The health impact of long COVID during the 2021-2022 Omicron wave in Australia: a quantitative burden of disease study

Authors

Samantha Howe*#
Dr Joshua Szanyi#
Professor Tony Blakely#

#Population Interventions Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, VIC, 3053

*Corresponding author: 207 Bouverie Street, Carlton, VIC, 3053.

slhowe@student.unimelb.edu.au

Word count: 2904

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background

Long COVID symptoms occur for a proportion of acute COVID-19 survivors, with reduced risk among the vaccinated, and for Omicron compared to Delta variant infections. The health loss attributed to pre-Omicron long COVID has previously been estimated using only a few major symptoms.

Methods

The years lived with disability (YLDs) due to long COVID in Australia during the 2021-2022 Omicron BA.1/BA.2 wave were calculated using inputs from previously published case-control, cross-sectional, or cohort studies examining the prevalence and duration of individual long COVID symptoms. This estimated health loss was compared with acute SARS-CoV-2 infection YLDs and years of life lost (YLLs) from SARS-CoV-2. The sum of these three components equalled COVID-19 disability-adjusted life years (DALYs), which was compared to DALYs from other diseases.

Results

5200 (95% uncertainty interval [UI] 2100-8300) YLDs were attributable to long COVID and 1800 (95% UI 1100-2600) to acute-SARS-CoV-2 infection, suggesting long COVID caused 74% of the overall YLDs from SARS-CoV-2 infections in the BA.1/BA.2 wave. Total DALYs attributable to SARS-CoV-2 were 50 900 (95% UI 21 000-80 800), 2.4% of expected DALYs for all diseases in the same period.

Conclusion
This study provides a comprehensive approach to estimating the morbidity due to long COVID. Improved data on long COVID symptoms will improve the accuracy of these estimates. As data accumulates on SARS-CoV-2 infection sequelae (e.g., increased cardiovascular disease rates), total health loss is likely to be higher than estimated in this study. Nevertheless, this study demonstrates that long COVID requires consideration in pandemic policy planning given it is responsible for the majority of direct SARS-CoV-2 morbidity, including during an Omicron wave in a highly vaccinated population.

Key messages

- Our study is the first to comprehensively estimate long COVID morbidity using its individual symptoms, during Australia’s 2021-2022 Omicron wave.
- We show that long COVID contributed to almost three-quarters of the non-fatal health loss resulting from Omicron infections in this period.
- Long COVID contributes to a substantial proportion of direct COVID-19 morbidity, even in a highly vaccinated population during an Omicron wave. It should therefore be more explicitly considered in future pandemic policymaking.
- Our method of estimating long COVID morbidity has explicable differences to existing long COVID burden of disease approaches and may provide a more accurate estimate of the morbidity attributable to long COVID.
Introduction

A post-acute phase of SARS-CoV-2 infection, commonly termed long COVID, occurs among some individuals following acute infection. Long COVID describes the persistence and/or emergence of a heterogeneous group of symptoms at least 12 weeks after acute infection.¹ There is no current consensus on the symptom profile that specifically characterises long COVID, with a wide range of symptoms being reported across multiple organ systems, including cardiopulmonary, neurological, and musculoskeletal systems.² While some studies report symptom clustering within individuals, the frequency and significance of this remains unclear and individuals most commonly report experiencing one or two symptoms.³,⁴ The aetiology of long COVID is proposed to be related to continued immune activation and persistence of the virus in the various organ systems infected during the acute period.⁵ Numerous risk factors have been identified, including a propensity towards an autoimmune response, female sex, co-morbidities such as Type 2 Diabetes Mellitus, and a more severe acute infection.⁴,⁶ Importantly, COVID-19 vaccination has been found to reduce the risk of long COVID.⁷,⁸

