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Abstract 

Genome-wide association studies (GWAS) have increased our understanding of 

Parkinson’s disease (PD) genetics through the identification of common disease-associated 

variants. However, much of the heritability remains unaccounted for and we hypothesized that 

this could be partly explained by epistasis. Here, we developed a genome-wide non-exhaustive 

epistasis screening pipeline called Variant-variant interaction through variable thresholds 

(VARI3) and applied it to diverse PD GWAS cohorts. First, as a discovery cohort, we used 14 

cohorts of European ancestry (14,671 cases and 17,667 controls) to identify candidate variant-

variant interactions. Next, we replicated significant results in a cohort with a predominately 

Latino genetic ancestry (807 cases and 690 controls). We identified 14 significant epistatic 

signals in the discovery stage, with genes showing enrichment in PD-relevant ontologies and 

pathways. Next, we successfully replicated two of the 14 interactions, where the signals were 

located nearby SNCA and within MAPT and WNT3. Finally, we determined that the epistatic 

effect on PD of those variants was similar between populations. In brief, we identified several 

epistatic signals associated with PD and replicated associations despite differences in the genetic 

ancestry between cohorts. We also observed their biological relevance and effect on the 

phenotype using in silico analysis. 

Introduction 

Parkinson’s disease (PD) is a complex neurodegenerative disorder stemming from the 

interaction between genetic and environmental factors 1. Some monogenic causes of PD have 

been identified in familial and early-onset patients, although these account for a small number of 

cases 2,3. The underlying cause of the majority of PD cases, called sporadic PD, is currently 

unknown. However, genome-wide association studies (GWAS) have done a crucial effort in 

helping us to understand the etiology of PD identifying 90 disease-associated common variants 

to date in European populations and 2 additional variants in Asian population, giving light to the 

biological mechanisms and heritable components of the disease 4–7. Nevertheless, GWAS 

identified variants only explain a small proportion, about 1/3, of the total genetic factors 

associated with the disease 8. There are other possible factors accounting for this missing 

heritability such as rare variants, structural variants, and genetic interactions 9, which are known 
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to be challenging to study, both requiring large sample sizes and specialized equipment and 

methods to call/analyze them. Here, we aim to assess the effect of interactions (or epistasis) 

between variants and their association with PD risk 10–12.  

Studies have suggested that epistasis may play a significant role in neurodegenerative 

diseases such as Alzheimer’s Disease (AD) 13,14, therefore we hypothesized that epistasis might 

also play a role in PD. Previous PD epistasis studies have generally only assessed interactions 

between known important variants/genes under specific hypotheses 15,16. Shi et al. 2016 

identified potential epistatic interactions between GBA and LRRK2 that were associated with PD 

risk in a Chinese cohort 15, however, they failed to replicate these findings in an independent 

cohort. Additionally, Fernandez-Santiago et al. 2019 identified potential epistatic interactions 

between SNCA-RPTOR-RPS6KA2 associated with reduced age at onset (AAO) of PD 16.  

In this study, we focused on statistical epistasis, i.e., the departure from additive effects 

of genetic variants with regard to their global contribution to the phenotype measured in the 

population 17,18. We limited our assessment to epistatic interactions that involve two single 

nucleotide polymorphisms (SNPs) that show a statistically significant relevant effect on the 

phenotype when appearing together in a large-scale and unbiased manner 19,20. Studies assessing 

epistasis within model organisms and artificial cohorts have demonstrated that the most 

prominent epistatic effects detected have involved variants with high and similar minor allele 

frequency (MAF > 0.05) 21. We have therefore developed a hypothesis-free pipeline, called 

Variant-variant interaction through variable thresholds (VARI3), to facilitate the interrogation 

and identification of variant-variant interactions at a genome-wide level through the inclusion of 

high MAF SNPs. Here we have successfully applied it to several existing PD GWAS data across 

diverse populations including 14 independent cohorts of European descent from the International 

Parkinson’s Disease Genomics Consortium (IPDGC) 5 and the Latin American Research 

Consortium on the Genetics of PD (LARGE-PD) study 22 with individuals of Latino ancestry. To 

facilitate epistatic analysis for the general public, VARI3 is an available R package that 

automates the selection and analysis of the most promising SNPs to identify and interpret the 

results (https://github.com/alexcis95/VARI3).  
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Materials and methods 

GWAS cohorts used in the study (Genotyping and Quality-Control Analyses) 

We organized our epistasis screen into two stages: using a combined dataset consisting of 

14 IPDGC cohorts as a discovery stage to identify candidate statistically significant variant-

variant interactions and the LARGE-PD cohort as a replication stage (Figure 1). 

