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ABSTRACT 1 
 2 
Background: Heterogeneity in the long-term metabolic response to dietary macronutrient 3 
composition can be partially explained by genetic factors. However, few studies have 4 
demonstrated reproducible gene-diet interactions (GDIs), likely due in part to measurement error 5 
in dietary intake estimation as well as insufficient capture of rare genetic variation. Discovery 6 
analyses in ancestry-diverse cohorts that include rare genetic variants from whole-genome 7 
sequencing (WGS) could help identify genetic variants modifying the effects of dietary 8 
macronutrient composition on glycemic phenotypes. 9 
 10 
Objective: We aimed to identify macronutrient GDIs across the genetic frequency spectrum 11 
associated with continuous glycemic traits in genetically and culturally diverse cohorts. 12 
 13 
Methods: We analyzed N=33,187 diabetes-free participants from 10 cohorts in the NHLBI 14 
Trans-Omics for Precision Medicine (TOPMed) program with WGS, self-reported diet, and 15 
glycemic traits (fasting glucose [FG], insulin [FI], and hemoglobin A1c [HbA1c]). We fit 16 
multivariable-adjusted linear mixed models for the main effect of diet, modeled as an isocaloric 17 
substitution of carbohydrate for fat, and for its interactions with genetic variants genome-wide. 18 
Tests were performed for both common variants and gene-based rare variant sets in each cohort 19 
followed by a combined cohort meta-analysis. 20 
 21 
Results: In main effect models, participants consuming more calories from carbohydrate at the 22 
expense of fat had modestly lower glycemic trait values (β per 250 kcal substitution for FG: -23 
0.030 mmol/L, p=2.7×10-6; lnFI: -0.008 log(pmol/L), p=0.17; HbA1c: -0.013 %, p=0.025). In 24 
GDI analyses, a common African ancestry-enriched variant (rs79762542; 78 kb upstream of the 25 
FRAS1 gene) reached study-wide significance (p = 1.14×10-8) indicating a higher HbA1c with 26 
greater proportion of calories from carbohydrate vs. fat among minor allele carriers only. This 27 
interaction was replicated in the UK Biobank cohort. Simulations revealed that there is (1) a 28 
substantial impact of measurement error on statistical power for GDI discovery at these sample 29 
sizes, especially for rare genetic variants, and (2) over 150,000 samples may be necessary to 30 
identify similar macronutrient GDIs under realistic assumptions about effect size and 31 
measurement error. 32 
 33 
Conclusions: Our analysis identified a potential genetic interaction modifying the dietary 34 
macronutrient-HbA1c association while highlighting the importance of precise exposure 35 
measurement and significantly increased sample size to identify additional similar effects. 36 
 37 
  38 
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INTRODUCTION 39 
 40 
Diet is an established modifiable factor associated with risk of type 2 diabetes (T2D) and related 41 
cardiometabolic diseases(1).  However, evidence is mixed regarding the ideal dietary 42 
macronutrient composition for risk reduction. Dietary interventions with differing proportions of 43 
energy from carbohydrates versus fat have shown varied efficacy for T2D risk reduction and 44 
substantial between-person heterogeneity in effects on cardiometabolic risk factors(2–4). 45 
Further, acute glycemic responses to meals with specific macronutrient composition are 46 
reproducible within individuals(5,6). Genetically different mouse strains have varying sensitivity 47 
of glycemic biomarkers to a high-fat diet(7) and to human-relevant dietary patterns(8). 48 
Retrospective analysis of human trials manipulating macronutrient intake have found genetic 49 
modifiers of glycemic response(9). Taken together, such studies suggest that genetics could be a 50 
key contributor to variability in the association between dietary macronutrient composition and 51 
glycemic health. 52 
 53 
Gene-diet interaction (GDI) studies aim to identify genetic variants that modify the association 54 
between dietary behaviors and health. Furthermore, GDI studies support differential associations 55 
of dietary factors with glycemic traits according to genotypes, using both hypothesis-driven(10) 56 
and hypothesis-free(11,12) strategies. However, in general, discovery and replication of gene-57 
diet interactions with T2D risk has been poor, possibly due to measurement error in assessing 58 
habitual diet, low statistical power for interaction analysis, and biological and behavioral 59 
heterogeneity across populations(13). Additionally, to date there has been little exploration of 60 
GDIs involving rare genetic variants, which affect a smaller proportion of the population but 61 
may have larger effect sizes(14). 62 
 63 
Our primary aim was to discover novel putative genetic modifiers for the association between 64 
dietary macronutrient composition and glycemic traits. To this end, we performed a GDI analysis 65 
using common and rare genetic variants in over 30,000 individuals with diverse ancestral 66 
backgrounds from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We 67 
focused on modeling a dietary carbohydrate-fat exchange, which can be reasonably assessed via 68 
self-reported diet questionnaires and can be straightforwardly modified in the context of a 69 
healthful diet. Furthermore, the use of whole-genome sequencing (WGS) permitted the analysis 70 
of rare variants using set-based association tests. As a secondary aim, we sought to inform 71 
subsequent GDI research by exploring the impact of dietary exposure measurement error on 72 
statistical power in the context of realistic effect size estimates. 73 
 74 
RESULTS 75 
 76 
We analyzed data from 33,178 individuals without diabetes (based on FG, HbA1c, or medication 77 
use) from 10 TOPMed program cohorts. Participants had diverse cohort-reported race/ethnicities 78 
including: African American (N = 6,158), American Indian (N = 35), Asian (N = 124), white (N 79 
= 19,721), and Hispanic/Latino (N = 7,114). Dietary carbohydrate and fat as a percentage of total 80 
energy intake on average were 50.5% (standard deviation = 8.5%) and 32.2% (6.9%), 81 
respectively, in the full pooled sample, estimated using validated food frequency questionnaires 82 
(FFQ) or 24-hour dietary recalls (24HR). Cohort-specific carbohydrate intake estimates (as 83 
percent of total energy [% kcal]), glycemic trait values (fasting glucose [FG], fasting insulin [FI; 84 
