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Abstract 
 
Objective:  
Automatic segmentation of vestibular schwannoma (VS) from routine clinical MRI can improve clinical 
workflow, facilitate treatment decisions, and assist patient management. Previously, excellent automatic 
segmentation results were achieved on datasets of standardised MRI images acquired for stereotactic 
surgery planning. However, diagnostic clinical datasets are generally more diverse and pose a larger 
challenge to automatic segmentation algorithms. Here, we show that automatic segmentation of VS on 
such datasets is also possible with high accuracy. 
 
Methods:  
We acquired a large multi-centre routine clinical (MC-RC) dataset of 168 patients with a single sporadic 
VS who were referred from 10 medical sites and consecutively seen at a single centre. Up to three 
longitudinal MRI exams were selected for each patient. Selection rules based on image modality, 
resolution orientation, and acquisition timepoint were defined to automatically select contrast-enhanced 
T1-weighted (ceT1w) images (n=130) and T2-weighted images (n=379). Manual ground truth 
segmentations were obtained in an iterative process in which segmentations were: 1) produced or 
amended by a specialized company; and 2) reviewed by one of three trained radiologists; and 3) validated 
by an expert team. Inter- and intra-observer reliability was assessed on a subset of 10 ceT1w and 41 T2w 
images. The MC-RC dataset was split randomly into 3 nonoverlapping sets for model training, 
hyperparameter-tuning and testing in proportions 70/10/20%. We applied deep learning to train our VS 
segmentation model, based on convolutional neural networks (CNN) within the nnU-Net framework.  
 
Results:  
Our model achieved excellent Dice scores when evaluated on the MC-RC testing set as well as the public 
testing set. On the MC-RC testing set, Dice scores were 90.8±4.5% for ceT1w, 86.1±11.6% for T2w and 
82.3±18.4% for a combined ceT1w+T2w input.  
 
Conclusions:  
We developed a model for automatic VS segmentation on diverse multi-centre clinical datasets. The 
results show that the performance of the framework is comparable to that of human annotators. In 
contrast, a model trained a publicly available dataset acquired for Gamma Knife stereotactic radiosurgery 
did not perform well on the MC-RC testing set. The application of our model has the potential to greatly 
facilitate the management of patients in clinical practice. Our pre-trained segmentation models are made 
available online. Moreover, we are in the process of making the MC-RC dataset publicly available.  
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2022.08.01.22278193doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.01.22278193


Introduction 
 
Vestibular Schwannoma (VS) is a slow growing, benign tumour that develops in the internal auditory 
canal. It originates from an abnormal multiplication of Schwann cells within the insulating myelin sheath 
of the vestibulo-cochlear nerve. It typically presents with hearing loss but also frequently causes tinnitus 
and balance disturbance. Larger tumours may also cause headaches, cranial neuropathies, ataxia, and 
hydrocephalus. It is estimated that 1 in 1000 people will be diagnosed with a VS in their lifetime1; 
however, improvements in magnetic resonance imaging (MRI) that facilitate the detection of smaller VS 
have led to an increased incidence of VS in recent years.2 Treatment options include conservative 
management, radiosurgery, radiotherapy, and microsurgery for tumours that are growing or exhibit mass 
effect.3  
 
Previous studies have demonstrated that a volumetric measurement is more accurate than linear 
measurements and smaller interval changes in VS size may be detected.4,5 Implementing routine 
volumetric measurements would enable clinicians to more reliably demonstrate tumour growth and 
potentially offer earlier interventions. However, available tools make calculating tumour volume 
assessment a labour-intensive process, prone to variability and subjectivity. Consequently, volumetric 
methods of measuring tumour size have not been widely implemented in routine clinical practice.5 
 
To reduce the workload for clinical staff and free resources, deep learning models have recently been 
developed to automate this time-consuming and repetitive task. Shapey et al.6 and Wang et al.7 recently 
presented a deep learning framework for automatic segmentation of VS that achieved high accuracy on a 
large publicly available dataset of MR images acquired for Gamma Knife (GK) stereotactic radiosurgery.8 
As Shapey et al.6 point out, “the main limitation of [their] study is […] that it was developed using a 
uniform dataset and consequently may not immediately perform as well on images obtained with different 
scan parameters.”6  
 
Such scan parameters include the type of pulse sequence and hardware-specific parameters relating to the 
MRI scanner and radiofrequency coil such as the magnetic field strength and field inhomogeneities as 
well as the use and type of contrast agent. These parameters influence the degree of T1-weighted (T1w) 
and T2-weighted (T2w) contrast, determine the image resolution and field-of-view (FOV) and regulate 
the image noise and other acquisition artifacts. 
 
As there are no official national guidelines for MRI acquisition protocols for VS in the UK imaging 
centres choose and optimize pulse sequences independently from each other so that images from different 
centres are rarely equivalent with scan parameters varying widely. 
 