 

IPDGC GWAS cohorts 

The IPDGC-GWAS data consisted of 14 independent cohorts, including 14,671 PD cases 

and 17,667 healthy controls. All individuals provided informed consent for participation in 

genetics studies, which were approved by the relevant local ethics committee for each cohort 

used. The cohorts used and their respective sample sizes are shown in Supplementary Table 1. 

We did not include cohorts genotyped on the NeuroX array to ensure good variant coverage 

across cohorts (>85%). Briefly, for sample QC prior to imputation, individuals with low call rate, 

discordance between genetic and reported sex, family relatedness (pi_hat score > 0.125), 

heterozygosity outliers and ancestry outliers were removed. For genotype QC, variants with a 

missingness rate of >5%, MAF�<0.01, exhibiting deviations from Hardy–Weinberg Equilibrium 

(HWE)�<1x10-5 and palindromic SNPs were excluded. Hard call genotypes were obtained using 

plink default value of 0.8 to the variant dosage. Quality control (QC) and genotype imputation 

were previously described5.  

 

LARGE-PD cohort 

A total of 1,497 individuals (807 PD cases and 690 controls) were recruited from 

Uruguay, Peru, Chile, Brazil, and Colombia from 2007 to 2015 as part of the LARGE-PD study 
22. The cohorts used and their respective sample sizes are shown in Supplementary Table 2. All 

participants provided written informed consent according to their respective national 

requirements. Genotyping was performed using the Multi-Ethnic Genotyping Array (MEGA; 

Illumina). For genotype QC, variants with a missingness rate of >5%, exhibiting deviations from 

Hardy–Weinberg Equilibrium (HWE)�<1x10-6 in controls and <1x10-10 in cases. Unaligned, 
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i.e., marks as chromosome 0, duplicated, non-autosomal, and monomorphic SNPs were excluded 

before filtering. More clinical details and QC procedures have previously been described 22.  

Epistasis pipeline and risk interpretation method 

The VARI3 pipeline automates the selection and analysis of the most promising SNPs to 

identify epistasis and consists of two steps (Figure 1). In the first step, we generate a set of 

primary SNPs to include in the binary epistatic association tests. Here, we performed an 

association analysis of all SNPs against the phenotype under an additive model using Plink 

(v1.90b4.4) 23, this analysis in our case included as covariates age at onset, sex, and the principal 

components (PCs) 1-10. To promote the assessment of epistasis, we prioritize all variants with a 

P <10−5 (rather than the accepted genome-wide threshold of P <10−8 for the inclusion of variants 

with higher MAF). This allows us to select SNPs with a superior MAF through the prioritization 

of high MAF variants (MAF >0.05). We next apply Plink-based clumping to obtain a set of 

primary SNPs for the top 100 associated loci. We used a default LD window of 250kb and an r2 

of 0.5 from the index SNP for each locus. In the second step, using the fast epistasis with joint-

effect adjusted test in Plink 24, which is based on the inspection of 3x3 joint genotype count 

tables, we tested the set of primary variants against all variants on a genome-wide basis to search 

for epistatic associations. We used default settings for the fast epistasis with joint-effect run. The 

p-value for the inclusion of variant pairs in the main report was restricted to 0.0001. 