Given ongoing high rates of SARS-CoV-2 transmission globally, it is important to quantify the full health impact of SARS-CoV-2 infection, including its longer-term consequences. Recent burden of disease studies have quantified long COVID by treating it as a single outcome, utilising the Global Burden of Disease (GBD) study health state of ‘post-acute consequences’ from other respiratory illnesses, or chronic fatigue syndrome, to approximate long COVID severity.⁹⁻¹¹ While these health states have some overlap with documented long COVID symptoms, they do not acknowledge the full breadth of symptoms linked to long COVID, or the heterogeneity of symptoms reported between individuals.²,⁹
A lack of high-quality evidence regarding the prevalence and duration of symptoms hampers quantification of long COVID burden. Many studies of long COVID lack an appropriate control group or are subject to other methodological issues. Of particular concern is selection bias from self-selection into studies by those experiencing ongoing symptoms and loss-to-follow up by those no longer symptomatic. These biases likely inflate estimates of long COVID occurrence. Conversely, studies with insufficient follow-up time may not capture the full burden of long COVID symptoms, which are often relapsing and remitting in nature. In addition to these design issues, the majority of published long COVID research has been conducted in cohorts of unvaccinated, pre-Omicron variant infected cases. To accurately quantify the impact of long COVID in highly vaccinated populations during Omicron waves, differences in the risk of long COVID by vaccination and variant need incorporating.

This paper addressed the following research questions: firstly, what is the extent of the morbidity attributable to long COVID resulting from Omicron variant SARS-CoV-2 infections, quantified ‘bottom-up’ from occurrence rates of each symptom and its severity and duration? Secondly, what proportion of total Disability-Adjusted Life Years (DALYs) accumulated during the 2021-2022 Omicron wave in Australia were due to long COVID, and how does this health loss compare to other major causes of health loss in Australia?

Methods

Morbidity calculations

Long COVID morbidity was calculated as that expected per symptomatic SARS-CoV-2 infected person:
Expected Long COVID morbidity per symptomatic survivor

\[
E = \sum_i (Prevalence_{i \text{ only}} \times Duration_i \times Severity_i) + \sum_i \sum_{j=i+1} (Prevalence_i \times Prevalence_j \times \text{Min}[Duration_i, \text{or } j] \times Severity_{i \text{ and } j})
\]

where \(i\) and \(j\) index each possible symptom, and \(Prevalence_{i \text{ only}}\) is the prevalence of symptom \(i\) minus the sum of the joint occurrence of symptom \(i\) with each other symptom (assuming symptom occurrence is independent). The prevalence of each symptom was calculated as a risk difference in symptom frequency between SARS-CoV-2 survivors and SARS-CoV-2-negative controls, extracted from previous research (see Supplementary Table 1 and Supplementary Table 2).\(^3,12-14\) Only symptoms found to occur more frequently in COVID-19 cases compared to COVID-negative controls, in the controlled literature, were included. The severity of each symptom was quantified as a disability weight (DW) taken from the Global Burden of Disease (GBD) study\(^15\) for the matching health state, and best matches otherwise (e.g. DWS of other sensory conditions have been used as proxies for dysosmia and dysgeusia). \(Severity_{i \text{ and } j}\) was calculated as \(^16:\)

\[
1 - (1 - DW_i) \times (1 - DW_j)
\]

It was assumed that only initially symptomatic patients are at risk of long COVID\(^17\), and that calculations including all three-way (or higher) combinations of symptoms would make negligible difference.
The above ‘base case’ prevalence calculations were for unvaccinated individuals infected with a pre-Omicron variant of SARS-CoV-2, and were split into three sub-groups: adult community cases, adult hospitalised cases, and children (0-17 years, any acute disease severity). Long COVID symptom prevalence among previously hospitalised adults is approximately twice that among community cases. Symptom prevalence is also lower among children compared to adults. Duration of each symptom (from 1-week post-infection for mild/moderate cases, and 4-weeks post-infection for those hospitalised) was applied based on recent findings by Wulf Hansen et al., who reported a median duration of symptoms for community infections of 4 months, and 8.9 months for previously hospitalised cases. Exceptions to this have been applied to psychological symptoms, for which a shorter duration was used, and similarly for children (see Table 1).

These base case prevalences were then multiplied by an odds ratio (OR) of 0.55 to approximate symptom prevalence among vaccinated cases based on findings from two studies that found reduced odds of symptoms following the acute infection by 49% and 41%, for those who had at least two COVID-19 vaccines compared to one/no vaccines. Vaccination post-infection has been found to have a limited effect on long COVID occurrence – therefore, only vaccination prior to infection was considered. Next, prevalence estimates were further multiplied by an OR of 0.25 based on an estimate of the reduction in prevalence of any symptoms at least 4-weeks post-infection for Omicron variant compared to Delta variant infections in a vaccinated cohort in the United Kingdom. It was assumed that this association remains beyond 12 weeks post-infection. The exception to the latter multiplier was adults hospitalised with an Omicron infection; we assumed that once a case is severe enough to be hospitalised, there is no difference in resulting long COVID compared to pre-Omicron variants.
Uncertainty was measured using a standard deviation (SD) of +/- 20%, applied to base case long COVID morbidity estimates. This method approximated the 95% uncertainty in base case estimates achieved using a more comprehensive approach, where variance in duration, severity and prevalence were each calculated to estimate total variance. For morbidity calculations for vaccinated and Omicron-infected populations, we used a SD of +/- 30% of the expected value to reflect additional uncertainty.