Although deep-learning models have pushed performance in medical image segmentation to new heights, 
they are particularly sensitive to shifts between the training and testing data.9,10 Thus, a model that is 
trained on data from a single scanner with a fixed set of settings might perform well on images acquired 
with the same scanner/settings but fail on images acquired differently. However, most 3D-segmentation 
models for VS published to date rely on standardized radiosurgery treatment planning data from 
individual institutions with minimal differences in acquisition parameters.6,7,11–13 The advantage of 
radiosurgery data is that high quality manual segmentations, which are required for model training and 
evaluation, are readily available as a part of the treatment plan. The disadvantages are the lack of data 
variability as well as a bias towards tumours with those characteristics which suggest treatment by 
radiosurgery. Consequently, these models are unlikely to be robust in a general clinical setting.  
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In this work we present a deep-learning model for automatic 3D-segmentation that performs well on 
routine clinical scans performed for diagnosis and surveillance that generalizes to a wide range of scan 
parameters. In contrast to previous studies, we acquired a large multi-centre routine clinical (MC-RC) 
longitudinal dataset with images from 10 medical centres. At the time of writing this manuscript, a single 
study similar to ours was published that employed multi-centre data to develop VS segmentation 
models.14 Similarities and differences between both studies are highlighted in the Discussion section of 
our work. Moreover, we devised a multi-stage annotation pipeline that involved a detailed review of each 
VS segmentation, to obtain high-quality manual VS segmentations for all 3D-images. The final manual 
segmentations and images were used to train the model and assess its performance. Our results show that 
the model performs robustly on most images of the MC-RC testing set. In contrast, models trained on 
images of a singular scanner dataset acquired for Gamma Knife (GK) stereotactic radiosurgery perform 
significantly worse on our routine clinical MRI dataset.  
 

Methods 
 
Ethics statement 
This study was approved by the NHS Health Research Authority and Research Ethics Committee 
(18/LO/0532). Because patients were selected retrospectively and the MR images were completely 
anonymised before analysis, no informed consent was required for the study. 
 
Multi-Centre Routine Clinical (MC-RC) dataset 
Study population 
This study included adult patients, diagnosed with a unilateral sporadic VS and seen consecutively in the 
skull base clinic at the National Hospital of Neurology and Neurosurgery, London UK, over an 
approximate two period from April 2012–May 2014. All adult patients aged 18 years and above with a 
single unilateral VS were eligible for inclusion in the study, including patients who had previously 
undergone previous surgical or radiation treatment. Patients with Neurofibromatosis type 2 (NF2) were 
excluded. All patients had a minimum 5-year surveillance period.  
 
Uncurated dataset 
Imaging data from 168 patients referred to the single centre from 10 medical sites with dates of imaging 
ranging between February 2006 and September 2019 were screened for the study. The median number of 
timepoints at which each patient underwent an MRI examination was 4 (interquartile range (IQR) 3-7), 
and the median number of MRI sequences acquired per session was 7 (IQR 4-9). The complete uncurated 
image dataset comprised MRI sessions from 868 timepoints with 5805 MRI scans. 
 
Automatic image selection 
To select the images most suitable for VS delineation and volumetry, an automatic selection pipeline was 
employed (Figure 1). For each patient, images from at most 3 timepoints were included in the final 
dataset to limit the number of manual segmentations required. If more than 3 timepoints were available 
the first, last, and the point closest to the middle were included, while data from all other timepoints were 
discarded. Consequently, initial diagnostic as well as post-operative images were included in the final 
dataset. Subsequently, all images with a slice thickness of more than 3.9mm were discarded since such 
images tend to be unsuitable for volumetry. Finally, at each of the remaining timepoints, images were 
selected subject to the following selection rules which were designed to automatically select the most 
suitable MRI scans for manual segmentation. 
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1) If a high-resolution contrast enhanced T1 (ceT1w) image was available, the image was selected. High-
resolution was defined as a voxel spacing of less than 1mm in the three directions of the voxel grid. (19 
cases) 
2) If a low-resolution (defined as not high-resolution) ceT1w image and a high-resolution T2w image 
(hrT2w) were available, both were selected. The low-resolution ceT1w image was selected with 
preference for axial orientation. (63 cases) 
3) If a low-resolution ceT1w image was available, but no hrT2w image, the low-resolution ceT1w image 
was selected. (48 cases) 
4) If no ceT1w image was available, a T2w image was selected with preference for high-resolution. (316 
cases) 
 
Finally, for cases where multiple images of the same modality passed the selection process, the image 
with the smallest average voxel spacing was chosen.  
 
 

 
Figure 1: Pipeline for data curation, iterative generation of manual vestibular schwannoma ground truth 
segmentations, and review of annotated multi-centre clinical (MC-RC) dataset. Focus was placed on the 
accuracy of segmentation edges, the brain/tumour interface, tumour within the internal acoustic meatus, 
the exclusion of obvious neurovascular structures from the segmentation, and for post-operative images 
the exclusion of scar tissue and fat. All segmentations were created, edited, and reviewed using the 
segmentation tool ITK-SNAP. 
 
 
Exclusion of imaging data 
Subsequently, during the manual annotation process, 39 timepoints were excluded either because parts of 
the tumour were outside the FOV (n=25), or because a different tumour type (meningioma) was identified 
instead of a VS (n=2). Post-operative images in which no residual tumour could be identified (n=12) were 
excluded from the MC-RC dataset, because the corresponding ground truth segmentations without 
foreground pixels complicate the model training and evaluation in terms of Dice Score Coefficient (DSC). 
However, model performance on these images was considered in a separate evaluation. 
 
Demographic data 
The final MC-RC dataset included 165 patients (males/females 73:92; median age 58 years, IQR 49–67 
years). 9 patients had imaging data from a single timepoint, 31 patients from two timepoints, and 125 
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patients from three timepoints, resulting in a total of 446 timepoints and 509 3D-images. The average 
time between the first two timepoints was 2.4±1.6 years and between the first and third timepoint 4.9±2.7 
years. With respect to the image modality, 67 timepoints included only a ceT1w image, 315 timepoints 
only a T2w image, and 64 timepoints included both. The ceT1w images were composed of 19 high and 
111 low resolution images, while the T2w images comprised 364 high and 15 low resolution images. 
 