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or log-transformed, lnFI], and hemoglobin A1c [HbA1c]), and additional population 85 
characteristics are presented in Supp. Table S1 and Supp. Fig. S1.  86 
 87 
We first modeled the main association of macronutrient compositions with each of the glycemic 88 
traits. By adjusting for total energy and energy from protein, resulting regression estimates for 89 
carbohydrate represented a macronutrient exchange (increased 250kcals from carbohydrate 90 
replacing an equivalent 250kcals from fat; see Methods). Meta-analysis of the individual cohorts 91 
indicated that a higher proportion of kcal from carbohydrate at the expense of fat was associated 92 
with lower FG (-0.030 mmol/L / 250kcals; p = 2.2×10-6), lnFI (-0.008 log(pmol/L) / 250kcals; p 93 
= 0.15), and HbA1c (-0.012 %HbA1c / 250kcals; p = 0.029). Forest plots of these results are 94 
shown in Supp. Fig. S2. 95 
 96 
Common variant gene-diet interactions 97 
 98 
We sought to identify macronutrient GDIs with the maximal sample available in TOPMed 99 
program cohorts in order to provide a baseline for discovery and evaluate our assumptions about 100 
expected effect sizes. Common variants (MAF > 1%) were analyzed in a primary, single-variant 101 
analysis of gene-carbohydrate interactions, with the same regression adjustments as above. This 102 
GDI analysis produces interaction estimates for the difference in the macronutrient-glycemic 103 
trait association per alternate allele at the variant of interest. After genome-wide, cohort-specific 104 
analysis and cross-cohort meta-analysis, one variant reached a study-wide significance threshold 105 
of 1.67×10-8 (5×10-8 / 3 glycemic traits). Two additional variants passed a standard genome-wide 106 
threshold of 5×10-8 (Table 1). We note that this threshold is liberal given the greater testing 107 
burden involved in the analysis of multiple ancestry groups(15). Of these three, none had 108 
evidence of a genetic main effect on the associated trait. Results are visualized in Supp. Fig. S3 109 
for all variants and shown in Supp. Table S3 for variants with interaction p < 10-5. 110 
 111 
As the only variant reaching study-wide significance in the primary analysis, we looked deeper 112 
into the biological function of rs79762542 and the functional form of its interaction. Variant 113 
rs79762542 is observed on African-ancestry haplotypes and was discovered with respect to 114 
HbA1c. The variant does not have known regulatory activity based on epigenomic assays in 115 
RegulomeDB, but there is evidence for a role in regulating expression of the nearby gene 116 
FRAS1, especially in thyroid, where this gene is most strongly expressed (GTEx project). 117 
Colocalization analysis did not support a shared causal signal between our interaction results and 118 
thyroid-specific eQTL signal (posterior probability of shared causal variant = 0.003%). 119 
 120 
In genotype-stratified meta-analysis, HbA1c showed a modest negative association with 121 
increasing carbohydrate relative to fat intake in major allele homozygotes (-0.033 122 
%HbA1c/250kcals; p = 0.004) versus a positive association in minor allele carriers (0.10 123 
%HbA1c/250kcals; p = 0.42) that may not have reached significance due to the much lower 124 
sample size in this group (N = 1,055 across all studies). This genetic effect modification was 125 
moderately consistent across the cohorts in which HbA1c levels were studied and the minor 126 
allele of rs79762542 was observed (Fig. 1a,b; identical visualization in the African American 127 
race/ethnicity subset in Supp. Fig. S4a,b). Finally, with respect to the other glycemic traits in our 128 
analysis, interaction effects were directionally consistent but did not reach nominal significance 129 
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(0.02 mmol/L/allele/250kcals; p = 0.07 for FG and 0.003 log(pmol/L)/allele/250kcals; p = 0.74 130 
for lnFI). 131 
 132 
Lookups for the other two variants passing p < 5×10-8 revealed potential functional roles for 133 
these variants. Variant rs1288694 (common in multiple ancestries) impacted FG in our analysis. 134 
The variant is intronic to the FOXP1 gene and may regulate splicing of the same gene (GTEx 135 
project). FOXP1 has a demonstrated role in hepatic gluconeogenesis(16). Variant rs782681704 is 136 
observed on African-ancestry haplotypes and was discovered with respect to FI in our analysis. 137 
The variant is intronic to BRCC3 and has likely regulatory activity (RegulomeDB score of 0.59) 138 
but does not have clear evidence as an eQTL for BRCC3. 139 
 140 
We explored these three prioritized single-variant loci through sensitivity analysis (Supp. Figs. 141 
S5 [rs79762542] and S6 [all three variants]). Interaction effects were robust in population 142 
subsets: only males, only females, and individuals without obesity. Exclusion of individuals 143 
either with or without prediabetes (beyond the predefined exclusion of individuals with diabetes) 144 
partially attenuated the interaction signal; this might be expected due to the removal of a 145 
substantial portion of the glycemic trait spectrum. Further, adjustment for either a diet quality 146 
score (AHEI-2010) or smoking status (along with their genotype interactions) did not 147 
meaningfully impact estimates. Interaction estimates were also generally consistent in the 148 
African American race/ethnicity subset, indicating that the interactions for African ancestry-149 
specific variants do not solely reflect population stratification. 150 
 151 
Common variant replication 152 
 153 
For the three prioritized single-variant loci, we tested for replication of these signals in the UK 154 
Biobank (N=178,352 with 24-hour dietary assessment data(17) and glycemic biomarkers; see 155 
Methods). Of these, 5,183 individuals were included in fasting glucose analyses (based on 156 
fasting for at least eight hours prior to the associated blood draw). In the full, multi-ancestry 157 
group (Supp. Table S5), we saw nominal replication of the interaction at rs79762542 with 158 
respect to both HbA1c (the discovery trait; p = 0.025) and fasting glucose (p = 0.013; Fig. 1c). 159 
Because most of the prioritized variants were specific to African-ancestry individuals, we 160 
conducted a similar replication in just this subgroup of the UK Biobank (Supp. Table S6). This 161 
analysis supported the rs79762542 interaction influencing FG (p = 0.046). 162 