Additionally, we used the default quality controls which exclude interactions observed in fewer 

than five samples, i.e the number of individuals with that particular interaction in 3x3 

contingency tables. Then we annotated variants with ANNOVAR 25 to obtain gene symbols and 

genomic localization. Finally, using chi-square statistics and p-values adjusted by the number of 

tests we obtained the statistically significant variant-variant interactions. The final output is a 

table with the most statistically significant epistatic interaction for each primary variant pair that 

has at least a p-value < 10−5. Moreover, the VARI3 package includes the function TLTO and 

therefore automates the conversion of the two locus ratios from Plink to a graph and a table with 

the odds ratios (ORs) to better understand the epistatic effects in disease. The two locus option in 

Plink generates a file that contains counts and frequencies of the two locus genotypes by cases 

and controls. TLTO uses this file to compute the ORs based on the genotypic OR 26, the odds of 

phenotype (the probability that the phenotype is present compared with the probability that it is 
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absent) in exposed (in a particular genotype combination) vs. non-exposed individuals. Finally, 

TLTO generates a graph and a table that shows the phenotypic effects of each genotype 

combination, i.e., the ORs with 95% confidence intervals (95% CI) for each genotype 

combination. The R package is available at https://github.com/alexcis95/VARI3.  

 
Figure 1. VARI3 pipeline and study design summary. The blue rectangle shows the VARI3 pipeline from 

discovery (IPDGC GWAS) data to final output. The green rectangle shows the steps to evaluate the statistically 

significant epistatic signals detected in discovery cohorts in the replication cohort. 
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Functional enrichment analysis methods 

To functionally characterize the top associated interactions, we carried out loci 

connectivity analyses across gene-expression datasets from GTEX v.8 27, gene-ontologies and 

molecular pathways using FUMA 28, phenotype enrichment using PhenoExam 29, functional 

gene interaction networks using STRING 30, and gene co-expression network analysis using 

CoExp Web 31. SNP lists from significant interactions were extracted for significant eQTL 

associations in PD-relevant tissues (caudate, putamen, nucleus accumbens and substantia nigra) 

in the GTEX v.8 data to obtain significant eQTL genes (eGenes). Significant eGenes were 

analyzed for functional enrichment using FUMA gene2func tool for gene-ontology and pathway 

enrichments from the Molecular Signature Database v.7.0 32; and functional protein interactions 

using STRING with median confidence networks (confidence score >400), multiple testing 

correction was done using the Benjamini-Hochberg FDR method 33. Significant eGenes were 

also analyzed for phenotype enrichment using PhenoExam with Human Phenotype Ontology 

(HPO) terms 34; and gene co-expression network analysis using CoExp Web with GTEX v.7 and 

substantia nigra tissues, multiple testing correction was done using the Bonferroni method 35. 

Results 

Discovery stage in IPDGC GWAS cohorts 

From the combined set of genotypes from the 14 PD GWAS cohorts, we were left with 

7,258,166 variants and 32,338 samples (14,671 PD cases and 17,667 controls) after individual 

and variant level quality controls. Using default settings (Figure 1), we ran VARI3 and detected a 

total of 95 variant-variant interactions, of which 69 were interchromosomal and 26 were 

intrachromosomal (Figure 2, Supplementary Table 3). After multiple testing corrections 

(7.47x106 valid tests), we observed 14 statistically significant intrachromosomal local (less than 

1 mb apart) variant-variant interactions (Table 1), some of which include variants that are nearby 

or within known PD genes and/or GWAS loci such as SNCA and MAPT. 85.71% (12/14) of the 

observed interactions involved variants that individually confer very small increased risk or have 

no effect on PD risk, but when inherited together, result in significantly larger effects on PD risk 
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with 42.86% (6/14) increasing PD risk more than 3-fold. The most prominent of which can be 

seen for the SNPs located at 15:58980985 (ADAM10) and 15:58856033 (LIPC) - individually 

these SNPs had ORs close to 1 (1.14 and 0.99 respectively) but together confer a substantial 

7.42-fold [95% CI = 3.13, 17.58] increase in risk.  

 
Figure 2. Genome wide distribution of SNP-SNP interactions observed across IPDGC GWAS discovery 

cohorts. Circos plot showing the 95 interactions obtained from VARI3 across chromosomes 1-22 from the IPDGC 

GWAS cohorts. Yellow links show non-significant interactions. Blue circles show 300x zoomed-in regions, 

containing red links depicting the 14 significant interactions after Bonferroni correction and their nearby gen
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Effect of interacting SNPs on gene expression and functional 

enrichment analyses of the significant interactions 

To explore functional insights from the 14 genome-wide significant interactions found in 

the discovery stage, we extracted moderate to high LD variants (r2 >0.5) in 1Mb from each of the 

28 interacting SNPs, obtaining 134 variants for further analyses (Supplementary Table 4). 

