Effectiveness of the BNT162b2 vaccine against SARS-CoV-2 infection among children and adolescents in Qatar

Hiam Chemaitelly, PhD1,2,3*, Sawsan AlMukdad, MSc1,2, Houssein H. Ayoub, PhD4, Heba N. Altarawneh, MD1,2,3, Peter Coyle, MD5,6,7, Patrick Tang, MD PhD8, Hadi M. Yassine, PhD6,9, Hebah A. Al-Khatib, PhD6,9, Maria K. Smatti, MSc6,9, Mohammad R. Hasan, PhD8, Zaina Al-Kanaani, PhD5, Einas Al-Kuwari, MD5, Andrew Jeremijenko, MD5, Anvar Hassan Kaleeckal, MSc5, Ali Nizar Latif, MD5, Riyazuddin Mohammad Shaik, MSc5, Hanan F. Abdul-Rahim, PhD10, Gheyath K. Nasrallah, PhD6,9, Mohamed Ghaith Al-Kuwari, MD5,11, Hamad Eid Al-Romahi, MD12, Adeel A. Butt, MBBS MS3,5,13, Mohamed H. Al-Thani, MD12, Abdullatif Al-Khal, MD5, Roberto Bertollini, MD MPH12, and Laith J. Abu-Raddad, PhD1,2,3,10*

1Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
2World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation – Education City, Doha, Qatar
3Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, New York, USA
4Mathematics Program, Department of Mathematics, Statistics, and Physics, College of Arts and Sciences, Qatar University, Doha, Qatar
5Hamad Medical Corporation, Doha, Qatar
6Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
7Wellcome-Wolfson Institute for Experimental Medicine, Queens University, Belfast, United Kingdom
8Department of Pathology, Sidra Medicine, Doha, Qatar
9Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
10Department of Public Health, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
11Primary Health Care Corporation, Doha, Qatar
12Ministry of Public Health, Doha, Qatar
13Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA

Word count: Abstract: 266 words, Main Text: 3,075 words.
Number of tables: 3.
Number of figures: 3.
Running head: Vaccine effectiveness in children and adolescents.
Keywords: COVID-19; variant; Omicron; vaccination; cohort study; immunity; epidemiology.

*Correspondence to Dr. Hiam Chemaitelly, E-mail: hsc2001@qatar-med.cornell.edu or Professor Laith J. Abu-Raddad, E-mail: lja2002@qatar-med.cornell.edu.
Abstract

Background: The BNT162b2 COVID-19 vaccine is authorized for children 5-11 years of age and adolescents 12-17 years of age, but in different dose sizes. We assessed BNT162b2 real-world effectiveness against SARS-CoV-2 infection among children and adolescents in Qatar.

Methods: Three matched, retrospective, target-trial, cohort studies were conducted to compare incidence of SARS-CoV-2 infection in the national cohort of vaccinated individuals to incidence in the national cohort of unvaccinated individuals. Associations were estimated using Cox proportional-hazards regression models.

Results: Effectiveness of the 10 µg dose for children against Omicron infection was 25.7% (95% CI: 10.0-38.6%). It was highest at 49.6% (95% CI: 28.5-64.5%) right after the second dose, but waned rapidly thereafter and was negligible after 3 months. Effectiveness was 46.3% (95% CI: 21.5-63.3%) among those aged 5-7 years and 16.6% (-4.2-33.2%) among those aged 8-11 years. Effectiveness of the 30 µg dose for adolescents against Omicron infection was 30.6% (95% CI: 26.9-34.1%), but many adolescents were vaccinated months earlier. Effectiveness waned with time after the second dose. Effectiveness was 35.6% (95% CI: 31.2-39.6%) among those aged 12-14 years and 20.9% (13.8-27.4%) among those aged 15-17 years. Effectiveness of the 30 µg dose for adolescents against pre-Omicron infection was 87.6% (95% CI: 84.0-90.4%) and waned relatively slowly after the second dose.

Conclusions:

Pediatric vaccination is associated with modest and rapidly waning protection against Omicron infection. Adolescent vaccination is associated with stronger and more durable protection, perhaps because of the larger dose size. Age at such young age appears to play a role in
determining vaccine protection, with greater protection observed in younger than older children or adolescents.
Introduction

The BNT162b2\(^1\) (Pfizer-BioNTech) mRNA Coronavirus Disease 2019 (COVID-19) vaccine has been authorized for use among adolescents 12-17 years of age and children 5-11 years of age, but in two formulations with different dose sizes, 30 µg versus 10 µg, respectively.\(^1,2\) Qatar launched mass COVID-19 immunization campaigns using these vaccines, first among adolescents in several phases starting in spring of 2021, and in February 2022 among children 5-11 years of age.

We assessed real-world effectiveness of the two-dose primary-series against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection for the pediatric 10 µg BNT162b2 vaccine among children and the 30 µg BNT162b2 vaccine among adolescents. This was done in a national study in Qatar, a country of 2.8 million people\(^3\) that experienced five SARS-CoV-2 waves dominated sequentially by the original virus,\(^3\) Alpha,\(^4\) Beta,\(^5\) Omicron BA.1 and BA.2,\(^6\) and currently Omicron BA.4 and BA.5,\(^7\) in addition to a prolonged low-incidence phase dominated by Delta.\(^8\)

Methods

Study population and data sources

This study was conducted in the resident population of Qatar. It analyzed the national, federated databases for COVID-19 laboratory testing, vaccination, hospitalization, and death, retrieved from the integrated, nationwide, digital-health information platform. Databases include all SARS-CoV-2-related data and associated demographic information, with no missing information, since pandemic onset, such as all polymerase chain reaction (PCR) tests, and starting from January 5, 2022 onward, rapid antigen tests conducted at healthcare facilities. Qatar
has unusually diverse demographics in that 89% of the population are expatriates from over 150 countries. More detailed descriptions of Qatar’s population and of the SARS-CoV-2 national databases have been reported previously.

Study design and cohorts

Three matched, retrospective cohort studies that emulated randomized “target” trials were conducted to investigate BNT162b2 effectiveness in children aged 5-11 years and in adolescents aged 12-17 years ≥14 days after the second vaccine dose. In each study, we compared incidence of infection or of severe, critical, or fatal COVID-19 in the national cohort of infection-naïve individuals who completed the two-dose primary-series of the BNT162b2 vaccine (designated as the vaccinated cohort) to the national control cohort of individuals who were infection-naïve and unvaccinated (designated as the control cohort).

Documentation of infection in all cohorts was based on positive PCR or rapid antigen tests. Laboratory methods are in Supplementary Appendix Section S1. Classification of COVID-19 case severity (acute-care hospitalizations), criticality (intensive-care-unit hospitalizations), and fatality followed World Health Organization guidelines (Section S2).

Cohort matching and follow-up

Vaccinated and infection-naïve individuals were exact-matched in a one-to-one ratio by sex, age, nationality, and comorbidity count (none, one, two or more comorbidities) to unvaccinated and infection-naïve individuals in the control cohort, to account for known differences in SARS-CoV-2 risk of exposure in Qatar. Matching by these factors was previously shown to provide adequate control of differences in risk of infection exposure in Qatar in studies of different epidemiologic designs and that included control groups to test for null effects.
Matching was also done by calendar month of the second vaccine dose for the vaccinated cohort and of SARS-CoV-2-negative test for the control cohort. That is, individuals who received their second dose in a specific month were matched to unvaccinated individuals who had a record of a SARS-CoV-2-negative test in that same calendar month (Figures S1-S3). This was to ensure that individuals had active presence in Qatar at the same time. Matching was performed iteratively to ensure that individuals in the control cohort were alive, infection-free, and unvaccinated at the start of follow-up.

Each matched pair was followed from the calendar day when the vaccinated individual completed 14 days after the second dose. For exchangeability, 10,22 both members of each matched pair were censored when the vaccinated individual received a third (booster) vaccine dose, or when a control individual received a first vaccine dose. Accordingly, individuals were followed up until the first of any of the following events: a documented SARS-CoV-2 infection (defined as the first PCR-positive or rapid-antigen-positive test after the start of follow-up, regardless of symptoms), or a third-dose (booster) vaccination for primary-series vaccinated individuals (with matched-pair censoring), or first-dose vaccination for controls (with matched-pair censoring), or death, or end of study censoring.

Children Omicron 10 µg BNT162b2 Study

This study estimated effectiveness of the pediatric 10 µg BNT162b2 vaccine against infection with an Omicron subvariant in children aged 5-11 years, as children vaccination started only after onset of the Omicron wave in Qatar. 6,10,23 Any child who received two doses of this vaccine between February 3, 2022 (earliest record for two-dose vaccination in children) and July 12, 2022 (end of study) was eligible for inclusion in the vaccinated cohort provided that the individual had no record of infection before the start of follow-up, on the 14th day after the
second dose. Any individual with a SARS-CoV-2-negative test during the study was eligible for inclusion in the control cohort, provided that the individual had no record of infection or vaccination before the start of follow-up.