Scanner/acquisition settings 
Out of 446 MRI exams, 213 were acquired on a SIEMENS, 116 on a Philips, 116 on a General Electrics, 
and 1 on a Hitachi MRI scanner. The magnetic field strength was 1.5T for 328 exams, 3.0T for 83 exams, 
1.0 T for 34 exams and 1.16T for 1 exam. Figure 2 shows the distributions of slice thickness and voxel 
volume and the intensity distribution of the dataset in comparison to a Gamma-Knife dataset acquired for 
stereotactic radiosurgery (described in detail below). 
 
 

 
Figure 2: Comparison of multi-centre clinical (MC-RC) and single-centre Gamma Knife (SC-GK) 
datasets. The violin plots visualize the distribution of slice thickness (A) and image resolution in terms of 
voxel volume (B) across all ceT1w and T2w images. Parameter values of the MC-RC dataset vary 
significantly, while parameters of the SC-GK dataset are fixed to a small range of values. (C) compares 
the normalized voxel intensity distributions of the whole image and the voxels belonging to the vestibular 
schwannoma (VS). All intensities were normalized by the standard-deviation of the whole image. Images 
of the SC-GK dataset are similar to each other, leading to more pronounced peaks, while the larger 
variability in the MC-RC dataset leads to a larger spread of intensity values.  
 
 
Production of ground truth segmentations 
A multi-stage manual annotation pipeline (Figure 1) was designed to obtain high quality ground truth 
segmentations. The heart of the pipeline comprised an iterative process in which annotations were 
gradually improved and reviewed at each iteration.  
Initial segmentations for each tumour in the remaining dataset were produced by a technician at a 
company specialized in providing brain measurement services based on MRI scans 
(Neuromorphometrics, Somerville, Massachusetts, USA) according to our specified guidelines. Capping 
cysts were included in the segmentation. If a timepoint included both ceT1w and T2w image, the 
segmentation was performed on the higher resolution image and additional visual assessment of the other 
image.  
Subsequently, each segmentation was reviewed by one of three trained radiologists (MI, AV, EM) who 
either accepted the segmentation or provided suggestions for improvement in the form of written 
comments. Alternatively, reviewers had the option to exclude scans that did not fulfil inclusion criteria or 
refer ambiguous cases to an expert team.  
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During each iteration, Neuromorphometrics improved segmentations based on the reviewer feedback 
until each segmentation was accepted, or the corresponding image excluded from the dataset. Finally, a 
subset of segmentations that had either been flagged by the reviewers as problematic, or had not been 
accepted after 5 iterations, was reviewed and jointly annotated by the team of experts including two 
consultant neuroradiologists (SC + ST) and a consultant neurosurgeon (JS).  
 
Inter- and intra-observer reliability 
Inter- and intra-observer reliability was assessed on a subset of 10 ceT1w (5 high and 5 low resolution) 
and 41 T2w images (39 high and 2 low resolution). For intra-observer reliability assessment, 2 sets of 
segmentations were provided by Neuromorphometrics at two timepoints, approximately 5 months apart. 
The first set of segmentations was reviewed according to the described iterative process, while the second 
set produced at the end of the learning curve for the technician was not reviewed. Thus, the measured 
intra-observer reliability reflects the annotators capability to recreate the first set of validated annotations. 
 
For inter-observer reliability, the first set of validated segmentations provided by Neuromorphometrics 
and independent, unreviewed segmentations generated by the three reviewers (trained radiologists) were 
compared. For each pair of annotators and for both modalities, the mean DSC over all images in the 
subset was calculated and the averaged results reported.  
 
Single-Centre Gamma Knife (SC-GK) dataset 
This dataset was chosen as an example of a GK dataset acquired on a single scanner with little variation 
in sequence parameters. It enables a comparison of models trained on this dataset with models trained on 
our MC-RC dataset. The SC-GK dataset is a publicly available collection15,16 of 484 labelled MR image 
sets of 242 consecutive patients with a unilateral VS undergoing GK Stereotactic Radiosurgery. 51 
patients had previously undergone surgery. Images were acquired with a 1.5T MRI scanner (Avanto 
Siemens Healthineers). For further details we refer to the dataset publication.20 
 
Model training and testing 
Training 
All models were trained and evaluated with nnU-Net, a framework for biomedical image segmentation 
that yields state-of-the-art results for a wide range of public datasets used in international biomedical 
segmentation competitions.17 Based on the training set, the framework automatically determines the 
architecture of a 3D-U-Net, a well-established type of Convolutional Neural Network (CNN) in the field 
of medical image segmentation.18  
 
A five-fold cross-validation strategy was applied for model training, resulting in five networks, each 
trained on a slightly different subset of the training data. For inference, a model ensemble was used by 
averaging the outputs of the five networks prior to generating the segmentation map via an argmax 
operation. The segmentation networks were trained for 1000 epochs where one epoch is defined as an 
iteration over 250 mini-batches. The mini-batch size was 2. The optimizer was stochastic gradient descent 
with Nesterov momentum (μ = 0.99). The initial learning rate of 0.01 was decayed during training 
according to the “poly” learning rate policy.19 The loss function was the sum of cross-entropy and Dice 
loss.20 For training scripts and the full list of hyperparameters we refer to the publicly available nnU-Net 
source code. (https://github.com/MIC-DKFZ/nnUNet) 
 