Application to the Omicron wave and health burden comparison

Long COVID years lived with disability (YLDs) were calculated as the expected long COVID morbidity per symptomatic case multiplied by the total number of symptomatic infections (treated as equivalent to notified cases) during the four months of the Omicron BA.1/BA.2 wave in Australia, defined here as December 10th 2021 to April 9th 2022.

The YLDs from acute SARS-CoV-2 infection were estimated based on a previously published method by Blakely et al. 23, updated here to be specific to Omicron-variant infections. Acute COVID-19 morbidity is sub-divided into community cases, and hospitalised cases that are either ward only or include an ICU admission – approximately 8% of cases in hospital have been estimated as requiring ICU admission during the first four months of the Omicron wave.24 Symptom duration estimates for hospitalised patients were based on findings from a New South Wales (NSW) study by Tobin et al.25, which estimated hospital stay duration during December (at the start of the Omicron wave). These duration estimates were weighted across the three age categories presented by Tobin et al.25 (0-39 year olds, 40-69 year olds and 70+ year olds) based on the proportion hospitalised in each age group. A percentage split of 72% mild and 28% moderate acute illness for non-hospitalised
cases was based on findings by Menni et al.26, which indicated that the odds of moderate severity illness was reduced by approximately 44\% for Omicron compared to Delta infections. Previous estimates used by Blakely et al.23 for pre-Omicron variant infections utilised a 50/50 split for the proportions of moderate vs. mild community cases. Acute COVID-19 morbidity inputs are presented in Supplementary Table 3.

Years of life lost (YLLs) due to SARS-CoV-2 deaths were estimated using standard burden of disease methods27, multiplying reported deaths due to COVID-19 with the average remaining life expectancy of those who died (with reference life expectancy by sex and age obtained from the 2019 GBD, retrieved from the Institute for Health Metrics and Evaluation [IHME] results tool)28,29.

YLL and YLD calculations were by strata of age (<18-year-olds vs. \geq18-year-olds), hospitalisation status (as described above) and vaccination – national level data was not available at the time of writing for vaccination status of COVID-19 cases, therefore data from NSW was applied30.

The total DALYs from SARS-CoV-2 infection in these four months were calculated as the sum of the above three components. For the purposes of this paper, we assigned the long COVID YLDs to the SARS-CoV-2 infections occurring in the four-month window.

For comparison, we took the YLDs and DALYs in Australia for other diseases from GBD 201929, dividing by three to make them equivalent to the four-month duration of the BA.1/BA.2 wave.
Results

Morbidity estimates
The DW, estimated prevalence, and average duration of each identified long COVID symptom among Omicron infected, unvaccinated cases, is presented in Table 1. The prevalence among vaccinated cases is that shown multiplied by 0.55. The prevalence and duration (including decay over time) of each symptom among base cases (i.e., unvaccinated pre-Omicron infections) is presented in Supplementary Table 4.

The total long COVID morbidity estimates for each sub-group are shown in Table 2.

Application to the Omicron wave
Some 4.87 million COVID-19 cases were notified in Australia during the first four months of the Omicron wave, with approximately 35 500 hospitalisations and 3463 deaths. An estimated 61% of notified cases were vaccinated at the time of infection. (Cases and deaths are shown in Supplementary Table 5 and Supplementary Table 6.)

The overall morbidity (i.e. YLDs) resulting from infections in this period, including acute and long COVID is shown in Figure 1. Long COVID accounted for approximately 74% of the overall non-fatal COVID-19 health loss among notified cases during the first 4 months of the Australian Omicron wave, at 5200 YLDs (95% uncertainty interval [UI] 2100-8300).