Adolescents Pre-Omicron 30 µg BNT162b2 Study

This study estimated effectiveness of the 30 µg BNT162b2 vaccine against infection with a pre-Omicron variant in adolescents aged 12-17 years. Any adolescent who received two doses of the BNT162b2 vaccine between February 1, 2021 (earliest record for two-dose vaccination in adolescents) and November 30, 2021 (end of study) was eligible for inclusion in the vaccinated cohort, provided that the individual had no record of infection before the start of follow-up. Follow-up was from the 14th day after the second dose until November 30, 2021 (first evidence of Omicron in Qatar6,10,23 to ensure that all incidence was due to a pre-Omicron variant). Any individual with a SARS-CoV-2-negative test during the study was eligible for inclusion in the control cohort, provided that the individual had no record of infection or vaccination before the start of follow-up.

Adolescents Omicron 30 µg BNT162b2 Study

This study estimated effectiveness of the 30 µg BNT162b2 vaccine against infection with an Omicron subvariant in adolescents aged 12-17 years. Any adolescent who received two doses of the BNT162b2 vaccine between February 1, 2021 and July 12, 2022 (end of study) was eligible for inclusion in the vaccinated cohort, provided that the individual had no record of infection or a third-dose vaccination before the start of follow-up. Follow-up was from December 19, 2021 (onset of the Omicron wave in Qatar)6,10,23 if second-dose vaccination occurred ≥14 days before this date (before the Omicron wave) and from the 14th day after the second dose otherwise. Any individual with a SARS-CoV-2-negative test between February 1, 2021 and July 12, 2022 was
eligible for inclusion in the control cohort, provided that the individual had no record of infection or vaccination before the start of follow-up.

Statistical analysis

Eligible and matched cohorts were described using frequency distributions and measures of central tendency, and were compared using standardized mean differences (SMDs). An SMD of ≤ 0.1 indicated adequate matching. Cumulative incidence of infection (defined as the proportion of individuals at risk, whose primary endpoint during follow-up was a breakthrough infection for the vaccinated cohort, or an infection for the control cohort) was estimated using the Kaplan–Meier estimator method. Incidence rate of infection in each cohort, defined as the number of identified infections divided by the number of person-weeks contributed by all individuals in the cohort, was estimated, with a corresponding 95% confidence interval (CI) using a Poisson log-likelihood regression model with the Stata 17.0 `stptime` command.

Hazard ratios, comparing incidence of infection in the cohorts and corresponding 95% CIs, were calculated using Cox regression adjusted for the matching factors with the Stata 17.0 `stcox` command. Schoenfeld residuals and log-log plots for survival curves were used to test the proportional-hazards assumption. CIs were not adjusted for multiplicity; thus, they should not be used to infer definitive differences between groups. Interactions were not considered. Vaccine effectiveness was estimated as the 1-adjusted hazard ratio.

Subgroup analyses were conducted to investigate durability of vaccine protection. Adjusted hazard ratios were calculated, stratified by month since second dose or by sub-cohort of those vaccinated at different times. Subgroup analyses were also conducted to investigate differences in vaccine protection among those aged 5-7 years compared to those aged 8-11 years, and those aged 12-14 years compared to those aged 15-17 years. Sensitivity analyses adjusting
effectiveness estimates for differences in testing frequency between cohorts were conducted. Statistical analyses were conducted using Stata/SE version 17.0 (Stata Corporation, College Station, TX, USA).

Oversight

Hamad Medical Corporation and Weill Cornell Medicine-Qatar Institutional Review Boards approved this retrospective study with a waiver of informed consent. The study was reported following Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines. The STROBE checklist is found in Table S1.

Results

Children and adolescent vaccination

Between February 3, 2022 and July 12, 2022, 27,244 children aged 5-11 years received two doses of the pediatric 10 µg BNT162b2 vaccine. Median date of the first dose was March 23, 2022, and median date of the second dose was April 14, 2022. Median time between the first and second doses was 21 days (interquartile range (IQR), 21-21 days). None of the children received a third vaccine dose.

Between February 1, 2021 and July 12, 2022, 104,020 adolescents aged 12-17 years received at least two vaccine doses, of whom 102,536 (98.6%) received two doses of the 30 µg BNT162b2 vaccine. Median date of the first dose was June 28, 2021, and median date of the second dose was July 25, 2021. A total of 29,856 adolescents received a third (booster) dose. Median date of the third dose was March 18, 2022. Median time between the first and second doses was 28 days (IQR, 21-28 days) and between the second and third doses was 243 days (IQR, 215-284 days).

Children Omicron 10 µg BNT162b2 Study
Figure S1 shows the study population selection process and Table 1 describes the full and matched cohort characteristics. Matched cohorts each included 18,728 children. The study was conducted on the total children population of Qatar; thus, the study population is broadly representative of the internationally diverse pediatric population of Qatar (Table S2).

Median time of follow-up was 69 days (IQR, 31-97 days) for the vaccinated cohort and 69 days (IQR, 30-97 days) for the control cohort (Figure 1). There were 184 infections in the vaccinated cohort and 248 infections in the control cohort during follow-up (Figure S1). None of these infections progressed to severe, critical, or fatal COVID-19. Infection incidence coincided with time when incidence was due to Omicron BA.1, BA.2, BA.4, or BA.5 subvariants, but after the peak of the major BA.1 and BA.2 wave in mid-January of 2022. Cumulative incidence of infection was estimated at 2.1% (95% CI: 1.7-2.4%) for the vaccinated cohort and 2.4% (95% CI: 2.0-2.7%) for the control cohort, 110 days after the start of follow-up (Figure 1A).

The overall hazard ratio for infection, adjusted for sex, age, 10 nationality groups, comorbidity count, and calendar month of the second dose/SARS-CoV-2-negative test, was estimated at 0.74 (95% CI: 0.61-0.90; Table 2). Effectiveness of the pediatric 10 µg BNT162b2 vaccine against Omicron infection was estimated at 25.7% (95% CI: 10.0-38.6%). Effectiveness declined with time after second dose (Figure 1B). It was highest at 49.6% (95% CI: 28.5-64.5%) right after the second dose, but waned rapidly thereafter and was negligible after 3 months.

Stratified analyses by age group estimated the overall adjusted hazard ratio at 0.54 (95% CI: 0.37-0.79) among those aged 5-7 years and at 0.83 (95% CI: 0.67-1.04) among those aged 8-11 years. Corresponding vaccine effectiveness was 46.3% (95% CI: 21.5-63.3%) and 16.6% (-4.2-33.2%), respectively.

Adolescents Pre-Omicron 30 µg BNT162b2 Study
Figure S2 shows the study population selection process and Table 3 describes the full and matched cohort characteristics. Matched cohorts each included 23,317 adolescents. The study was conducted on the total adolescent population of Qatar; thus, the study population is representative of Qatar’s adolescents (Table S2).

Median time of follow-up was 45 days (IQR, 16-88 days) for the vaccinated cohort and 43 days (IQR, 15-85 days) for the control cohort (Figure 2A). There were 67 infections in the vaccinated cohort and 523 infections in the control cohort during follow-up (Figure S2). None of these infections progressed to severe, critical, or fatal COVID-19. Infection incidence coincided with time when Alpha, Beta, and especially Delta dominated incidence.\(^8,9,26,27\) Cumulative incidence of infection was estimated at 0.8% (95% CI: 0.6-1.0%) for the vaccinated cohort and at 4.1% (95% CI: 3.7-4.6%) for the control cohort, 135 days after the start of follow-up (Figure 2A).

The overall adjusted hazard ratio for infection was estimated at 0.12 (95% CI: 0.10-0.16; Table 2). Effectiveness of the 30 µg BNT162b2 vaccine against infection with a pre-Omicron variant was estimated at 87.6% (95% CI: 84.0-90.4%). Effectiveness declined with time after the second dose (Figure 3A). It was highest at 95.3% (95% CI: 92.0-97.2%) right after the second dose, but waned (relatively) slowly thereafter.

Stratified analyses by age group estimated the overall adjusted hazard ratio at 0.11 (95% CI: 0.07-0.16) among those aged 12-14 years and at 0.14 (95% CI: 0.10-0.20) among those aged 15-17 years. Corresponding vaccine effectiveness was 89.4% (95% CI: 84.5-92.7%) and 85.7% (79.7-89.8%), respectively.