Evaluation 
For each of the datasets (MC-RC and SC-GK), three models were trained for the different clinical 
scenarios in which either only a ceT1w or T2w image, or both modalities are available (ceT1w+T2w). 
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For each scenario, the available images were split in a ratio 70:10:20 for training, hyperparameter 
optimization and testing. Each model’s performance was evaluated on the corresponding testing sets of 
both datasets. The sample sizes for each experiment are shown in Table 1. The trained segmentation 
models, example images, and an inference script were made available online.21 
 
Evaluation metrics 
The main metric applied to assess and compare the models’ segmentation performances was the 
commonly reported Dice score coefficient, which is the recommended evaluation metric for semantic 
segmentation.22 It is defined as: 
 

DSC =
2∑ 𝑆!𝐺!!

∑ 𝑆!! +∑ 𝑆!!
 

 
where 𝑆 and 𝐺 represent the binary segmentation masks of model prediction and ground truth 
segmentation, respectively. The DSC ranges from 0 (no overlap between model prediction and ground 
truth) to 1 (perfect overlap).  
 
Additionally, we report the following metrics: Average Symmetric Surface Distance (ASSD), undirected 
Hausdorff distance (HD), Relative absolute Volume Error (RVE), and distance between the Centres of 
Mass (COM). 
 
Post-operative cases without residual tumour 
Post-operative cases tend to be the most difficult to segment since the residual tumour is often small, and 
obscured by scar tissue, fat, and an accumulation of CSF. In cases where no residual tumour is present, 
the DSC is less meaningful. For example, the classification of a single voxel (or more) as a voxel 
belonging to the tumour would lead to a DSC of 0. Moreover, the other metrics described above are not 
defined for cases without residual tumour. Therefore, we examined the performance of our model on 
these cases in a separate evaluation by reporting whether residual tumour was predicted. 
 
Results 
Exemplary segmentation results generated by the deep learning models trained on the different input 
modalities of the MC-RC dataset are shown in Figure 3. The selected example cases have DSCs that are 
close to the median DSC achieved on the respective testing sets.  
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Figure 3: Exemplary segmentation results generated with the 3 models trained on the multi-centre 
clinical (MC-RC) training sets. Predictions in A) were obtained with the ceT1wmodel, predictions in B) 
with the T2w model and predictions in C) with the ceT1w+T2w model. Each example shows axial, 
coronal, and sagittal views of the full MRI image and magnified images of the tumour region. The 
magnified region is indicated by a red bounding box. Dice scores coefficients were 90.1%, 90.3%, and 
83.6% respectively, which is close to the median Dice score coefficient achieved by each model on the 
MC-RC testing set.  
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Due to the reduced contrast between tumour and surrounding tissues, tumour boundaries are less 
pronounced and can be more ambiguous in T2w images than in ceT1w images. This is reflected in the 
measured inter- and intra-observer reliability which was higher for ceT1w images than for T2w images. 
The average DSC between two annotators was 88.1±3.4% (minimum: 87.5±4.3%, maximum: 89.1±3.4%) 
when the segmentation was performed on ceT1w images and 84.5±7.8 (minimum: 82.5±13.9%, 
maximum: 85.8±7.9%) when performed on T2w. Similarly, intra-observer reliability was higher for 
ceT1w (87.8±4.4%) than for T2w (84.4±11.5%).  
 
Mean DSCs achieved by deep learning models on MC-RC and SC-GK testing sets are presented in Table 
1. The main result of this paper is that the models which were trained on our MC-RC training sets 
performed well on both the MC-RC and the SC-GK testing sets. On both testing sets, the average DSCs 
were comparable (MC-RC) or exceeded (SC-GK) the DSCs of our inter- and intra-observer experiments. 
In contrast, the models trained on the SC-GK training sets performed well only on the SC-GK testing sets 
but poorly on the MC-RC testing sets. This highlights that variability in the training data is paramount to 
obtaining robust segmentation results in a clinical setting.  
 
 

model 
training 
dataset 

testing set input 
modality 

split sample sizes 
training/optimiza
tion/testing 

DSC [%] 

MC-RC 

MC-RC 
ceT1w 47 / 7 / 13 90.8 ± 4.5 
T2w 261 / 43 / 75 86.1 ± 11.6 
ceT1w+T2w 44 / 7 / 12 82.3 ± 18.4 

SC-GK 
ceT1w 47 / 7 / 46 91.0 ± 2.6 
T2w 261 / 43 / 46 89.6 ± 4.1 
ceT1w+T2w 44 / 7 / 46 89.9 ± 5.8 

SC-GK 

MC-RC 
ceT1w 176 / 20 / 13 67.1 ± 37.4 
T2w 176 / 20 / 75 48.5 ± 37.9 
ceT1w+T2w 176 / 20 / 12 49.3 ± 37.1 

SC-GK 
ceT1w 176 / 20 / 46 95.1 ± 2.2 
T2w 176 / 20 / 46 92.1 ± 3.1 
ceT1w+T2w 176 / 20 / 46 95.2 ± 2.2 

Table 1: Dice score coefficients (DSC) achieved by deep-learning models  
Dice score coefficients (DSC) achieved by deep-learning models trained on multi-centre clinical (MC-
RC) and single-centre Gamma Knife (SC-GK) training sets and evaluated on the MC-RC and SC-GK 
testing sets. The DSC values correspond to the mean DSC over all images in the testing sets, and the 
errors correspond to the standard deviation. A boxplot with these results is shown in Figure 4. Moreover, 
the split sample sizes for training sets, hyperparameter optimization sets and testing sets for each 
experiment are shown. For a fair comparison between models trained on MC-RC data and models trained 
on SC-GK data of the same input modality, the respective testing sets were comprised of the same 
images.   
 
