 2. Comparisons of end-motif trimer frequencies in cfDNA fragments from cancer patients and healthy 
individuals with or without consideration of GC content. Average Z-scores (lines) and 95% confidence intervals (shaded) 
are shown for the 22 cancer patients in Cohort 1, using the trimer frequencies in the 64 healthy individuals in Cohort 1 as 
references. (A) Z-scores for TGT; (B) Z-scores for GCG (C); Z-scores for GAG; (D) Z-scores for ATT. 
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 135 

  136 

Analysis of other WGS datasets. We then sought to see if MendSeqS could be applied to DNA samples 137 
that had been prepared, amplified, and sequenced in other laboratories. For this purpose, we employed 138 
401 samples (193 with cancer, 208 without cancer) deposited in the FinaleDB public database18 (called 139 
Cohort 2,Table 4) from three separate studies, each using different technologies9, 11, 24. The cancer types 140 
represented in Cohort 2 were different than those in Cohort 1 (compare Table 1 with Table 4).  141 

The first question addressed was whether the two basic observations that formed the rationale for 142 
MendSeqS were apparent in Cohort 2. With respect to Observation 1, the data in Figures 1E-H show a 143 
strong GC-dependence of the frequencies of the same four trimers illustrated in Figs 1A-D, and this was 144 
true for all 64 trimers (Supplementary Data 1).  145 

With respect to Observation 2, the key question was whether MendSeqS could improve the classification 146 
of cancer samples in Cohort 2 over that achieved with EndSeqS. Because the sample types and methods 147 
used for DNA purification, library preparation, and sequencing analysis were heterogeneous in Cohort 2 148 
and different than in Cohort 1, we derived new features and coefficients for Cohort 2 and evaluated them 149 
using leave one-out cross-validation (just as done for Cohort 1). For MendSeqs in Cohort 2, we selected 150 
an average of 2414 features (64 trimers x average of 38 GC contents per primer) from the set of 3840 151 
possible features (Table 5). For EndSeqS, we selected all 51 using the same criteria (Table 6, Methods).  152 

Dot plots of the scores of the four cancer types obtained with MendSeqS and EndSeqS are plotted in Fig. 153 
4A, where the tighter distribution of MendSeqS scores was again observed. MendSeqS also was more 154 
accurate than EndSeqS in ROC analysis (p-value of 0.054, Venkatraman’s test22, Fig. 4B). This 155 
improvement was particularly significant in the high specificity realm most important for earlier detection, 156 
where MendSeqS achieved a sensitivity of 87% (168/193) at 98% specificity, whereas EndSeqS was less 157 
sensitive at the same specificity (68% [131/193], p-value of 0.0087, Pepe’s test23, Fig. 4C) .  158 

 159 

Figure 3. Performance of MendSeqS and EndSeqS on Cohort 1. (A) Box and swarm plots display the scores for MendSeqS 
and EndSeqS from leave one-out cross-validation. (B) Comparison of ROC curves from MendSeqS and EndSeqS during cross-
validation (C) ROC at high specificity, representing the upper left part of (B). 
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Discussion  162 

The results described above demonstrate that the distributions of trimers at the 5’ ends of cfDNA fragments 163 
are influenced by the GC content of the fragment from which those ends were derived. Moreover, taking 164 
this GC dependency into account can magnify the differences in trimer frequency between cancer patients 165 
and healthy individuals, resulting in improved classification performance. 166 

The GC dependence of trimers was observed in samples from both cancer patients and healthy controls. 167 
The similarity of the trends as seen in cell-free DNA and in silico fragmentation experiments indicate that 168 
these trends reflect the influence of local GC content on the frequency of each end-motif (Fig. 1I-L; 169 
Methods). Moreover, while the overall shapes of the curves relating to end-motif frequency and fragment 170 
GC content are observed in experimental data (Cohorts 1 and 3), and in silico fragmentation, their 171 
magnitude is different. Note, for example, that the y-axes are different in Fig 1A, 1E, and 1I. Previous studies 172 
have shown that the distribution of fragment-end motifs are influenced by the activity of sequence specific 173 
nucleases such as DNASE1, DNASE1L3, and DFFB25-26 as well as chromatin organization, with DNA 174 
wrapped around nucleosomes less susceptible to cleavage than internucleosomal regions11, 27. Our results 175 
illustrate that the frequency of end-motifs is also heavily influenced by GC content of the region itself, 176 
implying that phenomena such as PCR biases and copy number changes may add significant noise to the 177 
overall end-motif frequency. Through the binning of end-motifs by GC content, it is possible to disaggregate 178 
the signal derived from fragments of varying GC content, allowing MendSeqS to overcome these 179 
confounders. 180 