Using gene eQTL information from GTEx v.8 we found 84 of the 134 variants have significant 

eQTLs in PD-relevant tissues: 51 in the caudate (367 variant-gene pairs), 60 in putamen (322 

variant-gene pairs), 58 in the nucleus accumbens (362 variant-gene pairs), and 37 in the 

substantia nigra (225 variant-gene pairs) (Supplementary Table 5). The identified significant 

eQTLs were seen to target a total of 30 unique nearby genes: 26 in the caudate, 19 in putamen, 

23 in the nucleus accumbens, and 12 in the substantia nigra, including genes within known PD 

GWAS loci (KANSL1, CRHR1 and MAPT) and HLA genes (HLA-DOA, HLA-DRA, HLA-DPB1, 

HLA-DQB2 and HLA-DQA2). 

We next used the 30 eQTL-nominated genes and performed gene ontology, pathway, 

phenotype, and network enrichment analyses to further dissect the interactions’ functional 

connections. Gene ontology analyses showed significant enrichments in categories related to the 

immune system, mostly driven by the HLA genes shown above, and include antigen processing 

and presentation of peptide antigen via MHC class II (GO:0002495), T-cell receptor signaling 

pathway (GO:0050852), and Interferon Gamma signaling pathway (GO:0060333) 

(Supplementary Figure 1). Similarly, the pathway enrichment analysis showed significant 

enrichment in molecular pathways related to the immune system: Asthma (KEGG H00079), 

Intestinal immune network for IGA production (KEGG HSA04672), and Translocation of ZAP-

70 to Immunological synapse (Reactome HSA202430) (Supplementary Figure 2). The 

phenotype enrichment analysis in PhenoExam showed significant enrichment in HPO terms 

associated with PD: Weight loss (HP:0001824), Diplopia (HP:0000651), and Substantia nigra 

gliosis (HP:0011960) (Supplementary Figure 3 and Supplementary Table 6). Additionally, 

the gene co-expression network analysis using CoExp Web with GTEX v.7 and substantia nigra 

tissue showed significant eGene overlap in the green module (p =0.02) (Supplementary Table 

7). We found the following eGenes in the green module: SNCA, SLC2A13 and GPRIN3; the 
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green module is associated with dopaminergic neurons and dopamine transport (p=8.92x10-3). 

Network enrichment analysis in STRING showed significant connections (p <1x10-6) of the HLA 

genes and the MAPT locus, including KANSL1, LRRC37A2, MAPT and CRHR1 

(Supplementary Figure 4). Overall, these results indicate that the significant interacting SNPs 

influence gene expression and are enriched in PD-relevant ontologies, phenotypes, and 

pathways.  

Replication in LARGE-PD cohort 

We tested the 14 significant variant-variant interactions identified in the IPDGC cohorts 

using the LARGE-PD. First, we lifted over the 14 interactions from GRCh37 to GRCh38 using 

the Lift Genome Annotations tool 36 to match the assembly version in the replication cohort. 

Only four of the 14 interacting variants from the discovery stage survived our quality controls in 

the replication dataset, where interactions involving fewer than 5 samples in one of the nine 

possible genotype variant-variant combinations were excluded. Thus, the Bonferroni-adjusted 

threshold in the replication cohort is 1.25x10-2 (0.05/4). We could only replicate two of the 

statistically significant variant-variant interactions (bold letters in Table 1) - the SNCA-SNCA 

(4:90607126 - 4:90610135; p=5.27x10-3) and the MAPT-WNT3 interaction (17:43992943 - 

17:44865439;  p=1.29x10-4). The LINC02210-CRHR1 (p=2.74x10-2) and SLC2A13-SLC2A13 

(p=0.20) interactions did not surpass multiple testing correction.  