 
The spread of DSCs is shown in the box and whisker plots of Figure 4. Similar to the results for inter- and 
intra-observer reliability, performance on ceT1w images was generally better than on T2w.  
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Figure 4: Dice score coefficients achieved by deep learning models on multi-centre clinical (MC-RC) 
and single-centre Gamma Knife (SC-GK) datasets. The x-axis indicates on which testing set the models 
were evaluated. The centre vertical line indicates the median and the green triangle indicates the mean. 
The boxes extend from the lower quartile Q1 to the upper quartile Q3, the whiskers extend from 𝑄" −
1.5(𝑄# − 𝑄") to 𝑄# + 1.5(𝑄# − 𝑄"). Data beyond the whiskers are considered outliers and shown as 
black diamonds.  
 
 
When evaluated on the MC-RC testing set, the ceT1w+T2w model trained on the MC-RC training set 
performed worse than the models trained separately on each modality. This is likely due to the small 
training set available for the ceT1w+T2w model (Table 1) and the presence of a tumour with a large cyst 
in the test set which the ceT1w+T2w model did not include in the segmentation (Figure 5c). Although the 
models trained on the MC-RC training sets generated some outliers there was always a partial overlap 
between ground truth and segmentation (DSC > 0) and the tumours were never missed completely. The 
worst cases of each of these models are addressed in the Discussion section. In contrast, the few outliers 
generated by models trained on the SC-GK training set on the SC-GK testing set have high DSC (>80%) 
but the same models lead to several complete misses (DSC = 0) on the MC-RC testing sets.  
 
Post-operative cases without residual tumour were assessed separately. The ceT1w model correctly 
predicted no residual tumour in 6 out of 7 cases. In one case a small tumour residual of 2.5 mm3 was 
predicted. The T2w model correctly predicted no residual tumour in 6 out of 9 cases, while predicting 
volumes of 4.8 mm3, 8.1 mm3 and 30.8 mm3 for the remaining cases. The ceT1w+T2w model correctly 
predicted no residual in 2 out of 4 cases, while predicting volumes of 0.7 mm3 and 49.4 mm3 for the 
remaining cases. 
 
Medians and IQRs of Dice scores and other commonly reported metrics for segmentation tasks are 
reported in Table 2. 
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model 
training 
dataset 

testing 
set 

input 
modality DSC [%] ASSD 

[mm] RVE [%] HD [mm] COM 
[mm] 

MC-RC 

MC-RC 
ceT1w 91.1 ± 3.6 0.2 ± 0.3 5.8 ± 2.8 1.7 ± 2.2 0.2 ± 0.1 
T2w 89.4 ± 7.4 0.3 ± 0.2 6.9 ± 12.9 2.4 ± 2.1 0.3 ± 0.4 
ceT1w+T2w 88.6 ± 7.1 0.4 ± 0.2 12.1 ± 8.2 2.6 ± 2.2 0.5 ± 0.6 

SC-GK 
ceT1w 91.6 ± 4.0 0.2 ± 0.1 15.6 ± 10.9 2.0 ± 1.4 0.2 ± 0.2 
T2w 90.5 ± 5.1 0.3 ± 0.2 7.1 ± 10.4 2.5 ± 1.9 0.4 ± 0.4 
ceT1w+T2w 91.4 ± 4.0 0.3 ± 0.2 6.1 ± 9.8 2.5 ± 2.8 0.4 ± 0.3 

SC-GK 

MC-RC 
ceT1w 88.2 ± 24.8 0.4 ± 0.4 19.6 ± 33.2 3.1 ± 5.1 0.4 ± 1.1 
T2w 66.5 ± 81.6 1.1 ± 59.9 32.3 ± 85.4 9.6 ± 69.2 1.9 ± 64.5 
ceT1w+T2w 59.1 ± 83.5 0.8 ± 15.2 62.8 ± 57.5 4.2 ± 21.9 1.3 ± 21.4 

SC-GK 
ceT1w 95.4 ± 3.0 0.1 ± 0.1 4.2 ± 5.3 1.5 ± 0.4 0.2 ± 0.2 
T2w 92.8 ± 3.4 0.2 ± 0.2 5.7 ± 8.0 2.0 ± 1.3 0.3 ± 0.3 
ceT1w+T2w 95.6 ± 3.2 0.1 ± 0.1 4.8 ± 5.1 1.5 ± 0.4 0.2 ± 0.2 

Table 2: Commonly reported segmentation metrics.  
The values represent the median and interquartile range of all images in the testing sets. The metrics are 
Dice score coefficient (DSC), Average Symmetric Surface Distance (ASSD), Relative Absolute Volume 
Error (RVE), undirected Hausdorff distance (HD), and distance between the centres of mass (COM). 
 
