Arterial hypertension and its covariates among the Raute nomadic hunter-gatherers of Western Nepal: a population-based mixed-method study

Tapendra Koirala¹*, Udaya Bahadur BC², Carmina Shrestha³, Ujjawal Paudel¹, Rolina Dhital³, Sunil Pokharel⁴, Madhusudan Subedi⁵

Affiliations

¹ Department of Health Services, Ministry of Health and Population, Nepal
² Public Health Service Office, Surkhet, Karnali Province, Nepal
³ Health Action and Research, Kathmandu, Bagmati Province, Nepal
⁴ Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
⁵ Patan Academy of Health Sciences, Lalitpur, Bagmati Province, Nepal

* Corresponding author

Tapendra Koirala, ¹ Department of Health Services, Ministry of Health and Population, Nepal.
Email: tapendrakoirala@pahs.edu.np

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Objectives

This study aimed to determine the prevalence of, and understand the factors associated with, hypertension among the Raute nomadic hunter-gatherers of Western Nepal.

Design

A mixed-method study with quantitative and qualitative analyses.

Setting

Household survey at Raute temporary camps in the Surkhet District of Karnali Province, Nepal between the period of May to September 2021.

Primary and secondary outcome measures

The presence of hypertension and its socio-demographic, anthropometric, and behavioral covariates among the participants.

Participants

For quantitative analysis, all men and non-pregnant women of the nomadic Raute community aged 15 years above were evaluated for hypertension and its covariates. For the qualitative analysis, we purposively selected both Raute and Non-Raute key informants for in-depth interviews to understand, explain and enrich the quantitative findings.
Results

Of the 85 total eligible participants, 81 [median age 35 years (Interquartile range: 26–51), 46.9% female] were included in the final analysis. The prevalence of hypertension among men, women, and overall was 48.8% (95% confidence interval (CI): 34.4-63.4), 10.5% (95% CI: 3.7–23.1), and 30.9% (95% CI: 21.6–41.5) respectively. Male sex [adjusted Odds Ratio (aOR)=8.05 (95%CI: 2.15–30.11), p=0.002] and increasing age [aOR=1.05 (95% CI: 1.01–1.09), p=0.025] were found significantly associated with hypertension. A large proportion of the participants were current drinkers (91.4%) and tobacco users (70.4%), yet neither of these factors had a significant association with hypertension. Effect of socio-economic transition; changing patterns of alcohol and tobacco use, changing diet and food security; and traditional health care practices were the themes identified in the qualitative analysis.

Conclusion

This study found a high prevalence of hypertension, alcohol, and tobacco use among Raute nomadic hunter-gatherers facing socio-economic and nutritional transition. Further longitudinal studies and effective culture-centered community-based interventions are urgently needed to reduce the morbidity and mortality associated with hypertension in this endangered indigenous population.

Keywords

Hunter-gatherers, Foragers, Hypertension, Blood pressure, Socio-economic transition, Raute
Strengths and limitations of this study

• This is the first study to assess the prevalence of hypertension and to identify factors associated with it in the nomadic Raute population.

• We used a mixed-method design, where the quantitative study established the prevalence of hypertension and its associated factors, and the qualitative study deepened the understanding of the quantitative findings.

• Certain important factors such as salt intake, physical activity level, and a few other cardiometabolic risk factors were not assessed partly due to refusal of invasive procedures among the Rautes, and partly due to resource constraints.

• Interviews taken in language non-native (Nepali) to the Raute may be subject to language bias.
Introduction

Hunting-gathering is one of the oldest modes of subsistence where most or all food is obtained through foraging edible plants and hunting wild animals.[1] Hunter-gatherers (HGs) were estimated to account for about 1 percent of the world’s population in the 1960s.[2] As a result of rapid population growth, transformations of habitat, and globalization, the population of traditional HG communities has rapidly declined.[3,4] At present, only a handful of communities are considered “pure HGs”, while many have transitioned either to agriculture, pastoralism or to a mixed economy where foraging is supplemented by other adaptive strategies.[5,6]

HGs and other small-scale populations with living traditionally are found to have a low prevalence of type 2 diabetes mellitus, hypertension, and obesity.[7,8] Their remarkable cardiovascular health is often linked to their high level of physical activity; low glycemic index diet, rich in fibers, and micronutrients; and limited access to processed and high caloric modern foods.[9,10] Evidence has shown the emergence of obesity, diabetes, atherosclerosis, and other lifestyle-related diseases among the former HGs as they transitioned from traditional to Western lifestyles.[11,12] Knowledge of the interactions between health and lifestyle, diet, and health behavior among diverse traditional populations can aid in our understanding of several non-communicable diseases that plague modern societies. However, HG’s health has not been extensively studied all over the world, and there is still a dearth of data on the impact of HG’s lifestyle choices on their health, particularly their cardiovascular and metabolic health. Studies from the mid-to-late 20th century constitute a sizable portion of the existing research on HG’s health.[8,9,11,13–15] Additionally, the majority of studies focus disproportionately on HG societies in South America and Sub-Saharan Africa. Asians, and South Asian HG societies, in
particular, are overtly underrepresented in research scrutiny. Only a handful of studies have explored the health and wellbeing of South Asian HGs. Data on the cardiovascular and metabolic health of contemporary HG populations in this entire region is almost non-existent, and Nepal is no exception.

Cardiovascular disease (CVD) is among the leading cause of preventable death globally. Raised blood pressure or hypertension is one of the strongest modifiable risk factors for CVDs. Approximately 34% of men and 32% of women aged 30–79 years worldwide, as well as 30% of men and 20% of women aged 15–69 years in Nepal, were estimated to have hypertension in 2019.[16,17] Nevertheless, despite being the most representative of the available large-scale data, estimates from current national-level public health surveys are said to be significantly under-representative of ethnic minorities and difficult-to-reach mobile and migrant sub-populations.[18,19] Furthermore, due to their unique lifestyle, diet, and behavior-related risks, the nationally representative data cannot be generalized to special sub-populations/groups.