The overall DALYs resulting from COVID-19 infections in the four-month period was estimated at 50 900 (95% UI 21 000-80 800), of which long COVID contributed 10.2% (compared to the acute COVID-19 morbidity contribution of 3.6%).
The leading 25 causes of morbidity in Australia ranked by YLDs are presented in Figure 2 along with the estimated YLDs resulting from COVID-19 cases during the first four months of the Omicron wave. Total COVID-19 morbidity is ranked 24th, comparable to the non-fatal health loss resulting from chronic kidney disease.

The leading 25 causes of health loss in Australia ranked by DALYs, are presented in Figure 3 along with the estimated DALYs resulting from the first four months of the COVID-19 Omicron wave. The DALYs resulting from COVID-19 cases are estimated to be 2.4% of all expected DALY loss in the four months, and rank 10th among conditions (between Alzheimer’s and other dementias, and drug use disorders). The 95% uncertainty interval indicates that the rank could in fact be as high as 3rd (between low back pain and falls) or as low as 24th (below alcohol use disorders).

Discussion

We estimated that long COVID contributed to approximately 74% of the non-fatal health loss (i.e., YLDs) resulting from COVID-19 infections in the first four months of the Omicron BA.1/BA.2 wave in Australia. The total YLDs for acute and long COVID combined were estimated as comparable to that caused by chronic kidney disease and ischaemic heart disease (Figure 2). The overall COVID-19 disease burden, YLDs plus years of life lost, was estimated at 50 900 DALYs (95% UI 21 000-80 800) over the initial four months of the Omicron wave, the 10th highest cause of DALYs in this four-month period in Australia and approximately 2.4% of all health loss (Figure 3).
A strength of our study is allowing for the lower incidence of long COVID among vaccinated people, and with Omicron versus pre-Omicron variants; to our knowledge, previous studies have not made both of these allowances. Our approach also quantifies long COVID morbidity across multiple patient sub-groups and includes a complete symptom profile rather than treating long COVID as a single outcome.

A recent study by the IHME estimated the proportion of SARS-CoV-2 infections developing long COVID, separated into three symptom groups, for SARS-CoV-2 infections in 2020 and 2021. Their method involved measuring the prevalence of each symptom individually as well as the prevalence of each symptom pair and all three symptoms together. Using this method, then applying odds ratios for long COVID for Omicron compared to pre-Omicron, and vaccination status, our morbidity estimate observing the equivalent symptom groups is within 20% of the resulting estimate from the IHME method (as shown in Supplementary Table 7).

Our approach does not provide an overall estimate of long COVID occurrence rate, given that we define long COVID as a heterogeneous group of symptoms, rather than a single outcome. The utility in our approach is in the use of severity and duration estimates specific to each symptom, to more accurately estimate the morbidity attributed to long COVID in a population. The use of single health states, such as ‘post-acute consequences’ (as currently recommended by the European Burden of Disease Network) assumes that the average long COVID sufferer has all these symptoms included within the applied health state. It also ignores a large proportion of symptoms that have been identified among long COVID sufferers. In Supplementary Table 8, we compare our morbidity estimate with those from other COVID-19 burden of disease studies that have incorporated long COVID. Long
COVID parameters published by the Australian Institute of Health and Welfare (AIHW) \(^{10}\), and adjusted by us to reflect vaccinated, Omicron infections, result in an estimate approximately two-thirds of our finding, likely due to the reduced duration applied (91 days) and the use of a single health state (post-acute consequences; DW=0.219). Three other non-Australian publications, which applied an even shorter duration of 28 days, with a single long COVID health state, produced estimates approximately one-third of our morbidity estimate.\(^{34-36}\) These differences highlight the strength of our paper, which accounts for a wider range of long COVID symptoms, and a longer average duration of symptoms reflecting that documented in the existing literature.\(^{18}\) Our approach also accounts for the difference in risk of long COVID symptoms by acute COVID-19 severity, and age, which these publications have not considered. We postulate that our ‘bottom up’ approach provides a more accurate measure of morbidity resulting from long COVID.