 

Discussion 
 
Summary of Contributions 
For an automatic VS segmentation model to be useful in a routine clinical setting, accurate and reliable 
performance irrespective of the set of acquisition parameters is essential. In this work we developed a 
model for automatic VS segmentation whose application is not limited to MRI images from a specific 
scanner and acquisition protocol. Rather, by collecting a large multi-centre dataset and providing labour-
intensive high-quality annotations it was possible to train and evaluate a model that generalizes well 
under a wide range of settings. Specifically, the generated automatic segmentations had average DSCs 
comparable to those of human annotators as measured by inter- and intra-observer experiments. 
Therefore, this work represents a key step toward the incorporation of automated segmentation algorithms 
in the clinical workflow and management of VS patients. 
 
For example, based on the model segmentation, automatic surveillance of the patient’s tumour growth 
through longitudinal scans can be performed.23 Currently, tumour size is assessed by determination of the 
maximum extrameatal linear tumour dimension, although several studies have shown that tumour volume 
is a more reliable and accurate metric to measure tumour size.5,24–26 Based on the model’s segmentation 
the automatic calculation of the tumour volume is a simple task. Moreover, our model could be used to 
generalize a recent method for automatic classification of VS according to the Koos scale which requires 
accurate tumour segmentations as an initial step.27,28 Finally, the model could be used as the initialization 
step of an interactive segmentation approach.29,30  
 
A study similar to ours was published at the time of writing this manuscript. The authors employ ceT1w 
and T2w imaging data from 37 different centres.14 In contrast to our study, no longitudinal imaging data 
but only one time point per patient were considered. Furthermore, all post-operative images were 
excluded from the model training and analysis. Residual tumour tissue is often difficult to segment, 
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however, for post-operative surveillance and detection of tumour recurrence, the inclusion of these cases 
is essential. A comparison of segmentation accuracy in terms of DSC is presented in Table 3. 
 
Comparison with state-of-the-art 
Like the model presented here, state-of-the-art methods for VS segmentation employ CNNs based on a U-
Net architecture. In comparison with these methods the average DSCs achieved on the MC-RC testing set 
are slightly lower (Table 3) which was expected due to the increased variability of the MC-RC dataset 
compared to the relatively homogenous GK datasets used in the respective studies. This interpretation is 
underlined by the reduced inter-observer reliability (DSC= 88.1±3.4% on ceT1w images and 84.5±7.8 on 
T2w images) compared to the inter-observer reliability reported on the SC-GK dataset (DSC=93.82±3.08 
based on ceT1w and T2w images).6 For ceT1w+T2w input, another contributing factor is the relatively 
small number of available cases (Table 1).  
 
 

reference dataset input modality 
ceT1w T2w ceT1w+T2w 

Shapey et al. 6 Gamma Knife 93.4 ± 4.0 88.3 ± 3.9 93.7 ± 2.8 
Shapey et al. 15  Gamma Knife 94.5 ± 2.2 90.7 ± 3.6 - 
Wang et al. 7 Gamma Knife - 87.3 ± 4.9 - 
Lee et al. 12 Gamma Knife - - 90 ± 5 

Neve et al. 14 Multi-Centre 
(pre-operative) 92 ± 5 87 ± 6 - 

This work Multi-Centre 
(MC-RC) 90.8 ± 4.5 86.1 ± 11.6 82.3 ± 18.4 

Table 3: Comparison with state-of-the-art 
Comparison with state-of-the-art results in terms of mean Dice score coefficients and standard deviation. 
Prior results are based on data extracted from treatment plans for Gamma Knife stereotactic radiosurgery. 
Another study employs a multi-centre dataset with pre-operative images.  
 
 
Worst cases 
Figure 5 shows the worst model prediction for each of the three inputs. While the worst ceT1w prediction 
(Figure 5A) has an acceptable DSC of 78.0% it misses to include parts of the tumour with lower contrast 
agent uptake in the inferior slices. The worst T2w prediction (Figure 5B) was generated in a post-
operative case (resection of VS with retrosigmoid approach) with small intrameatal residual. The 
increased signal of cerebrospinal fluid in the former tumour cavity makes the detection of residuals 
difficult. The worst ceT1w+T2w prediction (Figure 5C) delineates the solid component of the tumour 
accurately but misses the large cystic component. It is likely that the small training set available for 
ceT1w+T2w input did not contain a sufficiently large number of cystic tumours to train the model with 
respect to their inclusion.  
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Figure 5: Comparison of worst model predictions for each input modality with the manual segmentation 
ground truth. The models were trained on the multi-centre clinical dataset using ceT1w images (A), T2w 
images (B), or their combination ceT1w+T2w (C). Each example shows an axial slice of the full MRI 
image and magnified images of the tumour region. The magnified region is indicated by a red bounding 
box. Dice scores were 78.0%, 10.9%, and 22.7% respectively. 
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Post-operative cases without residual tumour 
Cases without residual tumour are edge cases that can be particularly challenging for segmentation 
algorithms. While our models correctly predicted no residual tumour in 14 out of 20 cases, small residuals 
were predicted in the remaining cases. A frequently applied strategy to improve model performance is to 
remove segments below a fixed volume threshold.31 For example, a reasonable volume threshold can be 
based on an assumed detection limit for VS in routine clinical MRI of 2mm, which corresponds to a cubic 
volume of 8mm3. In comparison, the smallest predicted volume on the MC-RC dataset was 30mm3. 
Application of this strategy improves the number of correct predictions to 17 out of 20 cases without 
affecting the other results presented above.  
 
