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Abstract 42 

Background: Breast parenchymal texture features, including gray scale variation (V), capture 43 

the patterns of texture variation on a mammogram and are associated with breast cancer risk, 44 

independent of mammographic density (MD). However, our knowledge on the genetic basis of 45 

these texture features is limited. 46 

Methods: We conducted a genome-wide association study of V in 7,040 European-ancestry 47 

women. Four V assessments representing different amounts of breast edge erosion and image 48 

resolutions were generated from digitized film mammograms. We used linear regression to test 49 

the single-nucleotide polymorphism (SNP)-phenotype associations adjusting for age, body mass 50 

index (BMI), MD phenotypes, and the top four genetic principal components. Multivariate 51 

phenotype association tests combining all four V assessments were performed. We further 52 

calculated genetic correlations and performed SNP-set tests of V with MD, breast cancer risk, 53 

and other breast cancer risk factors. 54 

Results: We identified three genome-wide significant loci associated with V: rs138141444 55 

(6q24.1) in ECT2L, rs79670367 (8q24.22) in LINC01591, and rs113174754 (12q22) near 56 

PGAM1P5. 6q24.1 and 8q24.22 have not previously been associated with MD phenotypes or 57 

breast cancer risk, whilst 12q22 is a known locus for both MD and breast cancer risk. Among 58 

known MD and breast cancer risk SNPs, we identified four variants that were associated with V 59 

at the Bonferroni-corrected thresholds accounting for the number of SNPs tested: rs335189 60 

(5q23.2) in PRDM6, rs13256025 (8p21.2) in EBF2, rs11836164 (12p12.1) near SSPN, and 61 

rs17817449 (16q12.2) in FTO. We observed significant genetic correlations between V and 62 

mammographic dense area (rg = 0.79, P = 5.91 × 10−5), percent density (rg = 0.73, P = 1.00 × 63 
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10−4), and adult BMI (rg = −0.36, P = 3.88 × 10−7). Additional significant relationships were 64 

observed for nondense area (z = −4.14, P = 3.42 × 10−5), estrogen receptor-positive breast cancer 65 

(z = 3.41, P = 6.41 × 10−4), and childhood body fatness (z = −4.91, P = 9.05 × 10−7) from the 66 

SNP-set tests. 67 

Conclusions: These findings provide new insights into the genetic basis of mammographic 68 

texture variation and their associations with MD, breast cancer risk, and other breast cancer risk 69 

factors. 70 

 71 
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Background 82 

Mammographic density (MD) phenotypes reflect the amount of dense or nondense tissue on a 83 

mammogram and are well-established risk factors for breast cancer [1-3]. MD phenotypes are 84 

highly heritable with h2 = 60-70% from twin studies [4, 5]. Genome-wide association studies 85 

(GWAS) have identified 55 loci that are associated with MD phenotypes [6-8], including 32 loci 86 

for dense area (DA), which reflects the amount of fibroglandular tissue in the breast, 18 loci for 87 

nondense area (NDA), which reflects the amount of fatty tissue in the breast, and 24 loci for 88 

percent density (PD), defined as the percentage of area on a mammogram that is occupied by 89 

dense tissue [9].  90 

Yet, MD is a global metric that ignores local patterns of variability in breast density [10]. 91 

Women with the same level of PD may have substantial heterogeneity in the structural patterns 92 

of breast parenchyma, which are assessed as texture features. Compared to MD phenotypes, 93 

breast parenchymal texture features are more refined and localized, and are fully automated 94 

measures of the variation in parenchymal patterns on a mammogram [11]. Growing evidence 95 

suggest that texture features are independent breast cancer risk factors [12-16]. Heine et al. 96 

developed a summary measure of texture features called V, which captures the gray scale 97 

variation on a mammogram [12]. Recent studies have shown that a higher value of V, reflecting 98 

greater texture variation, is associated with an increased risk of breast cancer, independent of 99 

MD [12, 16]. Understanding the mechanisms underlying texture variation and breast cancer risk, 100 

especially the role of genetic variants, would provide additional insights into the development of 101 

breast cancer. However, to date, no GWAS has been conducted on breast parenchymal texture 102 

features. 103 
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In the present study, we performed a GWAS of mammographic texture variation, including four 104 

different assessments of V, within the Nurses’ Health Studies and Mayo Mammography Health 105 