Here, we present a distinctive group of Nepalese nomadic hunter-gatherers with a unique set of lifestyle, tradition, language, and socio-cultural values who continue to live their traditional life, migrating from one place to another on regular basis gathering wild foods and bartering their carved woodenware for the grains and other necessities from the settled villagers. The Rautes, a population apparently on the verge of extinction, is the last remaining nomadic hunter-gatherer in Nepal. Since their existence was first documented in 1955, the Raute ethnography has been extensively studied by scholars around the world. However, the Rautes’ health, especially their cardiovascular and metabolic health, still remains scientifically unexplored. Although anecdotal evidence is suggestive of socio-economic transition, changing health behaviors, and deterioration in the general health of the Rautes, no scientific studies have explored the magnitude of such
change and their impact on their health. Therefore, in an attempt to understand the state of their cardiovascular health, this study aims to determine the prevalence of hypertension and understand the socio-demographic, anthropometric, and behavioral factors associated with hypertension among nomadic Raute hunter-gatherers of Western Nepal.

Methods

Study design

This study adopted an explanatory sequential mixed methods design. A quantitative study designed to determine the prevalence and factors associated with hypertension was followed by a qualitative study to understand, explain and enrich the quantitative findings.

Study population

The Raute is a small group of highly migratory, egalitarian hunter-gatherers that exclusively hunts Rhesus and Langur monkeys, forages edible roots, fruits, and herbs, carves woodenwares, and trades them with the settled villagers for grains, clothes, and other necessities.[15,20] Rautes strongly oppose any idea of permanent settlement, agricultural practices, and formal education. They are uninterested in new technologies and sophisticated gadgets, and they have little desire to save or store items.[21] The Raute primarily inhabits forested areas and riverbanks of the mid-western part of the country. They alternate their habitat between higher altitudes (6000-10000 ft) in monsoon-summer months (April to September) and lower altitudes (2000-4500 ft) in winter (October to March).[15,21,22] Their customary periodic migration is a complex function of their socio-cultural belief system, environmental conditions, availability of forest resources, prospects for trade, and relations with locals.[15,21,23] ‘Khamchi’, a Tibeto-Burman language, is their
mother tongue although they are fluent in the local Nepali language.[22] Their current economy is based on forest resources, trade, and state incentives.[21]

Study site and setting

Karnali province, the main home of the nomadic Rautes, is the largest but least populated of all the seven provinces of Nepal, with a population of about 1.5 million, a literacy rate of 62.77%, and a human developmental index score of 0.427. The province comprises ten districts, Surkhet being the provincial capital.[24] Districts such as Kalikot, Dailekh, Surkhet, Salyan, and Jajarkot are among the most frequently although not exclusively inhabited places by the Rautes. At the time of commencement of this study, the population had been migrating through the District Surkhet. The study was completed in two phases between May to September 2021, by following the Raute through their six successive campsites within the territories of Lekbeshi and Gurbhakot Municipalities of the District Surkhet (Figure 1).

Figure 1

Study area map showing temporary Raute settlements (camps) and the data collection sites. Maps were created using ArcGIS by Esri V.10.8.1 and the GPS coordinates were taken from the study sites. The basemaps were obtained from Esri and Earthstar Geographics, available at ArcGIS Online basemaps.[25]

Participants selection

For the quantitative study, all willing individuals aged 15 years and above belonging to the nomadic Raute population were considered eligible. Participants with suspected COVID-19 and pregnant women were excluded from the study (Supplemental Figure 1). Since the entire eligible population was included, the sampling was deemed unnecessary.
Participants for the qualitative study were purposively selected: In-depth interviews (IDIs) were conducted among 15 (10 males and 5 females) adult Rautes with and without hypertension. Four key informant interviews (KII) were conducted among a health care worker, two social workers, and an expert in the field. The participants for the interviews were selected so that each would bring a unique perspective, thereby maximizing demographic and experiential heterogeneity within the group. Interviews were conducted among both the Raute participants and the outsiders to achieve a balanced perspective. The sample size for interviews was based on the principle of ‘data saturation’. Data saturation was considered when data obtained from respondents was repetitive or no new information was forthcoming.

Data Collection

Quantitative data were collected through a structured questionnaire-based household survey which included: face-to-face interviews, anthropometric measurements, and clinical examinations. Four health workers (2 Health assistants and 2 Public health nurses) were recruited and trained for data collection. They were supervised by the principal investigator (TK) and co-investigators (CS & UP) during data collection. We used standard methods to obtain quantitative measurements.[26] The data was collected at participants’ residences at the time of their convenience by the data enumerators of their respective sexes.

Qualitative data collected through interviews (IDIs and KII) were taken face-to-face by two interviewers, UBB (MA), and TK (MBBS) using interview guides. UBB is a male public health expert with more than 10 years of experience. TK is a male medical graduate with over 5 years of clinical and research experience. Interviewers had a keen interest in non-communicable
diseases and their risk factors. They didn’t have any obvious bias or assumptions toward study participants.

To establish rapport and facilitate participation, a brief informal discussion was carried out with each participant. Every participant was informed about the aims of the study, the researcher’s personal goal, and the reason for conducting this study. All the participants approached for the study consented to participate and there was no drop-out. Each of the IDIs lasted for approximately an hour and was audio-recorded. No repeat interviews were conducted with any participants. Field notes were made by the interviewers during the data collection.

All the interviews, measurements, and clinical examinations were carried out taking necessary precautions against COVID-19 transmission. The data enumerators and interviewers were tested for COVID-19 before and after carrying out data collection. During data collection, all researchers wore masks, face shields, and gloves while all the participants were given masks and kept at a distance of at least one meter unless required to do otherwise.