Limitations and future work 
While the dataset acquired in this work is among the first large multi-centre datasets for VS segmentation, 
sample sizes for ceT1w and ceT1w+T2w images were small compared to T2w. This is because the slice 
thickness of the majority of ceT1w images in the uncurated dataset exceeded the threshold of the 
inclusion criterion (3.9mm). On such images the annotation of small tumours is difficult and generally not 
sufficiently accurate for volumetric measurements. We expect that segmentation performance could be 
further improved by increasing the number of ceT1w images in the dataset.  
 
Furthermore, since this study focuses on sporadic unilateral VS, bilateral tumours from patients with the 
hereditary condition NF2 were excluded. Due to the simultaneous presence of multiple schwannomas and 
meningiomas, the segmentation task is disproportionately more difficult. In the future, we plan to 
integrate NF2 cases into the model development.  
 
Finally, we aim to apply the model for the automatic generation of case reports for multidisciplinary team 
meetings (MDM). The reports will include multiple automatically generated views of the tumour and the 
model segmentation and frequently reported tumour measures, such as volume and extrameatal 
dimensions. We will assess how the reports might facilitate, on the one hand, MDM preparation, and on 
the other hand, the treatment decision process during the meeting itself. 
 
Conclusion 
We developed a model for automatic VS segmentation for diverse clinical images acquired at different 
medical centres with a wide range of scan protocols and parameters. In clinical practice, the application of 
this model has the to demonstrate tumour growth more accurately and efficiently, hence facilitating the 
management of patients. 
 
Acknowledgements 
The authors would like to thank Dr Andrew Worth and Gregory Millington for their contributions to the 
generation of the segmentation ground truth.  
 
Disclosures: 
This work was supported by Wellcome Trust (203145Z/16/Z, 203148/Z/16/Z, WT106882), EPSRC 
(NS/A000050/1, NS/A000049/1) and MRC (MC/PC/180520) funding. Additional funding was provided 
by Medtronic. TV is also supported by a Medtronic/Royal Academy of Engineering Research Chair 
(RCSRF1819/7/34). SO is co-founder and shareholder of BrainMiner Ltd, UK. 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2022.08.01.22278193doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.01.22278193


References 
 
1.  Marinelli JP, Lohse CM, Carlson ML. Incidence of intralabyrinthine schwannoma: A population-

based study within the United States. Otol Neurotol. 2018;39(9):1191-1194. 
doi:10.1097/MAO.0000000000001875 

2.  Stangerup SE, Caye-Thomasen P, Tos M, Thomsen J. The natural history of vestibular 
schwannoma. Otol Neurotol. 2006;27(4):547-552. doi:10.1097/00129492-200606000-00018 

3.  Carlson ML, Habermann EB, Wagie AE, et al. The Changing Landscape of Vestibular 
Schwannoma Management in the United States - A Shift Toward Conservatism. In: 
Otolaryngology - Head and Neck Surgery (United States). Vol 153. SAGE PublicationsSage CA: 
Los Angeles, CA; 2015:440-446. doi:10.1177/0194599815590105 

4.  Varughese JK, Breivik CN, Wentzel-Larsen T, Lund-Johansen M. Growth of untreated vestibular 
schwannoma: A prospective study - Clinical article. J Neurosurg. 2012;116(4):706-712. 
doi:10.3171/2011.12.JNS111662 

5.  MacKeith S, Das T, Graves M, et al. A comparison of semi-automated volumetric vs linear 
measurement of small vestibular schwannomas. Eur Arch Oto-Rhino-Laryngology. 
2018;275(4):867-874. doi:10.1007/s00405-018-4865-z 

6.  Shapey J, Wang G, Dorent R, et al. An artificial intelligence framework for automatic 
segmentation and volumetry of vestibular schwannomas from contrast-enhanced T1-weighted and 
high-resolution T2-weighted MRI. J Neurosurg. 2021;134(1):171-179. 
doi:10.3171/2019.9.JNS191949 

7.  Wang G, Shapey J, Li W, et al. Automatic Segmentation of Vestibular Schwannoma from T2-
Weighted MRI by Deep Spatial Attention with Hardness-Weighted Loss. Lect Notes Comput Sci 
(including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 2019;11765 LNCS:264-272. 
doi:10.1007/978-3-030-32245-8_30 

8.  Shapey J, Kujawa A, Dorent R, et al. Segmentation of vestibular schwannoma from MRI — An 
open annotated dataset and baseline algorithm. medRxiv. 2021:2021.08.04.21261588. 
https://www.medrxiv.org/content/10.1101/2021.08.04.21261588v1%0Ahttps://www.medrxiv.org/c
ontent/10.1101/2021.08.04.21261588v1.abstract. 

9.  Van Opbroek A, Ikram MA, Vernooij MW, De Bruijne M. Transfer learning improves supervised 
image segmentation across imaging protocols. IEEE Trans Med Imaging. 2015;34(5):1018-1030. 
doi:10.1109/TMI.2014.2366792 

10.  Donahue J, Jia Y, Vinyals O, et al. Decaf: A deep convolutional activation feature for generic 
visual recognition. In: International Conference on Machine Learning. ; 2014:647-655. 