Adolescents Omicron 30 µg BNT162b2 Study
Figure S3 shows the study population selection process and Table 3 describes the full and matched cohort characteristics. Matched cohorts each included 17,903 adolescents. The study is representative of the adolescent population of Qatar (Table S2).

Median time of follow-up was 162 days (IQR, 48-205 days) for the vaccinated cohort and 149 days (IQR, 34-205 days) for the control cohort (Figure 2B). There were 2,520 infections in the vaccinated cohort during follow-up, of which one progressed to critical COVID-19, and 3,337 infections in the control cohort, of which one progressed to severe and another to critical COVID-19 (Figure S3). Infection incidence coincided initially with the major Omicron BA.1 and BA.2 wave in January of 2022 (Figure 2B). Subsequently, infection incidence was due to BA.1, BA.2, BA.4, or BA.5 subvariants. Cumulative incidence of infection was estimated at 15.9% (95% CI: 15.3-16.4%) for the vaccinated cohort and at 20.7% (95% CI: 20.1-21.3%) for the control cohort, 195 days after the start of follow-up (Figure 2B).

The overall adjusted hazard ratio for infection was estimated at 0.69 (95% CI: 0.66-0.73; Table 2). Effectiveness of the 30 µg BNT162b2 vaccine against infection with an Omicron subvariant was estimated at 30.6% (95% CI: 26.9-34.1%). Effectiveness declined with time after the second dose (Figure 3B). It was highest at 51.3% (95% CI: 34.9-63.6%) for those who had their second dose recently, but negligible for those who completed their primary series between February 1, 2021 and June 30, 2021.

Stratified analyses by age group estimated the overall adjusted hazard ratio at 0.64 (95% CI: 0.60-0.69) among those aged 12-14 years and at 0.79 (95% CI: 0.73-0.86) among those aged 15-17 years. Corresponding vaccine effectiveness was 35.6% (95% CI: 31.2-39.6%) and 20.9% (13.8-27.4%), respectively.

Discussion
The pediatric 10 µg BNT162b2 dose for children was associated with only modest protection against infection with an Omicron subvariant at ~25%. This protection was also short lived, declining from ~50% right after the second dose to negligible levels after 3 months. Meanwhile, the 30 µg BNT162b2 dose for adolescents was associated with stronger protection against Omicron infection and slower waning, suggesting a critical role of vaccine dose size. Overall protection of the 30 µg BNT162b2 dose was ~30%, but many adolescents were vaccinated months earlier. For adolescents vaccinated concurrently with children, protection was at ~50%, twice that for children.

Protection of the 30 µg BNT162b2 dose was stronger against infection with a pre-Omicron variant and waned (relatively) slowly. Protection was at ~95% right after the second dose and remained strong at >50% for at least 5 months. Overall, protection and waning patterns of the 30 µg BNT162b2 dose among adolescents paralleled those among adults, though protection was slightly stronger among adolescents.9,28

Age appeared to play a role in determining the level of protection. Across analyses, vaccine protection against Omicron infection was higher in younger than older children or adolescents. For children, protection was at ~45% among those aged 5-7 years, but only ~15% among those aged 8-11 years. For adolescents, protection was at ~35% among those aged 12-14 years, but only ~20% among those aged 15-17 years. These findings are consistent with evidence on vaccine protection among children and adolescents in other countries.2,29-33

This study has limitations. With the lower severity of SARS-CoV-2 infection among children32,34 and the lower severity of Omicron infections,35,36 there were too few severe,12 critical,12 or fatal13 COVID-19 cases to estimate vaccine effectiveness against severe forms of COVID-19. We investigated incidence of documented infections, but other infections may have occurred and
gone undocumented. Undocumented infections confer immunity or boost existing immunity, thereby perhaps affecting estimates of vaccine effectiveness, if differing among cohorts.37 Testing frequency differed between cohorts, mainly related to different testing guidelines for travel for vaccinated and unvaccinated individuals, but sensitivity analyses adjusting for these differences showed overall similar findings (Table S3).

As an observational study, investigated cohorts were neither blinded nor randomized, so unmeasured or uncontrolled confounding cannot be excluded. While cohorts were matched by sex, age, nationality, and comorbidity count, this was not possible for other factors such as geography, as such data were unavailable. However, Qatar is essentially a city state and infection incidence was broadly distributed across neighborhoods.

Matching was done to control for factors that affect infection exposure in Qatar.3,14-17 The matching prescription had already been investigated in previous studies of different epidemiologic designs, and using control groups to test for null effects.9,18-21 These control groups included unvaccinated cohorts versus vaccinated cohorts within two weeks of the first dose,9,18-20 when vaccine protection is negligible,1 and mRNA-1273- versus BNT162b2-vaccinated cohorts, also in the first two weeks after the first dose.21 These studies have shown that this prescription provides adequate control of differences in infection exposure.9,18-21 The above analyses were implemented using Qatar’s total population of children and adolescents with large sample sizes; thus, perhaps minimizing the likelihood of bias.

In conclusion, the pediatric 10 µg BNT162b2 dose for children is associated with modest and rapidly waning protection against Omicron infection. Meanwhile, the 30 µg BNT162b2 dose for adolescents is associated with a stronger and more durable protection, suggesting a critical role of dose size in determining vaccine protection. Protection of the 30 µg BNT162b2 dose was
strong against infection with a pre-Omicron variant and waned relatively slowly. Age at such young age appears to influence vaccine protection, with higher protection observed in younger than older children or adolescents.
Sources of support and acknowledgements

We acknowledge the many dedicated individuals at Hamad Medical Corporation, the Ministry of Public Health, the Primary Health Care Corporation, Qatar Biobank, Sidra Medicine, and Weill Cornell Medicine-Qatar for their diligent efforts and contributions to make this study possible. The authors are grateful for institutional salary support from the Biomedical Research Program and the Biostatistics, Epidemiology, and Biomathematics Research Core, both at Weill Cornell Medicine-Qatar, as well as for institutional salary support provided by the Ministry of Public Health, Hamad Medical Corporation, and Sidra Medicine. The authors are also grateful for the Qatar Genome Programme and Qatar University Biomedical Research Center for institutional support for the reagents needed for the viral genome sequencing. The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the article. Statements made herein are solely the responsibility of the authors.

Author contributions

HC co-designed the study, performed the statistical analyses, and co-wrote the first draft of the article. LJA conceived and co-designed the study, led the statistical analyses, and co-wrote the first draft of the article. PT and MRH conducted multiplex, RT-qPCR variant screening and viral genome sequencing. HY, HAK, and MS conducted viral genome sequencing. All authors contributed to data collection and acquisition, database development, discussion and interpretation of the results, and to the writing of the manuscript. All authors have read and approved the final manuscript.

Competing interests
Dr. Butt has received institutional grant funding from Gilead Sciences unrelated to the work presented in this paper. Otherwise, we declare no competing interests.
References