Tools and instruments

Survey tool

To collect quantitative data, a structured questionnaire was adapted from validated tools for various national-level surveys and other relevant literature.[17,27,28] The questionnaire was tailored according to the local context (Supplemental File 1). The questionnaire collected information on participant’s socio-demographic characteristics (age, sex, marital status, educational status, and primary occupation), health-related behaviors (alcohol consumption and tobacco use), awareness and treatment of hypertension, physical measurements (height, weight,
body mass index (BMI) and blood pressure). Physical measurements were taken by trained enumerators according to established guidelines.[26] Bodyweight in kilograms was measured to the nearest 0.2 kg using a well-calibrated standardized digital weighing scale (Seca, Hangzhou, China). Height was recorded to the nearest 0.1 cm using well-calibrated standardized portable stadiometers (Seca, Hangzhou, China). Weight and height measurements were performed without shoes, headgears, or heavy clothing. BMI was calculated as weight in kilograms (kg) divided by height in meters squared (m²). Blood pressure measurements were performed, using a well-calibrated digital automatic blood pressure monitor (OMRON M6, Japan) with a universal cuff after the participants rested quietly for 15 minutes with their legs uncrossed. Each of three blood pressure readings was taken with participants requested to take rest for three minutes in between. The mean of the second and third readings was taken for further analysis.

Interview guides

To collect qualitative data, we developed guides for IDIs and KIIIs based on themes identified in the quantitative study. We also explored additional themes that were not captured in the quantitative study (Supplemental File 2).

Validation of tools

The survey questionnaire and interview guides were designed in English and translated into Nepali by the experts. The tools were then back-translated into English by a panel that speaks both languages for validation before administration. The structured survey questionnaire was pretested among 8 Raute participants (10% of the total sample size) who were excluded from the final analysis. Similarly, the interview guides for IDI and KII were also pretested among 3 Raute participants and one key informant before their administration.
Operational Definitions

Operational definitions were adopted for the key variables to maintain uniformity and consistency. The blood pressure (BP) was categorized based on the JNC 7 recommendations.[29] Other relevant definitions were used as described in Supplemental File 3.

Data management and analysis

Quantitative data

The quantitative data from the questionnaire survey were entered in Microsoft Excel 2019 and then exported to the SPSS (IBM) Version 23 for analysis. Descriptive statistics such as mean and standard deviation (SD) for the continuous variables and frequencies and proportions for the categorical variables, were used to describe the distribution of data. Chi-square (χ^2) or Fisher's exact test, as appropriate, was used to compare the proportions between the two groups. Mann Whitney U test was used to compare mean differences between the two groups.

Bivariate and multivariate logistic regressions were used to determine the factors associated with hypertension. The variables having a p-value <0.1 in bivariate analysis were entered in the multivariate logistic regression model. Current tobacco use, current alcohol consumption, and BMI were added as a priori even though they were not statistically significant in the bivariate analysis since they have been shown to be associated with hypertension in the literature and have a biological basis. Multicollinearity among the independent variables was assessed using variance inflation factor (VIF) statistics with a VIF value of >2 indicating multicollinearity. All tests were two-tailed and significance was accepted at a p-value of <0.05.
Qualitative data

For qualitative analysis, the audio recordings of IDIs and KIIs were transcribed verbatim in Nepali and then translated into English by the two investigators TK and CS independently. All the transcripts were imported to the Dedoose version 8.2.14 (SocioCultural Research Consultants, LLC, Los Angeles, CA). Two investigators TK and RD independently reviewed and coded the transcripts. Codes were compared and the disagreements were resolved by consensus. All relevant codes were then collated into themes utilizing a deductive approach based on our thematic guides. Additional themes were added as they emerged from each transcript using an inductive approach. The data acquired through KIIs, IDIs, and the quantitative study was triangulated during the final analysis. We did not return the transcripts to the participants due to logistical difficulties in finding highly migratory participants and their low literacy.

Data management

Participants’ personal health information (PHI) was protected on researchers’ fully encrypted devices with procedures for deidentification of data during analysis, and no PHI was linked to geospatial data in the public domain. To ensure the credibility of the analysis, all procedures were supervised by research experts in the field.

Ethical statement

The ethical clearance for this study was obtained from Nepal Health Research Council, Ethical Review Board (Reference No. 2972, Reg. No. 199/2021P). Informed written consent/assent was obtained from each respondent before the structured questionnaire was administered. Verbal consent was obtained before each IDI and KII and was audio recorded. Participants were
informed about the voluntary nature of the study, maintenance of confidentiality, and the right to refuse or withdraw at any time during the study. No financial incentive was given to the participants of this study.
Results

Quantitative results

Population characteristics

Of the total 85 eligible participants, 81 participants between 15 to 69 years of age were included in the final quantitative analysis (Supplemental Figure 1). The non-response rate was 2.4%. Table 1 summarizes the key population characteristics of this study. The median age of the participants was 35 years (IQR: 26–51) with a slight male predominance (n=43, 53.1%). The majority of the participants were currently married (n = 52, 64.2%). Most men (n=39, 90.7%) reported ‘carving and trading woodenware’ as their main occupation while the majority (n=36, 94.7%) of women reported being homemakers. None of the participants had received any formal education. High proportions of both men (n=39, 90.7%) and women (n=35, 92.1%) currently consume alcohol (p=1.000). Overall, more than 2/3rd of the participants currently use tobacco products. Tobacco use was more common among men compared to women (81.4 vs 57.9%, p=0.028).

Among women, the median weight was 44 kg (IQR: 42–48) and the median height was 152.3 cm (IQR: 142.2–154.9). Among men, the median weight was 51 kg (IQR: 46–58) and the median height was 154.9 cm (IQR: 152.4–158.0). The Median BMI for the population was 21.1 (IQR: 19.2–22.9) kg/m². About 17% of the participants were underweight (BMI <18.5 kg/m²) and 8.6% were overweight (BMI 25 to <30 kg/m²). None of the participants were found obese (BMI ≥30 kg/m²).

The systolic blood pressure (SBP) and diastolic blood pressure (DBP) medians for women were 122.5 (IQR: 118–132) and 75 (IQR: 70–83) mm Hg, respectively. The same for men were 135
(IQR: 128–153) and 86 (IQR: 79–90) mm of Hg respectively. Medians for SBP, DBP, and MAP all were found significantly higher among men compared to women across all age groups (p<0.001) (Table 1 and Figure 2). In both sexes, the SBP increased steadily with age (Figure 2). In men, DBP and MAP both increased significantly with age until the age of 60 years, when the former began to decline. In women, DBP and MAP both decreased in early adulthood, followed by a moderate increase until the age of 60, after which DBP started to decline.