11.  Shapey J, Kujawa A, Dorent R, et al. Segmentation of vestibular schwannoma from MRI, an open 
annotated dataset and baseline algorithm. Sci Data 2021 81. 2021;8(1):1-6. doi:10.1038/s41597-
021-01064-w 

12.  Lee C, Lee W-K, Wu C-C, et al. Applying artificial intelligence to longitudinal imaging analysis of 
vestibular schwannoma following radiosurgery. Sci Rep. 2021;11(1):3106. doi:10.1038/s41598-
021-82665-8 

13.  Dorent R, Kujawa A, Ivory M, et al. CrossMoDA 2021 challenge: Benchmark of Cross-Modality 
Domain Adaptation techniques for Vestibular Schwnannoma and Cochlea Segmentation. arXiv 
Prepr arXiv220102831. 2022. 

14.  Neve OM, Chen Y, Tao Q, et al. Fully Automated 3D Vestibular Schwannoma Segmentation with 
and without Gadolinium Contrast: A Multicenter, Multivendor Study. Radiol Artif Intell. June 
2022. doi:10.1148/ryai.210300 

15.  Shapey J, Kujawa A, Dorent R, et al. Segmentation of vestibular schwannoma from MRI, an open 
annotated dataset and baseline algorithm. Sci Data. 2021;8(1):286. doi:10.1038/s41597-021-
01064-w 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2022.08.01.22278193doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.01.22278193


16.  Clark K, Vendt B, Smith K, et al. The Cancer Imaging Archive (TCIA): Maintaining and 
Operating a Public Information Repository. J Digit Imaging. 2013;26(6):1045-1057. 
doi:10.1007/s10278-013-9622-7 

17.  Isensee F, Petersen J, Klein A, et al. nnU-Net: Self-adapting Framework for U-Net-Based Medical 
Image Segmentation. Inform aktuell. September 2019:22. doi:10.1007/978-3-658-25326-4_7 

18.  Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image 
segmentation. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in 
Artificial Intelligence and Lecture Notes in Bioinformatics). Vol 9351. Springer, Cham; 2015:234-
241. doi:10.1007/978-3-319-24574-4_28 

19.  Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. DeepLab: Semantic Image 
Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. 
IEEE Trans Pattern Anal Mach Intell. 2018;40(4):834-848. doi:10.1109/TPAMI.2017.2699184 

20.  Drozdzal M, Vorontsov E, Chartrand G, Kadoury S, Pal C. The importance of skip connections in 
biomedical image segmentation. In: Lecture Notes in Computer Science (Including Subseries 
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol 10008 LNCS. 
Springer, Cham; 2016:179-187. doi:10.1007/978-3-319-46976-8_19 

21.  Kujawa A. Deep Learning for Automatic Segmentation of Vestibular Schwannoma: A 
Retrospective Study from Multi-Centre Routine MRI -- Deep learning models. July 2022. 
doi:10.5281/ZENODO.6827679 

22.  Maier-Hein L, Reinke A, Glocker B, et al. Metrics Reloaded: Pitfalls and Recommendations for 
Image Analysis Validation; Metrics Reloaded: Pitfalls and Recommendations for Image Analysis 
Validation.; 2022. https://arxiv.org/pdf/2206.01653.pdf. Accessed July 22, 2022. 

23.  Shapey J, Kujawa A, Dorent R, et al. Artificial Intelligence Opportunities for Vestibular 
Schwannoma Management Using Image Segmentation and Clinical Decision Tools. World 
Neurosurg. 2021;149:269-270. doi:10.1016/j.wneu.2021.03.010 

24.  Walz PC, Bush ML, Robinett Z, Kirsch CFE, Welling DB. Three-dimensional segmented 
volumetric analysis of sporadic vestibular schwannomas: Comparison of segmented and linear 
measurements. Otolaryngol - Head Neck Surg (United States). 2012;147(4):737-743. 
doi:10.1177/0194599812447766 

25.  Tang S, Griffin AS, Waksal JA, et al. Surveillance after resection of vestibular schwannoma: 
Measurement techniques and predictors of growth. Otol Neurotol. 2014;35(7):1271-1276. 
doi:10.1097/MAO.0000000000000459 

26.  Roche PH, Robitail S, Régis J. Two- and three dimensional measures of vestibular schwannomas 
and posterior fossa - Implications for the treatment. Acta Neurochir (Wien). 2007;149(3):267-273. 
doi:10.1007/s00701-006-1093-x 

27.  Kujawa A, Dorent R, Connor S, et al. Automated Koos Classification of Vestibular Schwannoma. 
Front Radiol. 2022;2:4. doi:10.3389/fradi.2022.837191 

28.  Koos WT, Day JD, Matula C, Levy DI. Neurotopographic considerations in the microsurgical 
treatment of small acoustic neurinomas. J Neurosurg. 1998;88(3):506-512. 
doi:10.3171/jns.1998.88.3.0506 

29.  Wang G, Zuluaga MA, Li W, et al. DeepIGeoS: A Deep Interactive Geodesic Framework for 
Medical Image Segmentation. IEEE Trans Pattern Anal Mach Intell. 2019;41(7):1559-1572. 
doi:10.1109/TPAMI.2018.2840695 

30.  Wang G, Li W, Zuluaga MA, et al. Interactive Medical Image Segmentation Using Deep Learning 
with Image-Specific Fine Tuning. IEEE Trans Med Imaging. 2018;37(7):1562-1573. 
doi:10.1109/TMI.2018.2791721 

31.  Antonelli M, Reinke A, Bakas S, et al. The Medical Segmentation Decathlon. Nat Commun. 
2022;13(1):4128. doi:10.1038/s41467-022-30695-9 

 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2022.08.01.22278193doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.01.22278193