Understanding the genotype-specific effect in the variant-variant 

interactions 

We used the two-locus ratio analyses to understand the effect on the phenotype of each 

genotype combination observed in the 14 statistically significant variant-variant interactions that 

we identified in the IPDGC cohorts (discovery). To facilitate the interpretation, the OR and the 

95% CIs for each variant-variant interaction were computed using the TLTO function 

(Supplementary Table 8). We observed that the epistatic signal located within ADAM10 and 

LIPC (15:58980985 - 15:58856033) was the highest risk variant-variant interaction associated 

with PD (C/C-T/T genotype combination; OR [95% CI]=7.42 [3.13, 17.58]) whereas the highest 

protective epistatic signal was located within HLA-DPB1 (6:33050441 - 6:33055501) (G/G-T/C 
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genotype combination; OR [95% CI]=0.68 [0.63, 0.73]). Interestingly, the SNPs at 17:43992943 

(MAPT) and 17:44865439 (WNT3) individually appear to confer reduced risk (OR=0.89 and 0.89 

respectively Table 1) but through epistasis, the effect of the variant-variant interaction on PD 

depends on genotype combinations, different genotype combinations resulted in significantly 

increased PD risk (G/G-G/G combination, OR [95% CI]=1.84 [1.18, 2.89]) or reduced PD risk 

(A/G-G/T combination, OR [95% CI]=0.85 [0.81, 0.90]).  

Focusing on the two statistically significant variant-variant interactions that were 

replicated in the LARGE-PD cohort (Figure 3), we observed similar combined genotype effects 

for the majority of each genotype combination from the epistatic signals between stages. 

Interestingly, at the SNCA-SNCA locus (4:90607126 - 4:90610135), the G/G-T/T genotype 

combination was associated with a higher risk for both the discovery and replication cohorts (OR 

[95% CI]=3.16 [1.35, 8.26] and OR [95% CI]=2.43 [1.61, 3.73] respectively) while the G/G-A/A 

genotype combination was associated with reduced risk in carriers (OR [95% CI]=0.77 [0.74, 

0.81] and OR [95% CI]=0.71 [0.56, 0.91] respectively). For the MAPT and WNT3 interaction 

(17:43992943 - 17:44865439), the G/G-G/G combination was associated with higher risk in both 

discovery and replication cohorts (OR [95% CI]=1.84 [1.19, 2.89] and OR [95% CI]=1.74 [1.24, 

2.46] respectively) while the A/G-G/T genotype combination was associated with reduced risk in 

carriers (OR [95% CI]=0.85 [0.81, 0.90] and OR [95% CI]=0.71 [0.54, 0.95] respectively). 
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Figure 3. Odds ratio of replicated variant-variant interactions of the two locus genotypes.  

A) Replicated interaction located in chromosome 4 by intergenic variants nearby SNCA (Genome Reference 

GRCh37, 4:90607126 - 4:90610135, Pint=5.27x10-3). B) Replicated interaction located in chromosome 17 within 

MAPT and WNT3 (Genome Reference GRCh37, 17:43992943 - 17:44865439, Pint=1.29x10-4). Each bar indicates 

the odds ratio (OR) in the y-axis for each genotype combination from the epistatic signals. Each colour indicates the 

genotype from one SNP and the x-axis indicates the genotype from the other SNP in the epistatic signals. The 

horizontal dash line indicates the OR is equal to 1. The black vertical line defines the 95% confidence interval for 

each genotype combination from the epistatic signals. 
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Discussion 

Here we present the newly developed VARI3 pipeline that performs non-exhaustive 

genome-wide epistasis screens. To demonstrate its utility, we successfully applied this pipeline 

to 14 independent PD datasets from the IPDGC and identified 14 significant epistatic signals 

(Table 1). Next, we evaluated them in the replication stage using a Latino ancestry cohort 

finding two significant interactions in the SNCA locus and within the MAPT and WNT3 loci. 

Functional in silico findings revealed significant enrichment of pathways related to the immune 

system, phenotypes and coexpression modules associated with PD (Supplementary Figure 1-4 

and Supplementary Table 4-7). Finally, we determined that the epistatic effect on PD of those 

variants was similar between populations by showing that risk profiles associated with different 

genotype combinations followed similar patterns (Figure 3 and Supplementary Table 8).  