Table 1
Socio-demographic characteristics, behavioral risk factors, anthropometric profile, and blood pressure of the nomadic Raute population by sex

<table>
<thead>
<tr>
<th>Variables</th>
<th>Female (n=38)</th>
<th>Male (n=43)</th>
<th>Total (N=81)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (n %)</td>
<td>n (n %)</td>
<td>n (n %)</td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>35 (25–42)</td>
<td>35 (26–56)</td>
<td>35 (26–51)</td>
<td>0.507‡</td>
</tr>
<tr>
<td>15–24</td>
<td>9 (23.7)</td>
<td>10 (23.3)</td>
<td>19 (23.5)</td>
<td></td>
</tr>
<tr>
<td>25–34</td>
<td>10 (26.3)</td>
<td>11 (25.6)</td>
<td>21 (25.9)</td>
<td></td>
</tr>
<tr>
<td>35–44</td>
<td>11 (28.9)</td>
<td>4 (9.3)</td>
<td>15 (18.5)</td>
<td>0.138*</td>
</tr>
<tr>
<td>45–54</td>
<td>3 (7.9)</td>
<td>6 (14)</td>
<td>9 (11.1)</td>
<td></td>
</tr>
<tr>
<td>>55</td>
<td>5 (13.2)</td>
<td>12 (27.9)</td>
<td>17 (21)</td>
<td></td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>4 (10.5)</td>
<td>11 (25.6)</td>
<td>15 (18.5)</td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>23 (60.5)</td>
<td>29 (67.4)</td>
<td>52 (64.2)</td>
<td>0.016*</td>
</tr>
<tr>
<td>Widowed</td>
<td>11 (28.9)</td>
<td>3 (7.0)</td>
<td>14 (17.3)</td>
<td></td>
</tr>
<tr>
<td>Alcohol consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Current drinker

<table>
<thead>
<tr>
<th></th>
<th>No</th>
<th>3 (7.9)</th>
<th>4 (9.3)</th>
<th>7 (8.2)</th>
<th>1.000†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td>35 (92.1)</td>
<td>39 (90.7)</td>
<td>74 (91.4)</td>
<td></td>
</tr>
</tbody>
</table>

Current Tobacco use

Smoking tobacco user

<table>
<thead>
<tr>
<th></th>
<th>No</th>
<th>16 (42.1)</th>
<th>8 (18.6)</th>
<th>24 (29.6)</th>
<th>0.028*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td>22 (57.9)</td>
<td>35 (81.4)</td>
<td>57 (70.4)</td>
<td></td>
</tr>
</tbody>
</table>

Smokeless tobacco user

<table>
<thead>
<tr>
<th></th>
<th>No</th>
<th>16 (42.1)</th>
<th>8 (18.6)</th>
<th>24 (29.6)</th>
<th>0.028*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td>22 (57.9)</td>
<td>35 (81.4)</td>
<td>57 (70.4)</td>
<td></td>
</tr>
</tbody>
</table>

Anthropometric profile

Height, cm

<table>
<thead>
<tr>
<th></th>
<th>Median (IQR)</th>
<th>152.3 (152.2–154.9)</th>
<th>154.9 (152.4–158)</th>
<th>154.9 (144.8–157.5)</th>
<th>0.002‡</th>
</tr>
</thead>
</table>

Weight, kg

<table>
<thead>
<tr>
<th></th>
<th>Median (IQR)</th>
<th>44 (42–48)</th>
<th>51 (46–58)</th>
<th>47 (44–53)</th>
<th><0.001‡</th>
</tr>
</thead>
</table>

BMI, kg/m²

| | Median (IQR) | 20.4 (18.3–22.2) | 21.8 (20–23.3) | 21.1 (19.2–22.9) | 0.018‡ |

Underweight (<18.5)

<table>
<thead>
<tr>
<th></th>
<th>12 (31.6)</th>
<th>2 (4.7)</th>
<th>14 (17.3)</th>
<th>0.006*</th>
</tr>
</thead>
</table>
Normal (18.5–24.9)

<table>
<thead>
<tr>
<th>Blood pressure, mm of Hg</th>
<th>SBP, Median (IQR)</th>
<th>DBP, Median (IQR)</th>
<th>MAP, Median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>122.5 (118–132)</td>
<td>75 (70–83)</td>
<td>92.3 (87–97)</td>
</tr>
<tr>
<td></td>
<td>135 (128–153)</td>
<td>86 (79–90)</td>
<td>103 (97–107.7)</td>
</tr>
<tr>
<td></td>
<td>130 (121–137)</td>
<td>83 (74–87)</td>
<td>97 (90.3–103.7)</td>
</tr>
</tbody>
</table>

Abbreviations: * Pearson’s Chi-square test; † Fisher’s exact test; ‡ Mann Whitney U test; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure

Figure 2

Age-related changes in systolic (A), diastolic (B) and mean arterial (C) blood pressure in nomadic Raute adults. Males are green dots; females are red dots. Displayed curves are third-order polynomial fits. The shaded area represents the 95% confidence interval. The prevalence of hypertension (D) by age group and sex. Bars represent the percentage for each category of normotensive, prehypertensive, and hypertensive participants. The cutoffs for normotension, pre-hypertension, and hypertension were mean SBPs of <120, 120–139, and ≥140 mm of Hg respectively, and/or mean DBPs of <80, 80–89, and ≥ 90 mm of Hg respectively. Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure.
Prevalence, associated factors, awareness, and treatment of hypertension

Overall, 30.9% (95% CI: 21.6–41.5) of the nomadic Raute population were found to be hypertensive. The prevalence of hypertension was significantly higher among men [48.8% (95% CI: 34.4–63.4)] compared to women [10.5% (95% CI: 3.7–23.1)] (p=0.01). Nonetheless, women accounted for a significantly high proportion [73.7% (95% CI: 58.3–85.6), p=0.001] of the participants in the pre-hypertensive group (Figure 2).