 163 
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  164 
Figure 1: Exploration of the rs79762542 interaction and replication. (a) Genotype-stratified 165 
dietary main effect estimates. (b) Stratified plots (one for each cohort with HbA1c available) 166 
display residualized HbA1c within strata defined by both genotype at rs79762542 (none vs. any 167 
minor alleles) and cohort-specific tertile of carbohydrate:fat ratio. (c) Similar stratified plots for 168 
the UKB replication cohort. For (b) and (c), the y-axis displays residuals after regressing the 169 
relevant trait (HbA1c or FG) on the set of covariates used in the replication analysis.  170 
 171 
Rare variant interactions 172 
 173 
Rare variants (MAF < 1%) were analyzed in gene-centric, set-based tests, which help to 174 
overcome power limitations for low-MAF variants by aggregating signal across multiple variants 175 
annotated to the same gene. We used three variant aggregation strategies to define sets: selecting 176 
missense variants, loss-of-function variants, or a broader coding + non-coding variant set 177 
annotated to each gene (see Methods). No rare variant interaction signals showed genome-wide 178 
significance (p < 0.05 / 28,111 total genes = 1.78×10-6; Supp. Table S4; Supp. Fig. S7). 179 
 180 
Since the set of rare variants used does not overlap with those from the common-variant tests, 181 
these gene-based tests can provide orthogonal evidence supporting common-variant signals 182 
while further clarifying potential effector genes. Each of the three prioritized single-variant 183 
findings were annotated to one or more genes based on proximity and/or expression-quantitative 184 
trait locus (eQTL) data. None of these pairings showed supporting gene-based signal for the 185 
corresponding glycemic trait, though the single study-wide significant variant (rs79762542, 186 
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discovered in relation to HbA1c) showed a nominal corresponding signal from the gene-based 187 
test of FRAS1 impacting FG (p = 0.028). 188 
 189 
Power calculations incorporating measurement error 190 
 191 
Given the modest discovery of GDIs despite the use of the maximal sample available within 192 
TOPMed cohorts and substantial harmonization effort, we sought to better understand the 193 
necessary power to detect expected GDI effects. Simulation-based power calculations for single-194 
variant tests were conducted with added noise to account for the known random measurement 195 
error in dietary data. Using literature-based anchors for expected effect sizes (Fig. 2a) and 196 
assuming a conservative but realistic dietary measurement reliability of 0.5 (see Methods for 197 
details), we established that a sample size of over 150,000 would be required to detect a GDI 198 
effect of 0.025 %HbA1c / allele / s.d. carbohydrate at genome-wide significance for a variant 199 
with MAF = 0.1 (Fig. 2b,c). As previously explored in the literature(18,19), power scaled 200 
approximately linearly with exposure measurement fidelity. If we alternatively assume perfect 201 
dietary exposure measurement, the associated sample size to detect the same effect was reduced 202 
to about 80,000 indicating the importance of accounting for this measurement error. The 203 
necessary sample size given realistic measurement reliabilities increased even further for lower-204 
frequency variants (e.g., almost 1.2 million for MAF = 1%).  205 
 206 
We extended this simulation-based power calculation approach to test multiple variants jointly, 207 
mimicking the variant set-based test implemented for rare variants. Assuming similar 208 
measurement fidelity and effect sizes as for single variants and fixing the sample size to match 209 
the full sample used here (~35,000), an aggregate test of 20 rare variants with a causal fraction of 210 
50% and MAF = 0.25% had negligible power (Fig. 2d). Power increased somewhat but remained 211 
low when incorporating larger effect sizes (as are known to be present for rare variant main 212 
effects on cardiometabolic traits)(20). For example, using an effect size of 0.1, approximately 213 
equal to the largest genetic main effect on HbA1c reported by Wheeler and colleagues(21), 214 
power increased to 0.16. 215 
 216 
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 217 
Figure 2: Power calculations for GEI incorporating exposure measurement error. For all plots 218 
above, HbA1c is used as a basis for parameter choices. (a) Genetic and dietary effect sizes on 219 
HbA1c for reference for potential interaction effects. (b) Simulation-based empirical power 220 
estimates are shown as a function of the interaction effect (x-axis), minor allele frequency (MAF; 221 
panels left-to-right), and diet measurement reliability (colors). (c) Bar plots show the estimated 222 
sample size needed to achieve 80% statistical power. Panels and colors are as in (b). (d) As in (a) 223 
but modeling empirical power for simulated aggregate tests of 20 rare variants with a causal 224 
fraction of 0.1 or 0.5 (indicated in panel labels). Additional assumptions for these simulations 225 
(full details in Methods): N = 35,000, phenotype mean of 5.5, phenotype standard deviation of 226 
0.5, exposure mean of 0, exposure standard deviation of 1, genetic main effect of 0.01, and 227 
environmental main effect of 0.2. 228 
 229 
 230 
 231 
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DISCUSSION 232 
 233 
Our goal was to investigate genotype-related variability in the association of dietary 234 
macronutrient composition with glycemic traits. Importantly, this was based on a regression 235 
strategy modeling an isocaloric increase in dietary carbohydrate at the expense of fat(22). We 236 
conducted our comprehensive analyses in cohorts with racial/ethnic diversity with data for both 237 
common and rare variants from WGS. We examined multiple single variants with potential 238 
modifying roles for the relationship of carbohydrate intake with glycemic traits, but did not find 239 
substantial evidence from gene-based tests for a role of rare variants in modifying this diet-240 
glycemia relationship. Furthermore, our simulation-based power analysis highlighted the impact 241 
of dietary measurement error on statistical power for the gene-diet interaction tests. 242 
 243 
Dietary main effect models indicated that an increase in carbohydrate at the expense of dietary 244 