Epistasis studies at a genome-wide level have been a challenge due to exhaustive 

pairwise testing of millions of variants and reduced genetic power due to the lack of large sample 

sizes. Typically, epistasis studies in human complex neurodegenerative diseases are hypothesis-

driven 13,15,16 to reduce the multiple-testing correction burden resulting from the large number of 

tests conducted in genome-wide scans 14. The number of multiple tests can be reduced using 

different approaches such as looking at genes of interest based on previous biological knowledge 

in AD and PD 13,15. This approach is simplistic and reduces the epistasis complexity by limiting 

the screen to a few SNPs. Another method is to restrict SNP selection to those within relevant 

biological/functional pathways 16. Finally, Wang et al. 2021 limited their genome-wide epistasis 

scan to SNPs that were predicted to be probably damaging (CADD scores ≥15) 14. Although this 

is not an exhaustive search for epistasis interactions, they selected 36,860 SNPs and performed 

~3.92x108 valid tests. Similarly, VARI3 reduces the number of tests to achieve enhanced 

statistical power in our genome-wide epistasis scan by prioritizing SNPs based on high MAF, 

low LD – to ensure the inclusion of independent SNPs – and all variants with a P <10−5 

associated with the disease, selecting 100 primary variants for further analysis. This allowed us 

to identify new local epistasis between variants within known PD loci including SNCA, MAPT 

and CRHR1 15,16. Our results demonstrate that using variant prioritization methods increases the 

power to detect novel genome-wide significant variant-variant interactions in disease-relevant 

genes. 
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Functional insights from the 14 interactions obtained in the discovered stage and their 

high-LD neighboring variants revealed significant enrichment in pathways related to the immune 

system. This finding is in line with Bandres-Ciga et al. 2020 37 who highlighted the immune 

system response as one of the main contributors to PD etiology. From the gene expression 

analyses and the ontology and pathway enrichment analysis, we observe significant results 

driven by the HLA locus, with four variants among the significant interactions observed in the 

discovery stage. Due to the highly complex haplotype structure of the HLA locus, being the most 

gene dense and most polymorphic part of the human genome, multiple studies remove this 

region from the analysis 38–40. However, previous epistatic studies have analyzed this region 

finding significant interactions, determining genetic susceptibility in multiple sclerosis 41, and 

Takayasu arteritis 42. The involvement of the HLA locus in the immune system and their 

association with PD is well documented 43–46. Here we found epistatic interactions between the 

HLA genes HLA-DPB1, HLA-DQA1, and HLA-DQB1 which have been found to have SNPs with 

genome-wide significant associations in the latest PD GWAS meta-analysis 5, Adding further 

evidence to the role that HLA genes and the immune pathways play in PD etiology. 

Replication in an independent cohort is highly recommended in any GWAS study, but 

especially in variant-variant interaction studies due to false-positive results stemming from the 

great magnitude of hypotheses being tested, and false negatives caused by poor statistical power 
47. The majority of epistasis studies do not cover the replication issue which is essential to 

obtaining reliable results 48. To overcome the above, we prioritized high MAF variants across the 

discovery and replication cohorts consisting of 32,338 and 1,497 individuals respectively, in 

order to ensure a high overlap of SNPs between datasets. Using this approach, we replicated two 

variant-variant interactions: one in the SNCA locus (4:90607126 - 4:90610135) and the other 

within MAPT and WNT3 (17:43992943 - 17:44865439). SNCA, MAPT and WNT3 are well-

known PD risk genes, with multiple SNPs identified as risk factors for the disease 49–52. Besides 

highlighting the interactions, the risk interpretation of the variant-variant genotype combinations 

is key in understanding their effect size on the individuals. To the best of our knowledge, no tool 

exists that allows an easy interpretation of the effect sizes obtained from different genotype 

combinations and their impact on the individuals. We here developed TLTO to automate this 

task, where the tool computes the OR for each genotype combination in a 3�×�3�contingency 

table, using cases and controls to produce a graph for easy assessment of the epistatic 
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associations. Our findings with TLTO show that the effect size of individual SNPs is smaller than 

when both variants epistatically interact, which is consistently observed in both discovery and 

replication stages despite having different ancestry compositions. This suggests that the 

European ancestry proportion in the replication cohort could be playing a relevant part in the 

associations observed and that further admixture analysis is needed in order to support this claim.  