Participants’ socio-demographic, anthropometric, and behavioral factors associated with hypertension are summarized in Table 2. When stratified by age groups, the lowest prevalence of hypertension was observed in the 15–24 years age group (15.8%) while the highest prevalence was observed among those greater than 55 years of age (52.9%). Among adults greater than 30 years of age, the prevalence was 35.1% (56.7% among men, 11.1% among women). Hypertension was more prevalent among those who currently drink alcohol (32.4%, n=24) than among those who do not (14.3%, n=1) although statistically not significant (p=0.427). The median days the participants drank alcohol in a month was significantly higher among hypertensive than normotensive participants (15 vs 10 days, p<0.001). Likewise, hypertension was slightly more common among the current tobacco user compared to the current non-user (30.5 vs 20.8%) although the difference was not statistically significant (p=0.205). Nonetheless, the median days any tobacco products were used in the previous month among the hypertensive and the normotensive participants were significantly different (25 vs 15 days, p=0.001).

The mean BMI was slightly higher among participants with hypertension (p=0.026). However, the difference noted in the proportion of hypertension among participants with or without normal BMI (18.5 to 25 kg/m2) was not statistically significant (p=0.179). Among the respondents who
had hypertension, only 2 (8%) were aware of it. None of the participants who had hypertension ever received any treatment.

The bivariate and multivariate analyses were carried out to examine the association of sociodemographic, metabolic, and behavioral covariates with hypertension (Table 3). The likelihood of having hypertension increased significantly with increasing age [adjusted odds ratio (aOR) 1.05 (1.01–1.09), p=0.025] and being a male [aOR 8.05 (2.15–30.11), p=0.002] after adjusting for BMI, alcohol consumption and tobacco use. We did not find statistically significant associations between alcohol consumption, tobacco use, or BMI with hypertension (p>0.05) after controlling for age and sex.

Table 2
Socio-demographic, behavioral, and anthropometric factors associated with hypertension among the nomadic Raute population.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Non-hypertensive (n=56)</th>
<th>Hypertensive (n=25)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>34 (89.5)</td>
<td>4 (10.5)</td>
<td><0.001*</td>
</tr>
<tr>
<td>Male</td>
<td>22 (51.2)</td>
<td>21 (48.8)</td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>33 (23–42)</td>
<td>48 (31–61)</td>
<td>0.016‡</td>
</tr>
<tr>
<td>15–24</td>
<td>16 (84.2)</td>
<td>3 (15.8)</td>
<td>0.121*</td>
</tr>
<tr>
<td>Age Group</td>
<td>Drinkers</td>
<td>Non-Drinkers</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>25–34</td>
<td>16 (76.2)</td>
<td>5 (23.8)</td>
<td></td>
</tr>
<tr>
<td>35–44</td>
<td>11 (73.3)</td>
<td>4 (26.7)</td>
<td></td>
</tr>
<tr>
<td>45–54</td>
<td>5 (55.6)</td>
<td>4 (44.4)</td>
<td></td>
</tr>
<tr>
<td>≥55</td>
<td>8 (47.1)</td>
<td>9 (52.9)</td>
<td></td>
</tr>
</tbody>
</table>

Marital status

<table>
<thead>
<tr>
<th>Marital Status</th>
<th>Drinkers</th>
<th>Non-Drinkers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never married</td>
<td>11 (73.3)</td>
<td>4 (26.7)</td>
</tr>
<tr>
<td>Married</td>
<td>36 (69.2)</td>
<td>16 (30.8)</td>
</tr>
</tbody>
</table>

Alcohol consumption

<table>
<thead>
<tr>
<th>Alcohol Consumption</th>
<th>Drinkers</th>
<th>Non-Drinkers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current drinker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>6 (85.7)</td>
<td>1 (14.3)</td>
</tr>
<tr>
<td>Yes</td>
<td>50 (67.6)</td>
<td>24 (32.4)</td>
</tr>
<tr>
<td>Median days (IQR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>drank in the previous month</td>
<td>10 (7–15)</td>
<td>15 (15–20)</td>
</tr>
<tr>
<td>Median drinks (IQR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>drank per day in the previous month</td>
<td>1 (1-1)</td>
<td>2 (1-3)</td>
</tr>
</tbody>
</table>

Tobacco use

<table>
<thead>
<tr>
<th>Tobacco Use</th>
<th>Drinkers</th>
<th>Non-Drinkers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current user</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>19 (79.2)</td>
<td>5 (20.8)</td>
</tr>
<tr>
<td>Yes</td>
<td>37 (64.9)</td>
<td>20 (35.1)</td>
</tr>
<tr>
<td>Median days (IQR) any tobacco products used in the previous month</td>
<td>15 (5–25)</td>
<td>25 (22.5–25)</td>
</tr>
</tbody>
</table>

BMI, kg/m²

<table>
<thead>
<tr>
<th>BMI (IQR)</th>
<th>Drinkers</th>
<th>Non-Drinkers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>20.5 (18.5–23)</td>
<td>21.5 (19.6–22.9)</td>
</tr>
</tbody>
</table>

0.026*
Table 3
Multivariate logistic regression analysis showing the predictors of hypertension among the nomadic Raute population.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Unadjusted OR (95% CI)</th>
<th>p-value</th>
<th>Adjusted OR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>1.04 (1.01–1.08)</td>
<td>0.011</td>
<td>1.05 (1.01–1.09)</td>
<td>0.025</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>Reference</td>
<td>–</td>
<td>Reference</td>
<td>–</td>
</tr>
<tr>
<td>Male</td>
<td>8.11 (2.45–26.84)</td>
<td>0.001</td>
<td>8.05 (2.15–30.11)</td>
<td>0.002</td>
</tr>
<tr>
<td>Current alcohol consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Reference</td>
<td>–</td>
<td>Reference</td>
<td>–</td>
</tr>
<tr>
<td>Yes</td>
<td>2.88 (0.33–25.28)</td>
<td>0.340</td>
<td>2.44 (0.16–37.51)</td>
<td>0.522</td>
</tr>
<tr>
<td>Current tobacco use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Reference</td>
<td>–</td>
<td>Reference</td>
<td>–</td>
</tr>
<tr>
<td>Yes</td>
<td>2.05 (0.67–6.33)</td>
<td>0.210</td>
<td>0.64 (0.13–3.26)</td>
<td>0.510</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>1.11 (0.92–1.35)</td>
<td>0.260</td>
<td>1.16 (0.91–1.49)</td>
<td>0.232</td>
</tr>
</tbody>
</table>

Abbreviations: * Pearson’s Chi-square, † Fisher’s exact, ‡ Mann Whitney U
Abbreviations: aOR, Adjusted odds ratio

Qualitative results

A total of 15 Raute participants (10 male, 5 female) participated in IDIs with their ages ranging from 15 to 72 years. Four key informants (1 social scientist, 2 social workers, and 1 health worker) of diverse backgrounds working closely with the Raute community participated in the KIIs (Supplemental Table 1). None of the participants approached refused to participate. On thematic analysis, 4 themes emerged from 25 codes and are presented below with some of the representative narratives from the participants with their age, sex, and participant number in the parenthesis.