fat was associated with lower fasting glucose and HbA1c. The impact of this macronutrient 245 
exchange on glucose homeostasis and diabetes risk is complex and likely depends on the 246 
respective macronutrient quality. Prior studies suggest null associations of total carbohydrate to 247 
total fat exchange on diabetes risk(23,24). However, an exchange of animal-sourced fat for 248 
carbohydrate or vegetable fat appears to have favorable associations with HbA1c(25,26).  249 
 250 
Our primary genome-wide common variant interaction analysis yielded an interaction between a 251 
250kcal carbohydrate-fat substitution and HbA1c with the African-ancestry rs79762542 variant, 252 
which was validated in the UK Biobank. Genotype stratified analyses suggested that minor allele 253 
carriers generally had a small negative association between carbohydrate and HbA1c (-0.033 254 
%HbA1c/250kcals; p = 0.004) versus a larger but non-significant association in minor allele 255 
carriers where the sample size was much lower (-0.10 %HbA1c/250kcals; p = 0.42). However, 256 
this precise pattern was not observed in all cohorts. These results warrant further exploration in 257 
additional cohorts with African ancestry individuals and dietary intervention studies to examine 258 
whether glycemic traits among minor allele carriers may benefit from higher fat and lower 259 
carbohydrate diet composition. This primary discovery was made with HbA1c as an outcome, 260 
but our results from set-based rare variant analysis and the UK Biobank replication suggest 261 
similar patterns with respect to other traits such as FG. Beyond GDI discovery, the GWIS results 262 
provided an opportunity to evaluate the effect size assumptions used in the power calculations. 263 
For example, the rs79762542 interaction had an effect size of 0.048 %HbA1c/allele/250 kcal 264 
carbohydrate, or 0.068 %HbA1c/allele/std. dev. carbohydrate. This effect size is somewhat larger 265 
than, but of a similar magnitude to, the relevant anchor for the power analysis (the referenced 266 
main effect association of carbohydrate with HbA1c(27)). 267 
 268 
This analysis leveraged WGS data along with multi-variant set-based tests to better incorporate 269 
rare variants (minor allele frequency [MAF] < 0.01). While these variants don’t contribute 270 
substantially to the overall population variance of glycemic or other traits, they tend to have 271 
larger effect sizes and thus may be important for the specific individuals carrying them(14). For 272 
example, phenylketonuria, a well-known inborn error of metabolism, acts through a rare-variant 273 
GDI in which severe adverse effects of phenylalanine intake are seen only in individuals with a 274 
particular genotype(28). In our study, despite helping to reinforce common variant signals, the 275 
rare variant analysis did not contribute additional findings after aggregation at the gene level. 276 
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Substantially larger sample sizes will likely be necessary to uncover macronutrient GDIs 277 
involving rare variants. 278 
 279 
We explored the statistical power for these interaction tests through simulations incorporating 280 
random dietary measurement error using available simulation-based power calculation software 281 
(ESPRESSO.GxE(29), for single variants) with additional extensions to allow for aggregate rare 282 
variant tests. We estimated that substantially higher sample sizes (almost five times that used in 283 
this study) are required for sufficient power to detect macronutrient-gene interactions at expected 284 
effect sizes obtained from genetics and nutrition literature. This prompts two directions of further 285 
inquiry. First, it suggests the importance of complementary approaches that assess where there is 286 
any whole-genome contribution to the diet-glycemia association, at least in observational 287 
datasets. These whole-genome analyses trade resolution for statistical power(30) and have a 288 
precedent for GDIs in smaller study samples(31). Second, it reinforces the importance of 289 
collecting dietary intake data in the growing group of large-scale biobanks and cohorts. 290 
Improvements in study design, data collection methods, and analysis that can improve quality of 291 
dietary assessments are also warranted. For example, conducting rigorous validation studies of 292 
the data collection tools and approaches and ascertaining repeated dietary data can greatly 293 
improve the precision of these measurements on a population level.  Advancements in 294 
objectively quantifying habitual diet from biospecimen samples are also underway and have 295 
potential to improve discovery for genetic analyses. 296 
 297 
An important strength of this study is the breadth of ethnic and cultural diversity of the sample 298 
(increasing the likelihood that findings are robust) and of genetic variation (with WGS data 299 
enabling exploration of ancestry-specific genetic variation across the frequency spectrum). We 300 
also conducted a systematic investigation into the available statistical power while incorporating 301 
both realistic degrees of measurement error and evidence-based estimations of realistic effect 302 
sizes for gene-macronutrient interactions. However, the diversity of the included study sample 303 
also introduces heterogeneity that may be problematic. For example, the cohorts used different 304 
dietary assessment tools to capture habitual intake, leading to differences in the degree and 305 
direction of random and systematic measurement error. This is compounded by general, 306 
culturally-driven differences in food intake across race/ethnicity groups. Further heterogeneity 307 
arises from the time of data collection; the perceptions of carbohydrate intake have trended as 308 
more and less healthful in recent decades, potential resulting in differential confounding between 309 
diet and other health-related behaviors depending on the time of data collection(32). Future work 310 
can step beyond broad macronutrient categories by harmonizing intakes of specific foods or 311 
dietary patterns and analyzing macronutrient subtypes (e.g., added sugar and specific fatty acids). 312 
These approaches, combined with improved methods for detecting rare variant gene-313 
environment interactions, will help utilize the increasing volume of WGS data to discover new 314 
GDIs relevant for metabolic disease risk. 315 
 316 
METHODS 317 