Genetic ancestry plays an important role in genetic studies, especially when the genetic 

architecture differs between samples and results obtained from one population may not 

generalize to others 53–56. The detection of epistatic signals could be affected by the possible 

existence of complex higher-order (>2 SNPs) interactions, genetic heterogeneity, and varying 

patterns of genetic architecture 57. Therefore, genetic ancestry differences could also affect these 

factors and mask epistatic signals. We have observed that there are slight differences in the effect 

sizes magnitudes associated with PD of those variant-variant interactions between cohorts, 

showing a stronger effect in the discovery stage that is composed of individuals of European 

ancestry. Recent admixture in Latino populations shows a significant proportion of European 

ancestry, suggesting that the replication results observed in our study could have been affected 

by such ancestry proportion. 

The sample size required to obtain reliable results in epistasis analyses is large and it is 

affected by variant allele frequency, epistatic effect strength, population prevalence and study 

design 58–60. Furthermore, it is worth mentioning that statistical epistasis may not be the same as 

biological epistasis, thus targeted approaches that aim to reduce epistasis screening to a very low 

number of tests have been more suitable due to the lack of larger sample sizes needed for GWAS 

scans 12,47. Although our epistasis study utilizes one of the largest GWAS datasets in PD and we 

prioritized 100 primary SNPs to test for interactions, the sample size is still a limitation. It was 

not possible to test 10 of 14 statistically significant epistatic signals detected in the discovery 

stage in the replication stage because in the latter we could not obtain enough observations of 

genotype combinations for the selected SNPs. To assess the sample size required to replicate all 

14 statistically significant variant-variant interactions, we focused on the rarest epistatic 

genotype combination (DPM3-DAP3, genotype combination G/G-T/T, number of PD cases=18 

and controls=6). Assuming similar genotype distribution between cohorts, we determined that 

4,075 PD cases and 14,722 controls (19,797 individuals) are needed in the replication cohort. 

With regard to how these epistatic signals affect PD risk prediction, our results suggest that when 
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inherited together, those variant-variant interactions have larger effects on PD risk. We observed 

that 42.86% (6/14 statistically significant epistatic signals) increased PD risk more than 3-fold 

compared to the individual SNPs. Therefore, it could be essential to include them and study their 

effect on PD polygenic risk scores (PRS), similarly to Wang et al. 2021. However, to establish 

the new PRS with the epistatic interactions we need another independent dataset with enough 

sample size. Thus, this needs to be addressed in further studies, in order to understand the 

contribution of epistatic interactions in PD risk prediction and to help in PD patient risk 

assessment.  

In summary, here we have described several limitations and advantages of using VARI3 

and our two-stage study design. Despite the difference in genetic ancestry, our methods allowed 

us to identify 14 significant epistatic signals associated with PD and replicated two of them in an 

independent cohort. We also showed how the significant interactions are enriched in PD-relevant 

pathways. Finally, we determined the statistical effect on the phenotype of those variants and 

observed similar effects on the phenotype of those interactions in both stages. Our results show 

that epistatic interactions are contributing with extra risk or protective effect to PD compared to 

individual variants, therefore helping to reduce part of the missing heritability in the disease and 

providing a base for larger genome-wide epistatic studies to uncover more interacting variants 

and genes. 
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Tables 

Table 1. Statistically significant interactions from the discovery and replication cohorts. 