Table 1. Baseline characteristics of eligible and matched vaccinated and control cohorts in the study of effectiveness of the pediatric 10 µg BNT162b2 vaccine among children aged 5-11 years against infection with an Omicron subvariant (Children Omicron 10 µg BNT162b2 Study).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Full eligible cohorts</th>
<th>SMD(^\ddagger)</th>
<th>Full eligible cohorts</th>
<th>SMD(^\ddagger)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vaccinated cohort</td>
<td>Control cohort</td>
<td>Vaccinated cohort</td>
<td>Control cohort</td>
</tr>
<tr>
<td>Median age (IQR)—years</td>
<td>N=21,888</td>
<td>N=91,870</td>
<td>N=18,728</td>
<td>N=18,728</td>
</tr>
<tr>
<td>Age—years</td>
<td>8 (7-10)</td>
<td>8 (6-9)</td>
<td>0.32(^\ddagger)</td>
<td>8 (7-10)</td>
</tr>
<tr>
<td>5</td>
<td>1,874 (8.6)</td>
<td>17,503 (19.1)</td>
<td>1,802 (9.6)</td>
<td>1,802 (9.6)</td>
</tr>
<tr>
<td>6</td>
<td>2,768 (12.7)</td>
<td>14,190 (15.5)</td>
<td>2,512 (13.4)</td>
<td>2,512 (13.4)</td>
</tr>
<tr>
<td>7</td>
<td>3,175 (14.5)</td>
<td>13,526 (14.7)</td>
<td>2,769 (14.8)</td>
<td>2,769 (14.8)</td>
</tr>
<tr>
<td>8</td>
<td>3,381 (15.5)</td>
<td>12,555 (13.7)</td>
<td>2,850 (15.2)</td>
<td>2,850 (15.2)</td>
</tr>
<tr>
<td>9</td>
<td>3,331 (15.2)</td>
<td>12,099 (13.2)</td>
<td>2,847 (15.2)</td>
<td>2,847 (15.2)</td>
</tr>
<tr>
<td>10</td>
<td>3,593 (16.4)</td>
<td>10,903 (11.9)</td>
<td>2,946 (15.7)</td>
<td>2,946 (15.7)</td>
</tr>
<tr>
<td>11</td>
<td>3,766 (17.2)</td>
<td>11,094 (12.1)</td>
<td>3,002 (16.0)</td>
<td>3,002 (16.0)</td>
</tr>
<tr>
<td>Sex</td>
<td>11,026 (50.4)</td>
<td>46,950 (51.1)</td>
<td>0.01</td>
<td>9,374 (50.1)</td>
</tr>
<tr>
<td>Male</td>
<td>10,862 (49.6)</td>
<td>44,920 (48.9)</td>
<td>9,354 (49.9)</td>
<td>9,354 (49.9)</td>
</tr>
<tr>
<td>Nationality(^3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bangladeshi</td>
<td>567 (2.6)</td>
<td>1,033 (1.1)</td>
<td>373 (2.0)</td>
<td>373 (2.0)</td>
</tr>
<tr>
<td>Egyptian</td>
<td>718 (3.3)</td>
<td>10,289 (11.2)</td>
<td>718 (3.8)</td>
<td>718 (3.8)</td>
</tr>
<tr>
<td>Filipino</td>
<td>2,918 (13.3)</td>
<td>2,123 (2.3)</td>
<td>1,542 (8.2)</td>
<td>1,542 (8.2)</td>
</tr>
<tr>
<td>Indian</td>
<td>12,822 (58.6)</td>
<td>23,924 (26.0)</td>
<td>11,951 (63.8)</td>
<td>11,951 (63.8)</td>
</tr>
<tr>
<td>Nepalese</td>
<td>144 (0.7)</td>
<td>193 (0.2)</td>
<td>1.18</td>
<td>76 (0.4)</td>
</tr>
<tr>
<td>Pakistani</td>
<td>1,227 (5.6)</td>
<td>5,607 (6.1)</td>
<td>1,190 (6.4)</td>
<td>1,190 (6.4)</td>
</tr>
<tr>
<td>Qatari</td>
<td>128 (0.6)</td>
<td>18,921 (20.6)</td>
<td>128 (0.7)</td>
<td>128 (0.7)</td>
</tr>
<tr>
<td>Sri Lankan</td>
<td>350 (1.6)</td>
<td>1,096 (1.2)</td>
<td>311 (1.7)</td>
<td>311 (1.7)</td>
</tr>
<tr>
<td>Sudanese</td>
<td>95 (0.4)</td>
<td>2,837 (3.1)</td>
<td>95 (0.5)</td>
<td>95 (0.5)</td>
</tr>
<tr>
<td>Other nationalities(^3)</td>
<td>2,919 (13.3)</td>
<td>25,847 (28.1)</td>
<td>2,344 (12.5)</td>
<td>2,344 (12.5)</td>
</tr>
<tr>
<td>Comorbidity count</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>17,954 (82.0)</td>
<td>71,929 (78.3)</td>
<td>16,030 (85.6)</td>
<td>16,030 (85.6)</td>
</tr>
<tr>
<td>1</td>
<td>3,345 (15.3)</td>
<td>15,973 (17.4)</td>
<td>2,362 (12.6)</td>
<td>2,362 (12.6)</td>
</tr>
<tr>
<td>2+</td>
<td>589 (2.7)</td>
<td>3,968 (4.3)</td>
<td>336 (1.8)</td>
<td>336 (1.8)</td>
</tr>
</tbody>
</table>

IQR denotes interquartile range, SARS-CoV-2 severe acute respiratory syndrome coronavirus 2, and SMD standardized mean difference.

\(^\ddagger\)SMD is the difference in the mean of a covariate between groups divided by the pooled standard deviation. An SMD <0.1 indicates adequate matching.

\(^\ddagger\)SMD is for the mean difference between groups divided by the pooled standard deviation.

\(^3\)Nationalities were chosen to represent the most populous groups in Qatar.

\(^\ddagger\)These comprise up to 140 other nationalities in the unmatched cohorts, and 66 other nationalities in the matched cohorts.
Figure 1. A) Cumulative incidence of SARS-CoV-2 Omicron infection in children aged 5-11 years who received two doses of the pediatric 10 µg BNT162b2 vaccine compared to unvaccinated controls. B) Effectiveness against Omicron infection of the pediatric 10 µg BNT162b2 vaccine by month after second dose.

A) Children Omicron 10 µg BNT162b2 Study

- **Vaccinated cohort**
- **Control cohort**

<table>
<thead>
<tr>
<th>Days since the start of the follow-up</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. at risk</td>
<td></td>
</tr>
<tr>
<td>Vaccinated cohort</td>
<td>18,728</td>
<td>17,476</td>
<td>15,994</td>
<td>14,170</td>
<td>13,024</td>
<td>11,549</td>
<td>10,538</td>
<td>9,036</td>
<td>7,385</td>
<td>5,835</td>
<td>4,408</td>
<td>2,946</td>
</tr>
<tr>
<td>Control cohort</td>
<td>18,728</td>
<td>17,439</td>
<td>15,956</td>
<td>14,137</td>
<td>12,984</td>
<td>11,524</td>
<td>10,516</td>
<td>9,002</td>
<td>7,369</td>
<td>5,825</td>
<td>4,397</td>
<td>2,943</td>
</tr>
</tbody>
</table>

IQR denotes interquartile range.

B) Effectiveness of the pediatric 10 µg BNT162b2 vaccine against infection with an Omicron subvariant

- **Month 1**: 49.6%
- **Month 2**: 23.0%
- **Month 3**: 11.0%
- **Month 4+**: 9.5%

The negative lower bound for the confidence interval was truncated because the confidence interval was too wide.
Table 2. BNT162b2 effectiveness against infection among children and adolescents in Qatar.

<table>
<thead>
<tr>
<th>Epidemiological measures</th>
<th>Estimate (95% CI)</th>
<th>Effectiveness in % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children aged 5-11 years—Children Omicron 10 µg BNT162b2 Study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total follow-up time—Vaccinated cohort (person-weeks)</td>
<td>173,451</td>
<td></td>
</tr>
<tr>
<td>Total follow-up time—Control cohort (person-weeks)</td>
<td>173,082</td>
<td></td>
</tr>
<tr>
<td>Incidence rate of infection—Vaccinated cohort (per 10,000 person-weeks)</td>
<td>10.6 (9.2 to 12.3)</td>
<td></td>
</tr>
<tr>
<td>Incidence rate of infection—Control cohort (per 10,000 person-weeks)</td>
<td>14.3 (12.7 to 16.2)</td>
<td></td>
</tr>
<tr>
<td>Unadjusted hazard ratio for infection with an Omicron subvariant</td>
<td>0.74 (0.61 to 0.90)</td>
<td>25.7 (10.0 to 38.6)</td>
</tr>
<tr>
<td>Adjusted hazard ratio for infection with an Omicron subvariant*</td>
<td>0.74 (0.61 to 0.90)</td>
<td>25.7 (10.0 to 38.6)</td>
</tr>
<tr>
<td>Adolescents aged 12-17 years—Adolescents Pre-Omicron 30 µg BNT162b2 Study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total follow-up time—Vaccinated cohort (person-weeks)</td>
<td>192,309</td>
<td></td>
</tr>
<tr>
<td>Total follow-up time—Control cohort (person-weeks)</td>
<td>185,751</td>
<td></td>
</tr>
<tr>
<td>Incidence rate of infection—Vaccinated cohort (per 10,000 person-weeks)</td>
<td>3.5 (2.7 to 4.4)</td>
<td></td>
</tr>
<tr>
<td>Incidence rate of infection—Control cohort (per 10,000 person-weeks)</td>
<td>28.2 (25.8 to 30.7)</td>
<td></td>
</tr>
<tr>
<td>Unadjusted hazard ratio for infection with a pre-Omicron variant</td>
<td>0.13 (0.10 to 0.16)</td>
<td>87.5 (83.8 to 90.3)</td>
</tr>
<tr>
<td>Adjusted hazard ratio for infection with a pre-Omicron variant*</td>
<td>0.12 (0.10 to 0.16)</td>
<td>87.6 (84.0 to 90.4)</td>
</tr>
<tr>
<td>Adolescents aged 12-17 years—Adolescents Omicron 30 µg BNT162b2 Study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total follow-up time—Vaccinated cohort (person-weeks)</td>
<td>338,838</td>
<td></td>
</tr>
<tr>
<td>Total follow-up time—Control cohort (person-weeks)</td>
<td>319,291</td>
<td></td>
</tr>
<tr>
<td>Incidence rate of infection—Vaccinated cohort (per 10,000 person-weeks)</td>
<td>74.4 (71.5 to 77.3)</td>
<td></td>
</tr>
<tr>
<td>Incidence rate of infection—Control cohort (per 10,000 person-weeks)</td>
<td>104.5 (101.0 to 108.1)</td>
<td></td>
</tr>
<tr>
<td>Unadjusted hazard ratio for infection with an Omicron subvariant</td>
<td>0.72 (0.69 to 0.76)</td>
<td>27.7 (25.8 to 31.5)</td>
</tr>
<tr>
<td>Adjusted hazard ratio for infection with an Omicron subvariant*</td>
<td>0.69 (0.66 to 0.73)</td>
<td>30.6 (26.9 to 34.1)</td>
</tr>
</tbody>
</table>

CI denotes confidence interval and SARS-CoV-2 severe acute respiratory syndrome coronavirus 2.