Several prior studies have documented the utility of cancer-specific differences in trimers or other motifs at 181 
the ends of cfDNA fragments for cancer detection13, 17, 19-20. MendSeqS amplifies these differences, as 182 
documented by higher Z-scores, p-values, and mutual information when GC content of fragments are 183 
considered (Supplementary Table 2). There are at least three possible explanations for these cancer-184 
specific differences. The activities of sequence-specific nucleases that produce cfDNA fragments in 185 
neoplastic cells may not be identical to those in non-neoplastic cells. For example, DFFB, associated with 186 

Figure 4. Performance of MendSeqS and EndSeqS on Cohort 2. (A) Scores from leave one-out cross-validation for four tumor 
types and healthy samples are shown.. (B) ROC curves displaying the performance across the 10 iterations of cross-validation.(C) 
ROC at high specificity, taken from the upper left part of (B). 
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certain forms of cell death, could be more active in a subset of neoplastic cells3, 25-26, 28. Second, DNA from 187 
neoplastic cells could be more fragmented as a result of unrepaired DNA damage by exogenous or 188 
endogenous sources of DNA damage (e.g. chemical insults, radiation, free radicals, topological changes) 189 
which may lead to changes in the distribution of end-motifs. 8, 13, 20. Third, differences in chromatin structure 190 
between neoplastic and non-neoplastic cells are known to alter the fragmentation patterns of cell-free DNA 191 
and could explain both cell-type specific and cancer-specific changes 7-8, 11, 14, 29-31. Further research will be 192 
required to determine the relative importance of these three potential explanations. 193 

Note that in the proposed explanations above we are assuming that the cancer-specific differences in 194 
trimers are the result of contributions of cfDNA derived from neoplastic cells. In fact, neither our data nor 195 
prior evidence provide unequivocal evidence that the fragments whose ends give rise to the cancer-specific 196 
signal are actually derived from cancer cells. They could be derived from non-cancer cells of the organ 197 
giving rise to the cancer, or from leukocytes or other cells that are simply associated with cancer.  198 

Our study of course has limitations. Among them, our cohorts were relatively small so the confidence limits 199 
in the estimates of sensitivity and specificity derived from the ROC curves are relatively wide. Second, in 200 
the ideal situation, the selected features and the logistic regression coefficients associated with each feature 201 
should be broadly applicable to all cohorts. However, when we applied the features and coefficients derived 202 
from the analysis of data generated in other laboratories (Cohort 2) to those generated in our laboratory 203 
(Cohort 1), the MendSeqS sensitivity at 95% specificity dropped from 92% to 23.1%. This drop in sensitivity 204 
was also observed in EndSeqS, dropping from 89% to 18.1% when features from Cohort 1 rather than 205 
Cohort 2 were used. Therefore, the decreased performance was not likely to be a result of the new 206 
heuristics employed in MendSeqS. The most obvious basis for the difference in performance is that the 207 
sample preparation, DNA library construction, and sequencing methods – factors that are known to 208 
influence characteristics of cell-free DNA32-35 – used in Cohort 2 were different than those used to in Cohort 209 
1. The enzymes used to make WGS libraries often employ nucleases and polymerases that can alter the 210 
bases at the ends of fragments in preparation for ligation, so this explanation is plausible. If true, it would 211 
suggest that the parameters for GC adjustment used in a training set should be derived from control libraries 212 
made identically to those used in the validation set. However, it is also possible that these performance 213 
differences were representative of differences between tumor types in Cohort 2 (Liver, Lung, Pancreas, 214 
and Colorectal) compared to Cohort 1 (predominately Colorectal), or to other confounders. Regardless, 215 
studies with more patients, and with different types of library constructions on the same patients, should be 216 
able to address this issue in the future. 217 

In summary, we demonstrate that the frequency and cancer-specificity of a cfDNA fragment end-motif are 218 
correlated with the GC content of the fragment from which the was derived. We anticipate that the principles 219 
on which MendSeqS is based can be incorporated into the analysis of cfDNA in general and can serve as 220 
an adjunct to other assays performed on the same cfDNA, such as mutations, methylation, fragment length, 221 
and chromatin accessibility.  222 