Our study has limitations. Long COVID is an area of rapidly emerging and evolving research, currently characterised by limited high-quality literature. As such, there is a high level of uncertainty in our findings (e.g., our ‘cross-walk’ of pre-Omicron unvaccinated data to Omicron vaccinated cases). Additionally, while the studies utilised for our prevalence estimates were included based on an assessment of bias and methodological quality, prevalence may still be overestimated, due to the likely direction of bias to over-estimation in long COVID studies. A recently published prospective cohort study that controlled for symptoms present prior to COVID-19 diagnosis, found a slightly reduced occurrence of symptoms among COVID-positive cases compared to controls than our base case analysis.\(^{37}\) While these estimates were not able to be used in this paper, given that the study did not stratify data by age and severity of acute infection, as more data becomes available on the prevalence of symptoms among strata Omicron-infected cases our estimates can be updated.
The majority of the overall uncertainty in long COVID morbidity in our study was due to uncertainty in the morbidity severity estimates for symptoms (disability weights (DWs) in our study; as opposed to uncertainty in symptom frequency and duration; Supplementary Figure 1). This is of concern, given that the majority of DWs applied were made by estimation from other health states\(^\text{15}\), and points to the need for research to better quantify the severity of each long COVID symptom.

It is important to note that many people dying of COVID-19 have co-morbidities, so their true YLLs will be less than that measured using standard DALY methods, which assumes those dying of COVID-19 have the mortality rate specified in the reference life table. It is also important to note that our study focuses on health loss from acute and long COVID; SARS-CoV-2 infection has been associated with persistent organ damage, and an increased risk of chronic conditions including Type 2 Diabetes Mellitus and cardiovascular disease, particularly among those who had a severe acute infection.\(^\text{38-42}\) Longer-term research will be required in the future to determine the extent that SARS-CoV-2 infection causes these sequelae, which will lead to the total burden of SARS-CoV-2 being (perhaps considerably) greater than that quantified in this study.

Conclusion

Our approach for estimating the morbidity attributable to long COVID likely provides a more accurate measure of long COVID burden compared to that of existing burden of disease studies. Whilst the prevalence of long COVID symptoms is less now among highly vaccinated populations with Omicron than it was for pre-Omicron variants among unvaccinated populations, long COVID still contributes substantial health loss when summed...
over all infections. Our findings therefore highlight the need to factor in long COVID-related
health loss when making policy decisions.
Ethical approval

This study did not require ethical approval.

Author contributions

Conceptualisation: S.H., J.S., T.B. Literature review: S.H. Formal analysis: S.H., T.B.
Writing – original draft: S.H., J.S., T.B. Writing – review & editing: S.H., J.S., T.B.

Data availability

The data underlying this article will be shared on reasonable request to the

 corresponding author

Funding

None.

Acknowledgements

Expert knowledge was kindly provided by Professor John D. Potter (Massey
University, Wellington, Fred Hutchinson Cancer Research Centre, Seattle,

Conflict of interest

The Population Interventions Unit is expected to receive funding from Moderna Inc.
to conduct research on COVID-19 vaccine effectiveness in Victoria, Australia. No
other conflicts of interest are declared.
References