Whole-genome sequencing 318 

All genetic and phenotypic data used for this study were obtained from the NCBI Database of 319 
Genotypes and Phenotypes (dbGaP) and the research was approved under the Mass General 320 
Brigham IRB (protocol 2017P000531). WGS was conducted through the NHLBI TOPMed 321 
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program (Freeze 8 data release). Sequencing and alignment to the GRCh38 reference genome 322 
was performed across six centers across the US: Broad Institute of MIT and Harvard, Northwest 323 
Genomics Center, New York Genome Center, Illumina Genomic Services, PSOMAGEN 324 
(formerly Macrogen), Baylor College of Medicine Human Genome Sequencing Center, 325 
McDonnell Genome Institute (MGI) at Washington University. Data harmonization and joint 326 
variant discovery and genotype calling were performed within the TOPMed Informatics 327 
Research Center at the University of Michigan. Sequence quality control filters were as follows: 328 
estimated DNA sample contamination below 10% and at least 95% of the genome having 329 
coverage of at least 10x. After genotyping, variants were further filtered for Mendelian 330 
inconsistency (based on a support vector machine classifier) and excess heterozygosity. 331 
Additional sample quality control was performed within the Data Coordinating Center at the 332 
University of Washington, including: matching sex as annotated and inferred from WGS, 333 
concordance of WGS genotypes with prior array-based “fingerprints”, and agreement of inferred 334 
relatedness with expectations based on pedigrees. Additional details on the processing steps are 335 
available at: https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-methods-freeze-8. 336 