*Cox regression analysis adjusted for sex, age, 10 nationality groups (Tables 1 and 3), comorbidity count (Tables 1 and 3), and calendar month of the second vaccine dose/SARS-CoV-2 test.
<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Pre-OMICRON analysis (Adolescents Pre-OMICRON 30 µg BNT162b2 Study)</th>
<th>Omicron analysis (Adolescents Omicron 30 µg BNT162b2 Study)</th>
<th>SMD(^a)</th>
<th>Pre-OMICRON analysis (Adolescents Pre-OMICRON 30 µg BNT162b2 Study)</th>
<th>Omicron analysis (Adolescents Omicron 30 µg BNT162b2 Study)</th>
<th>SMD(^a)</th>
<th>Pre-OMICRON analysis (Adolescents Pre-OMICRON 30 µg BNT162b2 Study)</th>
<th>Omicron analysis (Adolescents Omicron 30 µg BNT162b2 Study)</th>
<th>SMD(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Male</td>
<td>41,919 (51.3)</td>
<td>12,083 (51.8)</td>
<td>0.02</td>
<td>45,936 (51.3)</td>
<td>44,941 (52.1)</td>
<td>0.02</td>
<td>9,258 (51.7)</td>
<td>9,258 (51.7)</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>39,728 (48.7)</td>
<td>11,234 (48.2)</td>
<td>0.00</td>
<td>43,569 (48.7)</td>
<td>41,339 (47.9)</td>
<td>0.02</td>
<td>8,645 (48.3)</td>
<td>8,645 (48.3)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>12</td>
<td>3,174 (3.9)</td>
<td>18,636 (28.2)</td>
<td>0.50</td>
<td>14 (13-16)</td>
<td>14 (13-16)</td>
<td>0.00</td>
<td>15 (13-16)</td>
<td>14 (12-15)</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>16,581 (20.3)</td>
<td>11,190 (17.0)</td>
<td>0.71</td>
<td>2,767 (11.9)</td>
<td>2,767 (11.9)</td>
<td>0.00</td>
<td>17,121 (19.2)</td>
<td>12,405 (14.4)</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>16,427 (20.1)</td>
<td>10,382 (15.7)</td>
<td>0.64</td>
<td>2,734 (11.7)</td>
<td>2,734 (11.7)</td>
<td>0.00</td>
<td>15,477 (17.3)</td>
<td>10,136 (11.8)</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>15,675 (19.2)</td>
<td>9,861 (14.9)</td>
<td>0.71</td>
<td>3,870 (16.6)</td>
<td>3,870 (16.6)</td>
<td>0.00</td>
<td>16,259 (18.2)</td>
<td>11,866 (13.8)</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>14,998 (18.4)</td>
<td>8,257 (12.5)</td>
<td>0.00</td>
<td>3,644 (15.6)</td>
<td>3,644 (15.6)</td>
<td>0.00</td>
<td>15,003 (16.8)</td>
<td>9,493 (11.0)</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>14,792 (18.1)</td>
<td>7,680 (11.6)</td>
<td>0.00</td>
<td>45,936 (51.3)</td>
<td>44,941 (52.1)</td>
<td>0.02</td>
<td>9,258 (51.7)</td>
<td>9,258 (51.7)</td>
</tr>
<tr>
<td></td>
<td>Nationality(^b)</td>
<td>1,054 (1.3)</td>
<td>967 (1.5)</td>
<td>0.26</td>
<td>391 (1.7)</td>
<td>391 (1.7)</td>
<td>0.00</td>
<td>1,182 (1.3)</td>
<td>1,521 (1.8)</td>
</tr>
<tr>
<td></td>
<td>Bangladeshi</td>
<td>8,894 (10.9)</td>
<td>7,538 (11.4)</td>
<td>0.35</td>
<td>3,379 (14.5)</td>
<td>3,379 (14.5)</td>
<td>0.00</td>
<td>9,835 (11.0)</td>
<td>9,460 (11.0)</td>
</tr>
<tr>
<td></td>
<td>Egyptian</td>
<td>3,029 (3.7)</td>
<td>1,118 (1.7)</td>
<td>0.02</td>
<td>280 (1.2)</td>
<td>280 (1.2)</td>
<td>0.00</td>
<td>3,372 (3.8)</td>
<td>1,896 (2.2)</td>
</tr>
<tr>
<td></td>
<td>Filipino</td>
<td>12,943 (15.9)</td>
<td>6,569 (10.0)</td>
<td>0.64</td>
<td>2,812 (12.1)</td>
<td>2,812 (12.1)</td>
<td>0.00</td>
<td>15,084 (16.9)</td>
<td>9,434 (10.9)</td>
</tr>
<tr>
<td></td>
<td>Nepalese</td>
<td>102 (0.1)</td>
<td>46 (0.1)</td>
<td>0.05</td>
<td>9 (0.4)</td>
<td>9 (0.4)</td>
<td>0.00</td>
<td>120 (0.1)</td>
<td>76 (0.1)</td>
</tr>
<tr>
<td></td>
<td>Pakistani</td>
<td>5,089 (6.2)</td>
<td>2,876 (4.4)</td>
<td>0.00</td>
<td>982 (4.2)</td>
<td>982 (4.2)</td>
<td>0.00</td>
<td>5,622 (6.3)</td>
<td>3,932 (4.6)</td>
</tr>
<tr>
<td></td>
<td>Qatari</td>
<td>22,927 (28.1)</td>
<td>22,196 (33.6)</td>
<td>0.00</td>
<td>7,531 (32.3)</td>
<td>7,531 (32.3)</td>
<td>0.00</td>
<td>24,210 (27.1)</td>
<td>26,578 (30.8)</td>
</tr>
<tr>
<td></td>
<td>Sri Lankan</td>
<td>603 (0.7)</td>
<td>260 (0.4)</td>
<td>0.00</td>
<td>73 (0.31)</td>
<td>73 (0.31)</td>
<td>0.00</td>
<td>700 (0.8)</td>
<td>494 (0.6)</td>
</tr>
<tr>
<td></td>
<td>Sudanese</td>
<td>3,130 (3.8)</td>
<td>2,253 (3.4)</td>
<td>0.00</td>
<td>829 (3.6)</td>
<td>829 (3.6)</td>
<td>0.00</td>
<td>3,395 (3.8)</td>
<td>2,855 (3.3)</td>
</tr>
<tr>
<td></td>
<td>Other nationalities(^c)</td>
<td>23,876 (29.2)</td>
<td>22,183 (33.6)</td>
<td>0.00</td>
<td>7,031 (30.2)</td>
<td>7,031 (30.2)</td>
<td>0.00</td>
<td>25,985 (29.0)</td>
<td>30,034 (34.8)</td>
</tr>
<tr>
<td></td>
<td>Comorbidity count</td>
<td>None</td>
<td>64,614 (79.1)</td>
<td>0.00</td>
<td>52,741 (79.9)</td>
<td>52,741 (79.9)</td>
<td>0.00</td>
<td>71,144 (79.5)</td>
<td>70,646 (81.9)</td>
</tr>
<tr>
<td></td>
<td>1-2</td>
<td>13,478 (16.5)</td>
<td>10,344 (15.7)</td>
<td>0.00</td>
<td>3,309 (14.2)</td>
<td>3,309 (14.2)</td>
<td>0.00</td>
<td>14,592 (16.3)</td>
<td>12,239 (14.2)</td>
</tr>
<tr>
<td></td>
<td>3+</td>
<td>3,553 (4.4)</td>
<td>2,921 (4.4)</td>
<td>0.00</td>
<td>825 (3.5)</td>
<td>825 (3.5)</td>
<td>0.00</td>
<td>3,769 (4.2)</td>
<td>3,395 (3.9)</td>
</tr>
</tbody>
</table>

IQR denotes interquartile range; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; and SMD, standardized mean difference.