Methods 223 

Plasma Collection and DNA Collection 224 
This study was approved by the Institutional Review Boards for Human Research at participating institutions 225 
in compliance with the Health Insurance Portability and Accountability Act. All the participants provided 226 
written informed consent in accordance with the principles of the Declaration of Helsinki. DNA was purified 227 
from an average of 1 to 10 mL of plasma using either a QIASymphony circulating DNA kit (cat # 1091063) 228 
or a BioChain Cell-free DNA Extraction kit (Cat # K5011625). 229 

Library Preparation and Sequencing 230 

All libraries were prepared as described in ref. 36. Barcoded libraries were sequenced using 75 bp paired-231 
end runs (150 cycles) on either Illumina HiSeq 4000 or Novaseq 6000 platforms to an average depth of 17 232 
million molecules. Adapters and UMIs were trimmed using cutadapt37 and trimmed sequences were aligned 233 
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to the hg19 genome using bowtie238 in paired-end mode. Reads were filtered for a MAPQ>1 and duplicates 234 
were removed using unique molecular identifiers (UMIs). Paired-end reads that did not have proper 235 
orientation or did not have paired-end support were removed.  236 

Fragment-End Analysis 237 

Fragmentation data was collected from filtered SAM files. For each pair of reads the fragment start, end, 238 
and strand alignment was determined. Bedtools39 was then used to sort fragments and extract the full insert 239 
sequence using the hg19 reference genome. GC content for each insert was then calculated using all bases 240 
of the aligned sequence. 241 

For every unique molecule the first (5’) and last (3’) nucleotides of the fragment sequence were evaluated 242 
and the frequency of each motif at each end was determined. Our library preparation either degrades the 243 
3’ end of the original DNA duplex fragment when there is a 3’-overhang or fills-in a 5’ overhang with the 244 
compliment of the 3’ strand. We therefore used the end-motif (trimer) itself when the sequence read aligned 245 
to the reference strand of the genome, and the reverse compliment of the trimer when the sequence read 246 
aligned with the reverse compliment of the reference strand.  247 

We binned each fragment based on the GC content of the sequence of the entire aligned read; when only 248 
part of a read aligned to the reference genome, it was discarded. GC bins extended from 20% to 21% GC, 249 
21% to 22% GC, etc. up to 79 to 80% GC. Thus there were 60 possible bins and 64 possible trimers, for a 250 
total of 3840 possible features used for MendSeqS. 251 

In silico fragmentation of the hg19 genome 252 

We extracted fragments from 74 healthy controls and placed them randomly throughout the hg19 genome 253 
using the bedtools random function39. For example, if sample A had 2000 fragments of length X we placed 254 
2000 fragments of length X randomly throughout the hg19 genome.  255 

Analysis of FinaleDB samples 256 

Fragmentation data was downloaded for 352 patients from the FinaleDB database18. Data files were 257 
downloaded in sorted tsv format and contained fragment-end positioning (chr,start,end) and strand 258 
alignment. Fragment-end analysis was performed as described above.  259 

Classification Algorithm 260 

For each potential feature, we used the data within the training set (all but one of the samples) to create a 261 
StandardScaler model (sklearn) to standardize features by removing the mean and scaling to unit variance. 262 
Next, we evaluated (1) the mutual information between feature values and cancer status and (2) the Mann-263 
Whitney p-value for feature values of healthy controls vs. cancer samples (Tables 2, 3, 5, and 6). To remove 264 
uninformative features, we filtered for features that had either (a) mutual information greater than 0.05 or 265 
(b) a p-value that remained statistically significant (i.e., < E-5) after Bonferonni correction (α=0.05). Logistic 266 
regression was then used to determine the coefficient of each feature that surpassed these thresholds. 267 
Finally, these coefficients were used to score the left out sample in each fold of cross-validation. Note that 268 
both feature selection and coefficient determination were determined in each fold of cross-validation to 269 
avoid data leakage during feature selection21. After completing all folds, we calculated the binary cross-270 
entropy, AUROC and sensitivity at 98% specificity. This workflow was identical for both MendSeqS and 271 
EndSeqS.  272 

Code Availability 273 

Scripts for analyzing bed files and evaluating logistic regressions are available under a GNU 3.0 public 274 
license at https://github.com/sdcurtis/LudwigCenterBaltimore/tree/main 275 
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Data availability 278 

The sequencing data generated in this study can be obtained from the European Genome–phenome 279 
Archive (accession number EGAS00001006418) 280 
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