Global measures of ancestry and relatedness were calculated on the entire TOPMed Freeze 8 337 
sample by the TOPMed Data Coordinating Center. Genetic principal components reflecting 338 
ancestry were calculated using the PC-AiR method (allowing for related individuals)(33), and 339 
kinship matrices were calculated using the PC-Relate method (accounting for principal 340 
components)(34), both from the GENESIS R package. A sparse genetic relationship matrix 341 
containing only relationships of degree four or closer was extracted for analysis. Samples were 342 
grouped into race/ethnicity categories based on cohort-reported values. 343 

Harmonization of glycemic traits 344 

Phenotypes were harmonized across the 10 studies based on a protocol developed within the 345 
TOPMed Diabetes Working Group. Glycemic traits, including fasting glucose (FG; mmol/L), 346 
fasting insulin (FI; pmol/L), and glycated hemoglobin (HbA1c; %), were collected where 347 
available. Fasting (for FG and FI) was defined as at least 8 hours without food or drink. FG 348 
measurements made in blood rather than plasma were adjusted by multiplying by a correction 349 
factor of 1.13. When multiple values were available for a given participant, blood draws were 350 
chosen to favor measurements made at study baselines and in order to maximize overlap with 351 
time points in which dietary data were collected. Participants were excluded if their glycemic 352 
trait blood draw was more than one year before or after diet measurement or if they had diabetes 353 
(defined as any of: taking anti-diabetic medication, FG � 7 mmol/L, or HbA1c � 6.5%). Further 354 
study-specific details are available in the Supplementary Methods. Phenotype data 355 
harmonization and all other post-genome-wide analyses and visualizations were conducted using 356 
R version 4.1.1(35). Unless otherwise noted, all analyses including harmonization were 357 
performed on the NHLBI BioData Catalyst cloud computing platform(36). 358 

Harmonization of dietary data 359 

Estimates of dietary intake were derived from self-reported diet questionnaires, either food 360 
frequency questionnaires (FFQ), diet history, or 24-hour recalls (24HR). Reported quantities of 361 
food and beverage consumption were converted into daily nutrient intake estimates via standard 362 
nutrient databases (see Supplementary Methods for study-specific details), with energy and 363 
macronutrients (carbohydrate, protein and total fat) expressed in kilocalories/day (kcals/d). 364 
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Participants were excluded if responses were deemed implausible, based on having total caloric 365 
intake <600 kcals/d or >4800 kcals/d. Nutrient intake values were analyzed in units of kcals/d 366 
and winsorized at three standard deviations from the mean. Dietary fiber was represented in 367 
grams/day (g/d) and alcohol intake was reported as number of drinks per day. 368 

Genome-wide gene-diet interaction scans 369 

For each cohort and glycemic trait, four genome-wide gene-diet interaction scans were 370 
performed to identify diet-interacting loci: one for common variants, and three gene-based 371 
aggregate tests for rare variants using different variant masks (described below). Mixed linear 372 
models were used to allow for random effects of kinship capturing close family relationships 373 
(degree four relatives or closer). The linear model setup was as follows: 374 

��/����/�	
�� ~ � � ��� � � � ��� � � � ���������� 

Where � is the genotype at the variant of interest, ��� is dietary carbohydrate intake (kcals/d), 375 
and � is a random effect governed by a sparse kinship matrix. General covariates included sex, 376 
age, age2, five genetic principal components to capture genetic ancestry, cohort-reported 377 
race/ethnicity to capture potential confounding by ethnicity-related dietary behavior, and 378 
additional study-specific covariates (Supp. Table S2). Dietary protein intake and total energy 379 
(also expressed in kcals/d) were included as covariates to set up an isocaloric substitution model 380 
in which increases in CHO were implicitly exchanged for decreases in dietary fat. Dietary fiber 381 
(g/d), alcohol intake (standard drinks/d), and body mass index (BMI; kg/m2) were included as 382 
additional covariates to account for further lifestyle-related confounding. During null model 383 
fitting, heterogeneous variances were allowed within each cohort-reported race/ethnicity group 384 
(equivalent to including a random effect for this grouping variable). 385 

 Genome-wide interaction analysis was performed using the MAGEE package(37). Single-386 
variant analysis (glmm.gei function) was conducted for variants with MAF > 1%. METAL(38) 387 
was used to perform fixed effects meta-analysis across cohorts. Specifically, the 2-degree of 388 
freedom joint meta-analysis patch was used(39), with genetic main effect and interaction p-389 
values derived downstream based on the resulting effect and standard error estimates. 390 