\(^a\)SMD is the difference in the mean of a covariate between groups divided by the pooled standard deviation. An SMD ≤ 0.1 indicates adequate matching.

\(^b\)Sex was matched in a 1:1 ratio by sex, age, nationality, comorbidity count, and calendar month of the second vaccine dose/SARS-CoV-2 test.

\(^c\)SMD is for the mean difference between groups divided by the pooled standard deviation.

\(^d\)Nationalities were chosen to represent the most populous groups in Qatar.

\(^e\)These comprise up to 135 other nationalities in the unmatched cohorts, and 75 other nationalities in the matched cohorts in the pre-OMICRON analysis. These also comprise up to 143 other nationalities in the unmatched cohorts, and 73 other nationalities in the matched cohorts in the Omicron analysis.
Figure 2. Cumulative incidence of SARS-CoV-2 infection in adolescents aged 12-17 years who received two doses of the 30 µg BNT162b2 vaccine compared to unvaccinated controls in the A) pre-Omicron study (Adolescents Pre-Omicron 30 µg BNT162b2 Study) and B) Omicron study (Adolescents Omicron 30 µg BNT162b2 Study).

A

Adolescents Pre-Omicron 30 µg BNT162b2 Study

<table>
<thead>
<tr>
<th>Days since the start of the follow-up</th>
<th>0</th>
<th>15</th>
<th>30</th>
<th>45</th>
<th>60</th>
<th>75</th>
<th>90</th>
<th>105</th>
<th>120</th>
<th>135</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. at risk</td>
<td>23,317</td>
<td>17,882</td>
<td>13,872</td>
<td>11,708</td>
<td>9,286</td>
<td>7,261</td>
<td>5,734</td>
<td>4,537</td>
<td>3,548</td>
<td>2,506</td>
</tr>
<tr>
<td>Vaccinated cohort</td>
<td>23,317</td>
<td>17,679</td>
<td>13,621</td>
<td>11,408</td>
<td>8,953</td>
<td>6,916</td>
<td>5,392</td>
<td>4,222</td>
<td>3,270</td>
<td>2,288</td>
</tr>
</tbody>
</table>

B

Adolescents Omicron 30 µg BNT162b2 Study

<table>
<thead>
<tr>
<th>Days since the start of the follow-up</th>
<th>0</th>
<th>15</th>
<th>30</th>
<th>45</th>
<th>60</th>
<th>75</th>
<th>90</th>
<th>105</th>
<th>120</th>
<th>135</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. at risk</td>
<td>17,903</td>
<td>16,719</td>
<td>14,174</td>
<td>13,378</td>
<td>12,213</td>
<td>11,230</td>
<td>11,298</td>
<td>11,270</td>
<td>10,407</td>
<td>9,307</td>
</tr>
<tr>
<td>Control cohort</td>
<td>17,903</td>
<td>16,682</td>
<td>13,823</td>
<td>12,732</td>
<td>12,090</td>
<td>11,256</td>
<td>10,844</td>
<td>10,189</td>
<td>10,158</td>
<td>9,592</td>
</tr>
</tbody>
</table>

IQR denotes interquartile range.
Figure 3. A) Effectiveness against pre-Omicron infection of the 30 µg BNT162b2 vaccine for adolescents by month after the second dose. B) Effectiveness against Omicron infection of the 30 µg BNT162b2 vaccine for adolescents by sub-cohort of those vaccinated at different times.

*A The negative lower bound for the confidence interval was truncated because the confidence interval was too wide.
Supplementary Appendix

Table of Contents
Section S1. Laboratory methods and variant ascertainment.. 2
 Real-time reverse-transcription polymerase chain reaction testing... 2
 Rapid antigen testing .. 2
 Classification of infections by variant type.. 3
Section S2. COVID-19 severity, criticality, and fatality classification ... 4
Figure S1. Cohort selection for investigating effectiveness of the pediatric 10 µg BNT162b2 vaccine among children aged 5-11 years against infection with an Omicron subvariant in Qatar (Children Omicron 10 µg BNT162b2 Study). ... 6
Figure S2. Cohort selection for investigating effectiveness of the 30 µg BNT162b2 vaccine among adolescents aged 12-17 years against infection with a pre-Omicron variant in Qatar (Adolescents Pre-Omicron 30 µg BNT162b2 Study). ... 7
Figure S3. Cohort selection for investigating effectiveness of the 30 µg BNT162b2 vaccine among adolescents aged 12-17 years against infection with an Omicron subvariant in Qatar (Adolescents Omicron 30 µg BNT162b2 Study). ... 8
Table S1. STROBE checklist for cohort studies.. 9
Table S2. Representativeness of study participants.. 11
Table S3. Sensitivity analyses adjusting effectiveness estimates for differences in testing frequency among the vaccinated and control cohorts... 12
References.. 13
Section S1. Laboratory methods and variant ascertainment

Real-time reverse-transcription polymerase chain reaction testing

Nasopharyngeal and/or oropharyngeal swabs were collected for polymerase chain reaction (PCR) testing and placed in Universal Transport Medium (UTM). Aliquots of UTM were: 1) extracted on KingFisher Flex (Thermo Fisher Scientific, USA), MGISP-960 (MGI, China), or ExiPrep 96 Lite (Bioneer, South Korea) followed by testing with real-time reverse-transcription PCR (RT-qPCR) using TaqPath COVID-19 Combo Kits (Thermo Fisher Scientific, USA) on an ABI 7500 FAST (Thermo Fisher Scientific, USA); 2) tested directly on the Cepheid GeneXpert system using the Xpert Xpress SARS-CoV-2 (Cepheid, USA); or 3) loaded directly into a Roche cobas 6800 system and assayed with the cobas SARS-CoV-2 Test (Roche, Switzerland). The first assay targets the viral S, N, and ORF1ab gene regions. The second targets the viral N and E-gene regions, and the third targets the ORF1ab and E-gene regions.

All PCR testing was conducted at the Hamad Medical Corporation Central Laboratory or Sidra Medicine Laboratory, following standardized protocols.

Rapid antigen testing

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen tests were performed on nasopharyngeal swabs using one of the following lateral flow antigen tests: Panbio COVID-19 Ag Rapid Test Device (Abbott, USA); SARS-CoV-2 Rapid Antigen Test (Roche, Switzerland); Standard Q COVID-19 Antigen Test (SD Biosensor, Korea); or CareStart COVID-19 Antigen Test (Access Bio, USA). All antigen tests were performed point-of-care according to each manufacturer’s instructions at public or private hospitals and clinics throughout Qatar with prior authorization and training by the Ministry of Public Health (MOPH). Antigen test results
were electronically reported to the MOPH in real time using the Antigen Test Management System which is integrated with the national Coronavirus Disease 2019 (COVID-19) database.

Classification of infections by variant type

Surveillance for SARS-CoV-2 variants in Qatar is based on viral genome sequencing and multiplex RT-qPCR variant screening\(^1\) of random positive clinical samples,\(^2\)-\(^7\) complemented by deep sequencing of wastewater samples.\(^4\),\(^8\),\(^9\) Further details on the viral genome sequencing and multiplex RT-qPCR variant screening throughout the SARS-CoV-2 waves in Qatar can be found in previous publications.\(^2\)-\(^7\),\(^10\)-\(^16\)
Section S2. COVID-19 severity, criticality, and fatality classification

Classification of COVID-19 case severity (acute-care hospitalizations), criticality (intensive-care-unit hospitalizations), and fatality followed World Health Organization (WHO) guidelines. Assessments were made by trained medical personnel independent of study investigators and using individual chart reviews, as part of a national protocol applied to every hospitalized COVID-19 patient. Each hospitalized COVID-19 patient underwent an infection severity assessment every three days until discharge or death. We classified individuals who progressed to severe, critical, or fatal COVID-19 between the time of the documented infection and the end of the study based on their worst outcome, starting with death, followed by critical disease, and then severe disease.

Severe COVID-19 disease was defined per WHO classification as a SARS-CoV-2 infected person with “oxygen saturation of <90% on room air, and/or respiratory rate of >30 breaths/minute in adults and children >5 years old (or ≥60 breaths/minute in children <2 months old or ≥50 breaths/minute in children 2-11 months old or ≥40 breaths/minute in children 1–5 years old), and/or signs of severe respiratory distress (accessory muscle use and inability to complete full sentences, and, in children, very severe chest wall indrawing, grunting, central cyanosis, or presence of any other general danger signs)”.

Detailed WHO criteria for classifying SARS-CoV-2 infection severity can be found in the WHO technical report.