 

 
SNP1: Variant coordinates (chromosome: base pair) for the first SNP of the epistasis signal. SNP2: Variant coordinates (chromosome: base pair) for the second SNP of the epistasis signal. PepiD: p 
value for epistasis from discovery cohort. Most significant ORepi [95% CI]: Odds ratio for the epistatic signal genotype combination with the most statistically significant association to PD in discovery 
cohort with 95% confidence intervals (see supplementary table 8 for more details).  PepiR: p value for epistasis from replication cohort (In bold statistically significant epistasis signals replicated).  
Nearby gene 1: gene name for nearby gene 1. Nearby gene 2: gene name for nearby gene 2. AF1: Allele frequency for SNP1. OR1: Odds ratio for SNP1 association to PD. P1: P value for SNP1 
association to PD. LOC1: genomic location annotation for SNP1. AF2: Allele frequency for SNP2. OR2: Odds ratio for SNP2 association to PD. P2: P value for SNP2 association to PD. LOC2: 
genomic location annotation for SNP2.  
 

SNP1 SNP2 PepiD 
Most significant 
ORepi [95% CI] PepiR Nearby gene 1 Nearby gene 2 AF1 OR1 P1 LOC1 AF2 P2 OR2 LOC2 

15:58980985 15:58856033 1.30E-45 7.42 [3.13-17.58] NA ADAM10 LIPC 0.21 1.14 4.04E-7 intronic 0.29 8.69E-1 0.99 intronic 

6:33050441 6:33055501 1.37E-23 0.68 [0.63-0.73] NA HLA-DPB1 HLA-DPB1 0.21 1.17 4.10E-9 intronic 0.20 6.84E-1 0.99 UTR3 

4:90607126 4:90610135 3.05E-20 3.16 [1.35-8.26] 5.27x10-3 SNCA SNCA 0.47 1.16 4.92E-12 intergenic 0.14 4.53E-2 1.05 intergenic 

1:155065981 1:155509622 1.60E-12 3.35 [1.51-8.16] NA EFNA3 ASH1L 0.49 1.09 2.63E-5 intergenic 0.13 8.53E-1 1.00 intronic 

4:90703753 4:90629465 9.10E-12 1.95 [1.39-2.77] NA SNCA SNCA 0.12 1.24 2.00E-10 intronic 0.42 1.59E-12 1.12 intergenic 

1:155120012 1:155632053 1.26E-11 4.48 [1.89-12.23] NA DPM3 YY1AP1 0.38 0.91 2.32E-5 intergenic 0.08 2.39E-2 1.07 intronic 

17:43856458 17:43820669 2.48E-11 0.76 [0.69-0.83] 2.74x10-2 LINC02210-CRHR1 LINC02210-CRHR1 0.37 0.87 8.63E-9 intronic 0.40 6.68E-8 0.92 intronic 

6:32376471 6:32339925 1.05E-10 2.58 [1.33-5.28] NA TSBP1-AS TSBP1-AS1 0.20 1.14 1.06E-6 downstream 0.37 5.58E-5 1.07 ncRNA_intronic 

1:155122783 1:155698425 2.22E-10 3.62 [1.37-11.13] NA DPM3 DAP3 0.16 1.15 2.38E-6 intergenic 0.09 2.12E-1 1.03 Intronic 

12:40383902 12:40354470 1.18E-9 1.17 [1.09-1.27] 0.20 SLC2A13 SLC2A13 0.33 1.10 2.08E-5 intronic 0.46 9.45E-3 1.04 intronic 

6:32590735 6:32193512 1.26E-9 1.49 [1.26-1.76] NA HLA-DQA1 NOTCH4 0.21 1.16 4.14E-8 intergenic 0.21 2.90E-4 1.07 intergenic 

6:32360849 6:32666636 2.74E-9 0.83 [0.80-0.87] NA HCG23,TSBP1-AS1 HLA-DQB1 0.24 1.12 1.99E-5 ncRNA_intronic 0.13 9.03E-7 1.12 intergenic 

17:43992943 17:44865439 6.06E-9 1.84 [1.19-2.89] 1.29x10-4 MAPT WNT3 0.32 0.89 1.76E-5 intronic 0.25 4.99E-11 0.89 intronic 

1:155033317 1:155310443 6.69E-9 4.58 [1.65-15.70] NA DCST1-AS1 ASH1L 0.34 1.12 1.43E-6 ncRNA_intronic 0.08 9.48E-2 1.05 intronic 