Theme 1: Socio-economic transition

The majority of the key informants noticed significant socioeconomic changes in the Raute community over the last decade. According to them, the traditional, solely forest-based economy of Raute is now transitioning towards a predominantly cash-based economy. Their generation-old values and beliefs regarding the monetary system are now subject to change.

[People of the previous generation did not accept paper money. They exchanged their wooden wares with grains, flour, and other essentials. They thought accepting paper money was a sin and brought bad luck during their hunting. These days, even our chieftains prefer paper money so that they can purchase goods whenever needed and do not have to carry heavy loads while migrating.] (Raute male, age range 40-45 years, IDI#11)

From the federal and provincial governments combined, each individual including children from the Raute community currently receives a sum of 5,000 Nepali Rupees (Approx. 42 USD) per
The allowance provided by the government of Nepal was noted by most participants as the main driver of the socio-economic transition of the Raute community.

[In the past, we used to earn our living with the use of our muscles. These days we get the allowance. These days we have ease.] (Raute male, age range 56-60 years, IDI#14)

[Previously my parents must have had so much hardship raising me. We did not have an allowance. They used to make wooden bowls and boxes, go to the village, and exchange them for grains. They ate a little and gave it to me. That's how they raised me. Nowadays it is much better.] (Raute male, age range 30-35 years, IDI#8)

Even the Rautes have perceived a gradual shift towards comfort and ease.

[We don't work as much as before. We can purchase our grains and essentials with an allowance. We go to the forest only for firewood and wood for making our hut. We don't carry big logs to make wooden wares as much as before.] (Raute male, age range 56-60, IDI#14)

The majority of the participants of IDI stated that they have witnessed a significant decline in the demand and therefore the production of traditional wooden wares. Even though everyone still makes wooden wares, it is mostly to keep the tradition alive. A few of the participants noted that the change in the livelihood of the Raute was inevitable as modern industrial wares were becoming popular.

[People don’t like using traditional wooden wares anymore. They prefer to use steel and other metal ware these days.] (Raute female, age range 51-55 years, IDI#12)
Theme 2: Change in patterns of alcohol and tobacco use

2.1 Alcohol consumption

Although drinking homemade alcohol has long been a Raute tradition, the majority of participants have noted a shift in alcohol consumption in recent years. Raute who used to drink traditionally produced alcohol on occasions has lately begun purchasing commercial alcohol from surrounding communities and marketplaces. Many IDIs and KIIIs have speculated that their increasing interaction with outsiders could be one of the factors contributing to the Raute community's rising alcohol usage.

[We have been drinking homemade alcohol made in wooden vessels since the time of our forefathers. However, the local liquor made and sold by the settled communities and bottled alcohol is getting increasingly popular in recent years. Rautes learned it from the outsiders.] (Raute male, age range 56-60 years, IDI#14)

One of our KII participants speculated that the provisions of allowance by the government could have an important influence on the recent change in alcohol consumption among the Raute community.

[Ever since the government started providing them an allowance, they seem to be confused about investing this money. They started spending money on alcohol and tobacco.] (Male, Social Scientist, age range 51-55 years, KII#3)

However, some Raute claimed that only a negligible portion of the allowance is spent on buying alcohol.

[We don't spend too much money on alcohol. We first buy rice, salt, and flour. We buy alcohol from what remains.] (Raute male, age range 31-35 years, IDI#9)
Most of the participants of the IDI were unable to outline the adverse effects of alcohol. Some of the Raute participants had certain ideas on the impact of alcohol on their socio-economic and health aspects.

[We don’t go hunting these days as much as we used to. People nowadays drink alcohol from the allowance they receive. They can’t go hunting when they are drunk. Alcohol makes them feel weak.] (Raute male, age range 11-15 years, IDI#1)

[I have heard that alcohol affects our chest and intestine.] (Raute male, age range 16-20 years, IDI#3)

[Both I and my wife drink alcohol. Once, we drank and slept near the fireplace. I woke up with a burnt face the next morning. I was so drunk that I did not realize it.] (Raute male, age range 31-35 years, IDI#9)

According to a health worker (KII) who works closely with the Raute community, the usage of alcohol has adversely affected the health of Raute youths.

[Commercial, low-quality alcohol has adversely affected the health of the youth of this community. I saw some young people with jaundice. It must have been caused by alcohol; don’t you think so?] (health worker, age range 26-30 years, KII#1)

2.2 Tobacco Use

The majority of the Rautes use tobacco. The preference for the type of tobacco varies between men and women.

[We, men, prefer chewing tobacco while women prefer cigarettes, hookah, and other smoking tobacco.] (Raute male, age range 56-60 years, IDI#14)

Recently a shift in the trend of using commercially available tobacco products has been reported by the Rautes.
[Women used to take hookah in the past. They used to make their own tobacco from tobacco leaves. Nowadays they can easily buy cigarettes from the marketplace and smoke.] (Raute male, age range 26-30 years, IDI#7)

During our IDI a few Raute asked us for tobacco products chewing tobacco. Some participants demanded tobacco products as incentives for participating in our interviews.

[Raute cannot speak without tobacco. We will talk to you only if you give us tobacco.] (Raute male, 26-30 years, IDI#6)

The majority of the respondents were not aware of the adverse effects of tobacco. Only a few participants were able to state that tobacco negatively affects health but they were unable to outline the direct health effects of smoking.