Gene-centric, set-based rare-variant analysis (MAGEE function) was conducted for variants with 391 
MAF < 1%. Variant annotations derived from the WGSA v0.8 and WGSAParsr v6.3.8 were 392 
retrieved from the NCBI dbGaP database. A genome-wide interaction meta-analysis was 393 
conducted for each of three variant masks: loss of function variants 394 
(VEP_ensembl_Consequence has terms transcript_ablation, splice_acceptor_variant, 395 
splice_donor_variant, stop_gained, frameshift_variant, stop_lost, start_lost or 396 
transcript_amplification), missense variants (VEP_ensembl_Consequence has the term 397 
missense_variant), and a broad coding and noncoding filter (containing high-confidence loss-of-398 
function variants, missense variants, protein-altering variants, synonymous variants, variants 399 
overlapping enhancers, and variants overlapping promoters). MAGEE calculates three interaction 400 
p-values: an adjusted variance component-like test, a burden test (assuming a consistent direction 401 
of effect for all variants), and a hybrid test (which combines the first two p-values using Fisher’s 402 
method). P-values from the hybrid test were used here to balance the increased power of the 403 
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burden test with the possibility that its assumption of homogeneous effect directions is violated. 404 
Meta-analysis was then performed using a fixed-effects strategy. 405 

Linear mixed models without genotype terms, meant to understand the marginal dietary effects 406 
prior to considering genetic effects, were fit in R using analogous models to those with diet-407 
genotype interaction terms. Diet-genetic principal component interaction terms were excluded 408 
from these models and individuals in cohort-reported race/ethnicity groups with less than five 409 
members were excluded. Fixed effect meta-analysis of the CHO association (implicitly modeling 410 
an exchange with FAT due to the additional dietary covariates) was conducted using the meta 411 
package. 412 

Variant follow-up 413 

Sensitivity analysis was conducted to understand the impact of modeling choices on the 414 
interaction effect estimates derived in the genome-wide analysis. These linear mixed models 415 
were fit in R, with G×CHO interaction terms subject to fixed-effects meta-analysis using the 416 
meta package as with the models without genotype effects. Some of these involved subsets of the 417 
population: male and female subsets were tested separately, as well as subsets without obesity 418 
(BMI < 30 kg/m2) and with and without prediabetes (defined as FG > 5.6 mmol/L or HbA1c > 419 
5.7%). Additional models included adjustment for either smoking status (never/former/current, 420 
coded as 0/1/2 and analyzed as a continuous variable), the Alternative Healthy Eating Index 421 
2010(40) (a diet quality score), or a categorical coding of alcohol intake (none, modest [<1 422 
drink/day for females or <2 drinks/day for males], or high), where available. These models with 423 
additional covariate adjustments also included adjustment for their interactions with genotype. 424 
Finally, a model including genotype interaction terms for other main dietary components and 425 
lifestyle confounders (total energy, protein, fiber, and alcohol) was included. This type of 426 
residual confounding by genotype-covariate interaction terms has been previously 427 
documented(41), but would have decreased statistical power if included in the genome-wide 428 
analysis, especially for lower-frequency variants. 429 

Variant rs79762542 was investigated in greater depth as the only variant reaching study-wide 430 
significance. Based on its eQTL relationship impacting FRAS1 gene expression in thyroid from 431 
the GTEx v8 dataset (https://gtexportal.org/), we tested for colocalization of this signal with the 432 
carbohydrate interaction signal impacting HbA1c. Interaction summary statistics were retrieved 433 
in a window of 1Mb around the index variant rs79762542, and all thyroid-specific cis-eQTL 434 
summary statistics related to FRAS1 were retrieved from GTEx. Colocalization was tested using 435 
the coloc package for R, assuming a single causal variant (coloc.abf function).  436 