https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/con

<table>
<thead>
<tr>
<th>Sequelae</th>
<th>DW (95% CI)</th>
<th>Health state/justification</th>
<th>Prevalence among Omicron cases (unvaccinated)</th>
<th>Duration (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Community</td>
<td>Hospitalised</td>
</tr>
<tr>
<td>Adults</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dysosmia</td>
<td>0.01</td>
<td>Health state: hearing loss, mild & presbyopia. Assumed to be equivalent to mild impairment of other senses.</td>
<td>2.6%</td>
<td>7.0%</td>
</tr>
<tr>
<td></td>
<td>(0.004-0.020)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dysgeusia</td>
<td>0.01</td>
<td>Health state: hearing loss, mild & presbyopia. Assumed to be equivalent to mild impairment of other senses.</td>
<td>2.1%</td>
<td>6.9%</td>
</tr>
<tr>
<td></td>
<td>(0.004-0.020)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>0.051</td>
<td>Health state: infectious disease, post-acute consequences (adjusted down for depression and pain). No reasonable estimate exists for fatigue in GBD study 2019, however reasonable estimates exist for muscle/joint pain, and depression. Therefore, DW applied in the present study for depression and muscle/joint pain were subtracted from ‘post-acute consequences’ DW (DW=0.219 [95% CI 0.148-0.308]), which is characterised by weakness/tiredness, depression and body pain.</td>
<td>2.0%</td>
<td>13.1%</td>
</tr>
<tr>
<td></td>
<td>(0.036-0.062)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyspnoea</td>
<td>0.019</td>
<td>Health state: chronic obstructive pulmonary disease (COPD) and other chronic respiratory problems, mild.</td>
<td>1.1%</td>
<td>10.3%</td>
</tr>
<tr>
<td></td>
<td>(0.011-0.033)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chest pain</td>
<td>0.011</td>
<td>Health state: abdominopelvic problem, mild. Assumed to be equivalent to gastroesophageal reflux disease (GERD).</td>
<td>0.5%</td>
<td>4.1%</td>
</tr>
<tr>
<td></td>
<td>(0.005-0.021)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscle weakness</td>
<td>0.004</td>
<td>Health state: anaemia, mild. Mild anaemia characterised by feeling slightly weak/tired.</td>
<td>1.0%</td>
<td>11.3%</td>
</tr>
<tr>
<td></td>
<td>(0.001-0.008)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dizziness</td>
<td>0.032</td>
<td>Health state: vertigo (adjusted to estimate ‘mild’ vertigo health state). Assumed that dizziness is mild form of vertigo – as there is no ‘mild’ vertigo DW, ‘vertigo’ DW (DW=0.113 [95% CI: 0.074-0.158]) was</td>
<td>0.6%</td>
<td>4.8%</td>
</tr>
<tr>
<td></td>
<td>(0.021-0.046)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>Incidence (95% CI)</td>
<td>Health State</td>
<td>4 months</td>
<td>9 months</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------------</td>
<td>---</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Muscle/joint pain</td>
<td>0.023 (0.013-0.037)</td>
<td>Health state: musculoskeletal problems, lower limbs, mild.</td>
<td>0.8%</td>
<td>6.3%</td>
</tr>
<tr>
<td>Headache</td>
<td>0.037 (0.022-0.057)</td>
<td>Health state: headache, tension-type.</td>
<td>0.8%</td>
<td>4.3%</td>
</tr>
<tr>
<td>Numb/tingling limbs</td>
<td>0.023 (0.013-0.037)</td>
<td>Health state: musculoskeletal problems, lower limbs, mild.</td>
<td>0.8%</td>
<td>7.0%</td>
</tr>
<tr>
<td>Concentration difficulty</td>
<td>0.069 (0.046-0.099)</td>
<td>Health state: dementia, mild.</td>
<td>1.9%</td>
<td>10.9%</td>
</tr>
<tr>
<td>Memory impairment</td>
<td>0.069 (0.046-0.099)</td>
<td>Health state: dementia, mild.</td>
<td>1.4%</td>
<td>14.3%</td>
</tr>
<tr>
<td>Insomnia</td>
<td>0.03 (0.018-0.046)</td>
<td>Health state: anxiety disorder, mild. Anxiety disorder is characterised by difficulty sleeping and concentrating.</td>
<td>1.3%</td>
<td>19.4%</td>
</tr>
<tr>
<td>Anxiety</td>
<td>0.03 (0.018-0.046)</td>
<td>Health state: anxiety disorder, mild.</td>
<td>N/A</td>
<td>11.8%</td>
</tr>
<tr>
<td>Depression</td>
<td>0.145 (0.099-0.209)</td>
<td>Health state: major depressive disorder, mild.</td>
<td>N/A</td>
<td>23.2%</td>
</tr>
<tr>
<td>Children</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dysosmia</td>
<td>0.01 (0.004-0.020)</td>
<td>Health state: hearing loss, mild & presbyopia. Assumed to be equivalent to mild impairment of other senses.</td>
<td>2.0%</td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>Prevalence</td>
<td>Duration</td>
<td>Health State</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------</td>
<td>----------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>0.037 (0.022-0.057)</td>
<td>1.3%</td>
<td>3 months</td>
<td></td>
</tr>
<tr>
<td>Health state: headache, tension-type.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye soreness</td>
<td>0.011 (0.005-0.02)</td>
<td>0.5%</td>
<td>3 months</td>
<td></td>
</tr>
<tr>
<td>Health state: presbyopia.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No health states eye pain exist in GBD study 2019, therefore estimated from presbyopia (characterised by mild near vision loss).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sore throat</td>
<td>0.006 (0.002-0.012)</td>
<td>0.5%</td>
<td>3 months</td>
<td></td>
</tr>
<tr>
<td>Health state: infectious disease, acute episode, mild.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assumed to be equivalent to mild upper respiratory infection.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognitive difficulty</td>
<td>0.045 (0.028-0.066)</td>
<td>0.8%</td>
<td>3 months</td>
<td></td>
</tr>
<tr>
<td>Health state: attention deficit hyperactivity disorder (ADHD).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADHD is characterised by difficulty with concentration and memory.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Multiply by 0.55 (on odds scale) to obtain prevalence among vaccinated.
* Duration applied from 1 week post-infection for mild (non-hospitalised) cases, or 4 weeks post-infection for hospitalised cases.
* Symptom prevalence among initially hospitalised COVID-19 cases does not differ between pre-Omicron and Omiicron variants, as outlined in the Methods.
* DW applied is not directly taken from a DW in the 2019 GBD, instead estimated by adjusting existing DWS.
* Symptom prevalence among initially hospitalised COVID-19 cases does not differ between pre-Omicron and Omicron variants, as outlined in the Methods.
* Community and hospitalised sub-groups for cognitive symptoms are achieved through weighting of estimates from mild vs. severe sub-groups as measured by Gasparsen et al. 6
* Children are not separated by severity of acute infection.
* Health states applied were obtained from the 2019 GBD study. 20