Critical COVID-19 disease was defined per WHO classification as a SARS-CoV-2 infected person with “acute respiratory distress syndrome, sepsis, septic shock, or other conditions that would normally require the provision of life sustaining therapies such as mechanical ventilation (invasive or non-invasive) or vasopressor therapy”.

Detailed WHO criteria for classifying SARS-CoV-2 infection criticality can be found in the WHO technical report.
COVID-19 death was defined per WHO classification as “a death resulting from a clinically compatible illness, in a probable or confirmed COVID-19 case, unless there is a clear alternative cause of death that cannot be related to COVID-19 disease (e.g. trauma). There should be no period of complete recovery from COVID-19 between illness and death. A death due to COVID-19 may not be attributed to another disease (e.g. cancer) and should be counted independently of preexisting conditions that are suspected of triggering a severe course of COVID-19”. Detailed WHO criteria for classifying COVID-19 death can be found in the WHO technical report.18
Figure S1. Cohort selection for investigating effectiveness of the pediatric 10 µg BNT162b2 vaccine among children aged 5-11 years against infection with an Omicron subvariant in Qatar (Children Omicron 10 µg BNT162b2 Study).

Vaccinated cohort
21,888 Children with at least 2 doses of the pediatric 10 µg BNT162b2 vaccine were eligible for matching* to controls who were infection free and unvaccinated as of the start of follow-up

- 3,160 Not matched
- 18,728 Matched

- 184 Documented SARS-CoV-2-positive tests
 - None progressed to severe, critical, or fatal COVID-19
- 2,423 Censored because their match got vaccinated
- 0 Deaths during follow-up
- 16,121 Followed until end of study (July 12, 2022)

Uninfected-Unvaccinated Control cohort
91,870 Controls were eligible for matching* to vaccinated children and followed from ≥14 days after the second vaccine dose of their match

- 73,142 Not matched
- 18,728 Matched

- 248 Documented SARS-CoV-2-positive tests
 - None progressed to severe, critical, or fatal COVID-19
- 2,431 Censored because they received Dose 1
- 1 Non-COVID-19-related death during follow-up
- 16,048 Followed until end of study (July 12, 2022)

*Each vaccinated child was exact-matched in a 1:1 ratio by sex, age, nationality, and comorbidity count to the first eligible child who had a SARS-CoV-2-negative test during the same calendar month of second vaccine dose of their match and was infection free, unvaccinated, and alive at the start of the follow-up (≥14 days after the second vaccine dose of their match).
Figure S2. Cohort selection for investigating effectiveness of the 30 µg BNT162b2 vaccine among adolescents aged 12-17 years against infection with a pre-Omicron variant in Qatar (Adolescents Pre-Omicron 30 µg BNT162b2 Study).

93,783 Adolescents 12-17 years of age who received at least 2 vaccine doses between February 1, 2021 and November 30, 2021

12,136 Excluded
- 57 Received the mRNA-1273 vaccine
- 1,898 Did not complete 14 days before the start of the follow-up (14 days after Dose 2)
- 10,181 Had a SARS-CoV-2 infection before the start of the follow-up

Vaccinated cohort
81,647 Adolescents with at least 2 BNT162b2 vaccine doses were eligible for matching to controls who were infection free and unvaccinated as of the start of follow-up

58,330 Not matched
23,317 Matched

- 67 Documented SARS-CoV-2-positive tests
- None progressed to severe, critical, or fatal COVID-19
- 7 Censored because they received Dose 3
- 10,881 Censored because their match received Dose 1
- 12,362 Followed until end of study (November 30, 2021)

Uninfected-Unvaccinated Control cohort
66,006 Controls were eligible for matching to vaccinated adolescents and followed from ≥14 days after the second vaccine dose of their match

41,667 Excluded
- 8,289 Had a record of prior infection before the SARS-CoV-2-negative test
- 33,378 Had a vaccination record before the SARS-CoV-2-negative test

42,689 Not matched
23,317 Matched

- 523 Documented SARS-CoV-2-positive tests
- None progressed to severe, critical, or fatal COVID-19
- 10,901 Censored because they received Dose 1
- 7 Censored because their match received Dose 3
- 1 Non-COVID-19-related death during follow-up
- 11,885 Followed until end of study (November 30, 2021)

*Each vaccinated adolescent was exact-matched in a 1:1 ratio by sex, age, nationality, and comorbidity count to the first eligible adolescent who had a SARS-CoV-2-negative test during the same calendar month of second vaccine dose of their match and was infection free, unvaccinated, and alive at the start of the follow-up (≥14 days after the second vaccine dose of their match).
Figure S3. Cohort selection for investigating effectiveness of the 30 µg BNT162b2 vaccine among adolescents aged 12-17 years against infection with an Omicron subvariant in Qatar (Adolescents Omicron 30 µg BNT162b2 Study).

104,020 Adolescents 12-17 years of age who received at least 2 vaccine doses between February 1, 2021 and July 12, 2022

14,515 Excluded
- 59 Received the mRNA-1273 vaccine
- 1,484 Received the pediatric 10 µg BNT162b2 vaccine
- 146 Did not complete 14 days before the start of the follow-up
- 12,825 Had a SARS-CoV-2 infection before the start of the follow-up
- 1 Had an unascertained death date

Vaccinated cohort
89,505 Adolescents with at least 2 BNT162b2 vaccine doses were eligible for matching to controls who were infection free and unvaccinated as of the start of follow-up

71,602 Not matched
17,903 Matched

- 2,520 Documented SARS-CoV-2-positive tests
 - 1 progressed to critical COVID-19
- 2,154 Censored because they received Dose 3
- 2,044 Censored because their match received Dose 1
- 11,185 Followed until end of study (July 12, 2022)

148,217 Adolescents 12-17 years of age with SARS-CoV-2-negative tests between February 1, 2021 and July 12, 2022

61,937 Excluded
- 13,916 Had a record of prior infection before the SARS-CoV-2-negative test
- 48,019 Had a vaccination record before the SARS-CoV-2-negative test
- 2 Had an unascertained death date

Uninfected-Unvaccinated Control cohort
86,280 Controls were eligible for matching to vaccinated adolescents and followed from ≥14 days after the second vaccine dose of their match

68,377 Not matched
17,903 Matched

- 3,337 Documented SARS-CoV-2-positive tests
 - 1 progressed to critical COVID-19
 - 1 progressed to severe COVID-19
- 2,144 Censored because they received Dose 1
- 1,825 Censored because their match received Dose 3
- 1 Non-COVID-19-related death during follow-up
- 10,596 Followed until end of study (July 12, 2022)

*Follow-up for cases was from 14 days after the second dose if start of follow-up coincided with the SARS-CoV-2 Omicron wave which started on December 19, 2021, or from December 19, 2021 for earlier vaccinations. Follow-up for controls was from 14 days after the second dose of their match if start of follow-up coincided with the SARS-CoV-2 Omicron wave which started on December 19, 2021, or from December 19, 2021 for earlier vaccinations.

*Each vaccinated adolescent was exact-matched in a 1:1 ratio by sex, age, nationality, and comorbidity count to the first eligible adolescent who had a SARS-CoV-2-negative test during the same calendar month of second vaccine dose of their match and was infection free, unvaccinated, and alive at the start of the follow-up.
Table S1. STROBE checklist for cohort studies.