Replication analysis in the UK Biobank 437 

UKB is a large prospective cohort with both deep phenotyping and molecular data, including 438 
genome-wide genotyping, on over 500,000 individuals ages 40-69 living throughout the UK 439 
between 2006-2010(42). Genotyping, imputation, and initial quality control on the genetic 440 
dataset have been described previously(43). Analyses were conducted on genetic data release 441 
version 3, with imputation to a joint reference panel including the Haplotype Reference 442 
Consortium and the 1000 Genomes Project (1KGP), under UK Biobank application 27892. This 443 
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work was conducted under a Not Human Subjects Research determination (NHSR-4298 at the 444 
Broad Institute of MIT and Harvard).  445 
 446 
Ancestry group labels, genetic principal components, and labels defining an unrelated subset of 447 
individuals were retrieved from the Pan-UKBB project (https://pan.ukbb.broadinstitute.org/; data 448 
retrieved from UKB return of results number 2442). Only unrelated individuals were used for 449 
analysis, with additional removal of individuals who were pregnant or had diabetes at the study 450 
center visit. Two glycemic traits were available for testing in UKB: HbA1c and glucose 451 
(collected as a random glucose measurement and later to remove non-fasting individuals). 452 
Outliers for both traits (defined as more than 5 standard deviations from the mean) were 453 
removed. Dietary data came from one or more Oxford WebQ 24-hour dietary assessments(17) 454 
completed at the study center or during online follow-up over the course of approximately two 455 
years. Daily nutrient intake estimates (calculated centrally by the UKB) were averaged across all 456 
questionnaires for each individual and winsorized at three standard deviations from the mean. 457 
After all exclusions, 178,352 individuals without diabetes had available genotype, biomarker, 458 
and dietary data. 459 
 460 
Regression analysis in the UKB mirrored that of the primary analysis, replacing cohort-reported 461 
race/ethnicity with genetically-defined ancestry groups as defined by the Pan-UKBB project. 462 
Given the larger sample size available, gene-covariate interactions were included for dietary 463 
covariates (total energy, protein, fiber, and alcohol). When analyzing glucose, only the subset of 464 
individuals with reported fasting times of at least eight hours were included, reducing the sample 465 
size to 5,183. Due to the African ancestry-specificity of some of the top variants, a second 466 
replication analysis was performed in the African-ancestry subset of UKB. 467 

Power Calculations 468 

Interaction test power calculations were performed using the ESPRESSO.GxE R package, which 469 
uses a simulation-based approach to calculate empirical power estimates (given some sample 470 
size) and sample size requirements (to achieve 80% power). The following parameters were 471 
fixed for this analysis, chosen to mimic an analysis of HbA1c: random seed = 1, significance 472 
threshold = 5×10-8, phenotype mean = 5.5, phenotype standard deviation = 0.5, phenotype 473 
reliability = 1, genetic main effect = 0.1, exposure mean = 0, exposure standard deviation = 1, 474 
exposure main effect = 0.2. The following parameters were varied: interaction effect {0.025, 475 
0.0375, 0.05, 0.0625, 0.075, 0.0875, 0.1}, MAF {0.01, 0.05, 0.1, 0.5}, and exposure reliability 476 
{0.25, 0.5, 0.75, 1}. Here, reliability is used to quantify the simulated measurement error of the 477 
phenotype and exposure and is equivalent to an intraclass correlation coefficient (ratio of 478 
between-subject variance to total [between-subject plus measurement error] variance). 479 

To enable simulation-based power calculations for aggregate tests of rare variants while 480 
accounting for exposure measurement error, we developed an extension of the ESPRESSO.GxE 481 
package, called ESPRESSO.GxE.RV. In this extension, the basic structure of the simulations 482 
remains the same, but an additional parameter allows the user to specify a number of variants 483 
(M) to test in aggregate. Within each simulation run, M variants are simulated, with some portion 484 
having equal interaction and main effects on the outcome (according to a user-specified causal 485 
variant fraction) and the rest generated randomly. The final p-value from that simulation is 486 
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calculated using Fisher’s method on the full set of M p-values. The following parameters were 487 
given different values for this set of simulations: interaction effect {0.025, 0.05, 0.075, 0.1, 488 
0.125, 0.15, 0.175, 0.2}, MAF {0.0025, 0.005, 0.0075, 0.01}. Other parameters were specific to 489 
rare variant tests: number of variants per aggregate test {1, 5, 10, 20} and causal fraction {0.1, 490 
0.25, 0.5, 1}. Code for this extension of the package can be found on GitHub: 491 
https://github.com/kwesterman/ESPRESSO.GxE.RV. 492 

To provide context for realistic gene-diet interaction effect sizes despite few well-replicated 493 
examples of such interactions for glycemic traits in the literature, we retrieved results from 494 
variants reaching significance in a recent trans-ancestry GWAS for HbA1c(21) and an estimated 495 
effect for the carbohydrate-HbA1c relationship from a recent nutritional epidemiological 496 
analysis(27). 497 
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Data described in the manuscript will be made available upon request pending application and 543 
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TABLES  
 
Table 1: Top variants interacting with carbohydrate intake from the common-variant GWIS. 

Trait rsID Chromosome Effect 
Allele 

Avg. 
EAF 

Main effect 
estimate 

Interaction 
estimate 

Pinteraction 

HbA1c rs79762542 4 G 0.03 
-0.013 [-0.038-

0.012] 
0.048 [0.031-

0.064] 1.1×10-8 

FG rs1288694 3 C 0.61 
-0.003 [-0.011-

0.004] 
0.016 [0.01-

0.022] 1.9×10-8 

lnFI rs782681704 X G 0.01 
-0.049 [-0.209-

0.11] 
0.284 [0.182-

0.385] 4.6×10-8 

Interaction estimates with 95% CIs are given in units of [trait units / allele / 250 kcal carbohydrate]. All variants 
passed a significance threshold of Pinteraction < 5×10-8. 
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