CI=Confidence Interval; DW=Disability Weight; GBD=Global Burden of Disease.
Table 2: Long COVID morbidity loss expected for any COVID-19 case (where morbidity loss is the proportionate loss in quality of life over 1 year compared to full health)

<table>
<thead>
<tr>
<th>Population group</th>
<th>Morbidity estimate (95% UI)</th>
<th>Unvaccinated</th>
<th>Vaccinated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-hospitalised</td>
<td>0.0016 (0.0007-0.0026)</td>
<td>0.0009 (0.0004-0.0014)</td>
<td></td>
</tr>
<tr>
<td>Hospitalised</td>
<td>0.0442 (0.0182-0.0701)</td>
<td>0.0186 (0.0077-0.0296)</td>
<td></td>
</tr>
<tr>
<td>Children</td>
<td>0.0003 (0.0001-0.0004)</td>
<td>0.0001 (0.0001-0.0002)</td>
<td></td>
</tr>
</tbody>
</table>

Note the morbidity loss for someone actually with long COVID is much greater than shown here, as these are estimates of expected morbidity loss for any surviving COVID-19 case (where ‘case’ defines those who are symptomatic during the acute infection).

95% CI estimated using +/- 30% standard deviation.

UI= Uncertainty Interval
Figure 1: COVID-19 morbidity resulting directly from Omicron cases during the first 4-months of the Omicron wave, December 10th 2021-April 9th 2022. 95% uncertainty intervals are shown for long COVID YLD estimates, measured with +/- 30% standard deviation. Total morbidity (rightmost bar) is estimated at 7,000 YLDs. YLDs= Years Lived with Disability.
Figure 2: Comparison of top YLD causes in Australia (GBD 2019) to YLDs from COVID-19, during the first 4 months of the Omicron wave (December 10th 2021-April 9th 2022). COVID-19 YLDs, separated as long COVID (blue) and acute COVID-19 (red) includes the future morbidity resulting from long COVID for these cases (long COVID also presented separately). 95% uncertainty intervals are shown for total COVID-19 and long COVID YLD estimates, measured using +/- 30% standard deviation. YLDs for other outcomes are estimated from the 2019 GBD study, and have been divided by 3 to estimate health loss over a 4-month period.20 COPD= Chronic Obstructive Pulmonary Disease; CKD= Chronic Kidney Disease; T2DM= Type 2 Diabetes Mellitus; YLD= Years Lived with Disability.
Figure 3: Comparison of top DALY causes in Australia (GBD 2019) to DALY from long COVID, and total COVID-19, during the first 4 months of the Omicron wave (December 10th 2021-April 9th 2022). COVID-19 DALYs, separated as YLD (purple) and YLL (red), include the future morbidity resulting from long COVID for these cases (long COVID also presented separately). 95% uncertainty intervals are shown for total COVID-19 and long COVID DALYs, measured using +/- 30% standard deviation. DALYs for other outcomes are estimated from the 2019 GBD study, and have been divided by 3 to estimate health loss over a 4-month period.20

COPD= Chronic Obstructive Pulmonary Disease; CKD= Chronic Kidney Disease; DALY= Disability-Adjusted Life Years; T2DM= Type 2 Diabetes Mellitus.