[Smoking blackens our lungs.] (Raute male, age range 16-20 years, IDI#3)

Theme 3: Changing diet and food security

The majority of the Raute participants had witnessed a significant change in their dietary patterns in recent years. The majority also noted a substantial improvement in food security in recent years in contrast to the past.

[In the past, if we were able to sell our woodenwares, we got to eat food else we had to either sleep on an empty stomach or borrow food from relatives. These days, we don’t need to sleep hungry.] (Raute male, age range 56-60 years, IDI#14)

Historically, the Raute diet consisted of grains obtained through barter and roots, tubers, and herbs collected from the forest, supplemented with bushmeat, according to the majority of the participants. The current Raute diet consists chiefly of rice grain and a few vegetables obtained directly from the market or donated by various governmental and non-governmental
organizations. Participants reported that hunted game, wild roots, and tubers are less common in their current diet than in the past.

[We previously used to bring air potato, yam, and five-leaf yam from the jungle and eat them. These days, we eat rice all the time.] (Raute male, age range 31-35 years, IDI#9)

Many Raute participants reported that they used to self-process and prepare their food from raw grains. Packaged and processed modern foods have been reported to find their way into the Raute diet in recent years.

[Back then, we used to go to a watermill or grind it in a large mortar to make flour out of millet and maize to make flatbread. We used to eat roasted maize. Nowadays, we can easily buy Rice and processed wheat flour from the marketplace.] (Raute female, age range 31-35 years, IDI#10)

[In our times, we used to eat bayberries, carandas plum, guava, and various other wild fruits. Young people these days have learned to eat noodles, and biscuits.] (Raute male, age range 56-60 years, IDI#14)

Theme 4: Traditional healthcare practices

The majority of participants of IDIs reported using various kinds of medicinal herbs based on their indigenous knowledge and seeking traditional healers within their community who practice spiritual healing and medicinal herbs for many illnesses. A few of the participants also stated that they should visit health care workers if the illness does not get better with the traditional healing.

[If we get sick, we try home remedies such as medicinal herbs from the jungle. We also go to the traditional healer to blow charms and assess pulse. If we don't get better, nowadays they (Outsiders) say we should go to the doctor.] (Raute male, age range 56-60 years, IDI#14)
Discussion

In this study among nomadic Raute HGs aged 15 to 69 years, 30.9% (female: 10.5%, male: 48.8%) had hypertension. The majority of the participants were current alcohol (91.4%) and tobacco (70.4%) users. Approximately 9% of the population was overweight. The qualitative analysis yielded four major themes: socio-economic transition, changing patterns of alcohol and tobacco use, changing diet and food security, and traditional health care practices.

Despite the paucity of evidence, extant data show that HGs and other small-scale subsistence-based populations had a significantly lower prevalence of lifestyle-related diseases including hypertension.[7,31]

HGs such as the Pygmies of Southern Cameroon and the Hadza of Northern Tanzania, for example, had remarkably lower rates of hypertension (3.3 and 13% respectively).[31–33] Similarly, the Tsimane foragers and horticulturists of the Bolivian Amazon showed a low prevalence of hypertension (2.9%) and no significant increase in blood pressure with age.[34] In contrast to these studies, we found a much higher (30.9%) prevalence of hypertension among Nepalese Raute HGs. This is higher than the prevalence reported by the most recent composite national surveys among general (24.5%) and indigenous (23.8%) Nepalese populations.[17,35] The observed differences in hypertension prevalence across these populations might be due to a variety of variables. Aside from genetic, ethnic, and environmental variations, lifestyle, diet, level of physical activity, behavioral risks, and degree of acculturation should all be considered.

The effect of gender and age on blood pressure is well established.[36,37] In the general population, both SBP and DBP rise steadily in early adulthood up to age 50 years following which SBP steeply rises while DBP markedly declines.[37] SBP increased steadily with age in our study, whereas DBP did not demonstrate a significant rise. In contrast, Tsimane and Hadza
HGs exhibited a less sustained change in blood pressure with the age profiles.[31,38] Across all age categories in our study, men had considerably higher SBP and DBP than women, albeit the difference in blood pressure narrowed slightly after the age of 60 years. This is in agreement with the findings of the studies conducted among the general population.[36,39] The blood pressure amplification from central to peripheral arteries increases with body height and is thus more pronounced in men.[40] This can partly explain why BPs based on brachial artery pressure measurements are found lower in premenopausal women than in age-matched men. Nonetheless, the origin of sexual dimorphism in blood pressure might be multifaceted, encompassing the combined influence of hormonal, chromosomal, genetic, and morphological variations in body size, as well as socioeconomic and environmental covariates.[41–43] Recent sex-specific analyses indicated that women compared to men, exhibit a steeper rise in blood pressure with the age starting early in life.[41] Among subsistent populations, Tsimane, and Pygmies demonstrated similar gender-related variation in BP.[31,32] Hadza, on the other hand, exhibited only age-related, not gender-related, changes in blood pressure.[33] Men in our study had a significantly higher proportion of hypertension as compared to women with gender being the strongest predictor of hypertension in the regression models [aOR 8.05 (2.15–30.11), p=0.002]. Findings from Tsimane and Pygmies resonate with this. Although, among Pygmies, gender was not found to have a significant association with blood pressure in the multivariate analysis.[31,32] In contrast, Hadza women had a higher prevalence of hypertension compared to men.[33]

A large proportion of the individuals in our study were current drinkers (91.4%) and tobacco users (70.4%). Despite their high prevalence, neither of these factors significantly added to the risk of hypertension in multivariate analysis. Such a poor association might simply be attributed to a lack of statistical power due to the limited number of participants in our study. Nonetheless,
conventional risk factors, such as alcohol and tobacco use, have not been found strongly associated with hypertension in many traditional populations, despite their high prevalence.[31,32,35,44,45] This could possibly imply that these populations have other important hypertension risk factors that are not caught by existing survey instruments, or that they have several protective factors that negate the risk associated with these conventional risk factors.