<table>
<thead>
<tr>
<th>Item No</th>
<th>Recommendation</th>
<th>Main Text page</th>
</tr>
</thead>
</table>
| **Title and abstract** | 1 | (a) Indicate the study’s design with a commonly used term in the title or the abstract
(b) Provide in the abstract an informative and balanced summary of what was done and what was found | Abstract
Abstract |
| **Introduction** | 2 | Explain the scientific background and rationale for the investigation being reported | Introduction |
| **Objectives** | 3 | State specific objectives, including any prespecified hypotheses | Introduction |
| **Methods** | 4 | Present key elements of study design early in the paper | Methods (‘Study design and cohorts’ & ‘Cohort matching and follow-up’) |
| **Setting** | 5 | Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection | Methods (‘Study design and cohorts’ & ‘Cohort matching and follow-up’, ‘Children Omicron 10 µg BNT162b2 Study’, ‘Adolescents Pre-Omicron 30 µg BNT162b2 Study’, & ‘Adolescents Omicron 30 µg BNT162b2 Study’) & Figures S1-S3 in Supplementary Appendix |
| **Participants** | 6 | (a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up
(b) For matched studies, give matching criteria and number of exposed and unexposed | Methods (‘Study design and cohorts’ & ‘Cohort matching and follow-up’, ‘Children Omicron 10 µg BNT162b2 Study’, ‘Adolescents Pre-Omicron 30 µg BNT162b2 Study’, & ‘Adolescents Omicron 30 µg BNT162b2 Study’) & Figures S1-S3 in Supplementary Appendix |
| **Variables** | 7 | Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable | Methods (‘Study design and cohorts’ & ‘Cohort matching and follow-up’), Tables 1 & 3, & Sections S1 & S2 in Supplementary Appendix |
| **Data sources/measurement** | 8* | For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group | Methods (‘Study population and data sources’ & ‘Statistical analysis’, paragraph 1), Tables 1 & 3, & Sections S1 & S2 in Supplementary Appendix |
| **Bias** | 9 | Describe any efforts to address potential sources of bias | Methods (‘Cohort matching and follow-up’) |
| **Study size** | 10 | Explain how the study size was arrived at | Figures S1-S3 in Supplementary Appendix |
| **Quantitative variables** | 11 | Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why | Methods (‘Cohort matching and follow-up’ & Tables 1 & 3 |
| **Statistical methods** | 12 | (a) Describe all statistical methods, including those used to control for confounding
(b) Describe any methods used to examine subgroups and interactions
(c) Explain how missing data were addressed
(d) If applicable, explain how loss to follow-up was addressed
(g) Describe any sensitivity analyses | Methods (‘Statistical analysis’)
Methods (‘Statistical analysis’, paragraph 3)
Not applicable, see Methods (‘Study population and data sources’)
Not applicable, see Methods (‘Study population and data sources’)
Methods (‘Statistical analysis’, paragraph 3) |
| **Results** | 13* | (a) Report numbers of individuals at each stage of study—e.g. numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed
(b) Give reasons for non-participation at each stage
(c) Consider use of a flow diagram | Figures S1-S3 in Supplementary Appendix |
| **Descriptive data** | 14 | (a) Give characteristics of study participants (e.g. demographic, clinical, social) and information on exposures and potential confounders | Results (‘Children and adolescent vaccination’, ‘Children Omicron 10 µg BNT162b2 Study’, paragraphs 1 & 2,
<table>
<thead>
<tr>
<th>Table 1 & 3</th>
<th>(b) Indicate number of participants with missing data for each variable of interest</th>
<th>Not applicable, see Methods ('Study population and data sources')</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c) Summarise follow-up time (eg, average and total amount)</td>
<td>Results ('Children adn adolescent vaccination', 'Children Omicron 10 µg BNT162b2 Study', paragraph 2, 'Adolescents Pre-Omicron 30 µg BNT162b2 Study', paragraph 2, & 'Adolescents Omicron 30 µg BNT162b2 Study', paragraph 2), Figures 1 & 2, & Table 2</td>
<td></td>
</tr>
</tbody>
</table>

Outcome data

| 15 | Report numbers of outcome events or summary measures over time | Results ('Natural infection versus BNT162b2 vaccination' & 'Natural infection versus mRNA-1273 vaccination'), Figures 1 & 2, & Table 2 |

Main results

16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	Results ('Children adn adolescent vaccination', 'Children Omicron 10 µg BNT162b2 Study', paragraph 3, 'Adolescents Pre-Omicron 30 µg BNT162b2 Study', paragraph 3, & 'Adolescents Omicron 30 µg BNT162b2 Study', paragraph 3), Figures 1 & 2, & Table 2
(b) Report category boundaries when continuous variables were categorized	Tables 1 & 3	
(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA	

Other analyses

| 17 | Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses | Results ('Children adn adolescent vaccination', 'Children Omicron 10 µg BNT162b2 Study', paragraph 3 & 4, 'Adolescents Pre-Omicron 30 µg BNT162b2 Study', paragraph 3 & 4, & 'Adolescents Omicron 30 µg BNT162b2 Study', paragraph 3 & 4), Figures 1 & 3, & Table S3 in Supplementary Appendix |

Discussion

18	Summarise key results with reference to study objectives	Discussion, paragraphs 1-3
19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	Discussion, paragraphs 4-6
20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	Discussion, paragraph 7
21	Discuss the generalisability (external validity) of the study results	Discussion, paragraphs 5-6 and Table S2 in Supplementary Appendix

Other information

| 22 | Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based | Sources of support & acknowledgements |
Table S2. Representativeness of study participants.

<table>
<thead>
<tr>
<th>Category</th>
<th>Protection conferred by the two-dose regimens of the pediatric 10 µg BNT162b2 vaccine and of the 30 µg BTN162b2 vaccine among children aged 5-11 years and adolescents aged 12-17 years, respectively, against breakthrough infection with SARS-CoV-2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special considerations related to</td>
<td>Three national matched, retrospective target-trial cohort studies were conducted to compare incidence of SARS-CoV-2 infection among children or adolescents who completed two-dose vaccination to incidence among those infection-naïve and unvaccinated. Cohorts were exact-matched by sex to control for potential differences in the risk of exposure to SARS-CoV-2 infection by sex.</td>
</tr>
<tr>
<td>Sex and gender</td>
<td>Cohorts were exact-matched by exact age to control for potential differences in the risk of exposure to SARS-CoV-2 infection by age and to account for differences in vaccine effectiveness by age.</td>
</tr>
<tr>
<td>Age</td>
<td>Cohorts were exact-matched by nationality to control for potential differences in the risk of exposure to SARS-CoV-2 infection by nationality. Nationality is associated with race and ethnicity in the population of Qatar.</td>
</tr>
<tr>
<td>Race or ethnicity group</td>
<td>Individual-level data on geography were not available, but Qatar is essentially a city state and infection incidence and vaccination were broadly distributed across the country’s neighborhoods/areas. Cohorts were exact-matched by nationality to control for potential differences in the risk of exposure to SARS-CoV-2 infection by nationality. Qatar has unusually diverse demographics in that 89% of the population are international expatriate residents coming from over 150 countries from all world regions.</td>
</tr>
<tr>
<td>Geography</td>
<td>To ensure that all individuals in all cohorts have a record of active presence in Qatar at the same calendar time, individuals who received their second vaccine dose in a specific month were matched to infection-naïve individuals who had a record of a SARS-CoV-2 negative test in that same calendar month.</td>
</tr>
<tr>
<td>Overall representativeness of this study</td>
<td>The study was based on the total children and adolescents population of Qatar and thus the study population is broadly representative of the diverse, by national background, children and adolescents population of Qatar. While there could be differences in the risk of exposure to SARS-CoV-2 infection by sex, age, nationality, and comorbidity, cohorts were exact-matched by these factors to control for their potential impact on our estimates.</td>
</tr>
</tbody>
</table>

SARS-CoV-2 denotes severe acute respiratory syndrome coronavirus 2.
Table S3. Sensitivity analyses adjusting effectiveness estimates by the testing frequency ratio among the vaccinated and control cohorts.

<table>
<thead>
<tr>
<th>Epidemiological measure</th>
<th>Vaccinated cohort</th>
<th>Control cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children Omicron 10 µg BNT162b2 Study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion with a SARS-CoV-2 test during follow-up (%)</td>
<td>22.7</td>
<td>37.5</td>
</tr>
<tr>
<td>Testing frequency during follow-up (tests per person)</td>
<td>0.30</td>
<td>0.47</td>
</tr>
<tr>
<td>Effectiveness adjusted for ratio in testing frequency (%)</td>
<td>-16.5 (95% CI: -41.0 to 3.7)</td>
<td></td>
</tr>
<tr>
<td>Adolescents Pre-Omicron 30 µg BNT162b2 Study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion with a SARS-CoV-2 test during follow-up (%)</td>
<td>27.2</td>
<td>43.5</td>
</tr>
<tr>
<td>Testing frequency during follow-up (tests per person)</td>
<td>0.39</td>
<td>0.64</td>
</tr>
<tr>
<td>Effectiveness adjusted for ratio in testing frequency (%)</td>
<td>79.6 (95% CI: 73.6 to 84.2)</td>
<td></td>
</tr>
<tr>
<td>Adolescents Omicron 30 µg BNT162b2 Study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion with a SARS-CoV-2 test during follow-up (%)</td>
<td>50.9</td>
<td>49.8</td>
</tr>
<tr>
<td>Testing frequency during follow-up (tests per person)</td>
<td>0.89</td>
<td>0.84</td>
</tr>
<tr>
<td>Effectiveness adjusted for ratio in testing frequency (%)</td>
<td>33.9 (95% CI: 30.5 to 37.3)</td>
<td></td>
</tr>
</tbody>
</table>

CI denotes confidence interval and SARS-CoV-2 severe acute respiratory syndrome coronavirus 2.

*The differences in testing frequency between the cohorts were mainly related to different testing guidelines for those vaccinated compared to those unvaccinated, especially in relation to travel.
References