Globally, HGs communities are renowned for their remarkably low obesity.[7] Only a small minority (8.6%) of our study population was overweight (BMI 25–29.9 kg/m²) and we found no obesity (BMI ≥30 kg/m²). Among the well-studied HG populations, the prevalence of overweight ranged from 2% in the Hazda to 21.1% in women and 15% in men in the Tsimane population.[7,46] BMI has been shown positively correlated with the blood pressure among Tsimane and Pygmies.[31,32,47] In contrast, we did not find any correlation between BMI and blood pressure among nomadic Raute HGs.

In meta-analyses of several RCTs, the paleolithic diet based on lean meat, fish, fruits, vegetables, root vegetables, eggs, and nuts was shown to have greater improvements in cardiometabolic parameters such as blood pressure, BMI, lipid profile, and blood sugar level than the guideline-based control diets, despite the benefits being short-term and the strength of evidence being reported to be low.[48–50] A transition from the traditional HG diet to a grain-based western diet has been reported to result in a deterioration in general health and an increase in the prevalence of obesity, diabetes, and other metabolic diseases among Australian HGs.[13,51] Interestingly, temporary reversal to the traditional diet among Australian aborigines was further shown to result in marked improvement in carbohydrate and lipid metabolism.[52] Although our study did not collect exclusive data on the Raute diet and nutrition, the qualitative analysis was
indicative of a transition from a traditional subsistence-based diet to a grain-based diet with the market-bought packaged/processed foods gradually getting their way into the Raute food culture in recent years. Factors such as declining forest resources, shrinking traditional barter system, stable cash flow from ‘social security allowance’, and access to the market were implicated in the dietary transition. Previous studies have also documented similar dietary changes among Raute HGs, which have been attributed to diminishing forest resources and monetary income.[53,54]

Socioeconomic transition, acculturation, and exposure to Western lifestyles have all been equated to an increase in the prevalence of so-called "diseases of civilization" like hypertension among traditional communities around the world.[11,12,55–58] The socioeconomic transition observed among nomadic Raute HGs was also linked by the participants of our qualitative study to the rising use of alcohol and tobacco use and declining traditional forest-based subsistent activities. A high rate of alcohol consumption, particularly hazardous consumption, and declining foraging behavior with the socio-economic transition have already been documented among the Congolese BaYaka HGs and Tanzanian Hadza foragers respectively, corroborating our findings.[59,60]

Despite being aware of modern medical care, Raute HGs continue to rely on traditional healing practices and their indigenous knowledge of medicinal herbs for the vast majority of their illnesses. The awareness of the diagnosis among hypertensive participants was below 10%. According to a recent national survey, 75-81% of the general population with hypertension are unaware of their disease, reflecting overall poor access to and under-utilization of health care services in Nepal.
Study limitation

The several limitations of this study should be noted. The cross-sectional nature of the study limits its ability to establish causal relationships between observed risk factors and hypertension. The prevalence of hypertension estimated in this study should be interpreted with caution. As evident from the Tsimane study, the prevalence of hypertension tends to be overestimated in cross-sectional analyses, highlighting the significance of longitudinal monitoring for accurate estimation.[31] The robustness of our multivariate analysis might be limited due to the small population size. We did not collect data on several important risk factors such as dietary fruits and vegetable consumption, salt intake, and level of physical activities partly due to the complexity of the procedures and partly due to our budgetary constraints. Similarly, we could not study important metabolic risk factors linked to hypertension such as diabetes mellitus, hyperlipidemia, and central adiposity due to the unacceptability of venipuncture and test that requires exposure (e.g., waist circumference) among Rautes which would have given deeper insight into the CVD risk of this population.

Despite these limitations, this study has several strengths. This study is the first to report the prevalence of hypertension and some of its important socio-demographic, behavioral, and metabolic covariates in this unique, difficult-to-reach, endangered population. Enrollment of the entire population, rigorous data collection protocol, and utilization of mixed-method study to get both quantitative and qualitative perspectives were among the strengths of our study.

Conclusion

Nearly one-third of the Raute nomadic hunter-gatherers of Western Nepal were found to be hypertensive in this study. Older age and the male sex were significantly associated with
hypertension. Despite the high burden, awareness of hypertension was very low among this population. Comprehensive longitudinal studies are needed to confirm the findings of this cross-sectional study and further investigate the relationship between both conventional and population-specific covariates and hypertension in the context of changing socio-economic environments and exposure to modernization. Urgent culture-centered community-based public health interventions with adequate community engagement are needed to limit the burden and reduce morbidities and mortality associated with hypertension in this endangered population.

Acknowledgment

We are grateful to all our study participants, Raute chieftain Mr. Surya Narayan Shahi, and former chieftain Mr. Mahin Bahadur Shahi, for their kind cooperation. We express our sincere gratitude for the collaboration and facilitation by Mr. Binod Kumar BC, field coordinator, Ms. Satya Devi Adhikari, social worker, and the public health service office of Surkhet. We thank all the data enumerators, and Mr. Ram Prasad Bhandari, for assistance during data collection and processing. We are thankful to Mr. Shital Bhandary (Associate Professor, Patan Academy of Health Sciences, Nepal), for assisting us in statistical analysis. We would also like to thank Dr. Philip McGuire, MD (Bella Coola General Hospital British Columbia, Canada) and Dr. Bibiana Cujec, (Professor, Faculty of Medicine and Dentistry, University of Alberta, Canada) for language editing and proofreading.

Author Contribution

TK, UBB, and UP conceptualized the study. TK, UBB, CS, and UP collected the data. All authors were involved in data analysis, interpretation, and draft preparation. All authors have critically revised and approved the final version.
Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Data availability statement

All data relevant to the study are included in the article or uploaded as supplementary information. Datasets are available from the Figshare repository, DOI: [https://doi.org/10.6084/m9.figshare.20358837.v2].

Competing Interest

None declared.

Patient Involvement

Raute participants were included during pretesting of quantitative and qualitative tools. Their feedback was incorporated accordingly. Raute chieftain coordinated with researchers to help them gather the necessary data. Social workers and relevant public health authorities will help disseminate the results to the participants.
References