Study cohorts. We also leveraged summary statistics of breast cancer risk and MD phenotypes 106 

from previous GWAS to identify shared susceptibility loci for V, MD, and breast cancer risk. We 107 

further assessed the genetic relationships of V with MD phenotypes, breast cancer risk, and other 108 

breast cancer risk factors by estimating genetic correlations and performing single-nucleotide 109 

polymorphism (SNP)-set tests.  110 

 111 
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Methods 122 

Study population 123 

The Nurses’ Health Study (NHS) is a prospective cohort study established in 1976. A total 124 

number of 121,700 female registered nurses aged 30 to 55 residing in 11 states within the United 125 

States completed an initial questionnaire at that time. NHSII was established in 1989 when 126 

116,671 female registered nurses aged 25 to 42 residing in 14 states completed an initial 127 

questionnaire. Blood samples were collected from 32,826 women in NHS cohort from 1989 to 128 

1990 and 29,611 women in NHSII cohort from 1996 to 1999, which form the blood subcohorts. 129 

Women in each cohort have been followed by self-administered questionnaires to collect updated 130 

exposure and newly diagnosed disease information every two years. 131 

The Mayo Mammography Health Study (MMHS) is a prospective cohort study of 19,924 women 132 

who had a screening mammogram from 2003 to 2006 at the Mayo Clinic in Rochester, MN and 133 

agreed to participate in the study. Participants were at least 35 years old, residents of Minnesota, 134 

Iowa, or Wisconsin, and had no personal history of breast cancer. Participants completed a 135 

baseline questionnaire and provided consent to access any residual blood samples from clinical 136 

tests over the time period. Breast cancer diagnostic information were obtained through linkage to 137 

state-wide cancer registry data and mailed questionnaires.  138 

Mammogram collection and processing 139 

The mammogram collection and processing procedure in NHS and NHSII is described elsewhere 140 

[16, 17] and is briefly summarized here. Pre-diagnostic screening mammograms were collected 141 

within NHS and NHSII breast cancer case-control studies nested in the blood subcohorts [18]. A 142 
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total number of 6,258 film mammograms obtained close to the blood draw date were initially 143 

collected. The study protocol was approved by the institutional review boards of the Brigham 144 

and Women’s Hospital and Harvard T.H. Chan School of Public Health. Film mammogram 145 

craniocaudal views of both breasts were digitized using a Lumysis 85 laser film scanner or a 146 

VIDAR CAD PRO Advantage scanner (VIDAR Systems Corporation, Herndon, VA, USA). 147 

Digitized images were grouped based on resolution (mean resolution = 171μm, 232μm, 300μm, 148 

and images with isolated resolutions). Here, we evaluated the groups of images with average 149 

resolutions of 171μm (high resolution) and 300μm (low resolution). Images with isolated 150 

resolutions were down-sampled to 300μm and added to the low resolution group. All 171μm 151 

images were further adjusted to 300μm to form a larger dataset of low-resolution images. 152 

Details of mammogram acquisition, retrieval, and digitization for MMHS are described 153 

elsewhere [12, 19]. Briefly, women in MMHS who agreed to participate provided written 154 

informed consent to access their mammograms. A total number of 19,924 women were followed 155 

up for incident cancer events. We used a case-cohort design with a random sample of 2,300 156 

women from the entire MMHS cohort as the subcohort. We collected film mammograms from 157 

1,194 breast cancer cases identified through August 2019, excluding women who were 158 

diagnosed within 60 days of the enrollment mammogram and women with a digital mammogram. 159 

We further collected mammograms from 2,167 control women from the subcohort. The study 160 

protocol was approved by the Mayo Clinic institutional review board. Film mammograms of 161 

both craniocaudal views were digitized on the Array 2905 laser digitizer (Array Corporation, 162 

Roden, The Netherlands) with 50μm (limiting) pixel spacing and further downsampled to 200μm. 163 

Both the original 50μm images (high resolution) and the down-sampled 200μm images (low 164 

resolution) were used for calculation of V. 165 
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Assessment of V 166 

V is an automated measure of the gray scale variation on a mammogram. The algorithm for 167 

generating V has been described previously by Heine et al. [12, 20, 21]. Briefly, there are three 168 

main steps: segmentation, erosion, and calculation of variation. First, the breast is segmented 169 

from the background. Then, the segmented breast area is eroded by 25% or 35% along a radial 170 

direction to retain the regions where the breast was in contact with the compression paddle. 171 

Finally, the V is calculated as the standard deviation of the pixel values within the eroded breast 172 

region. Normalization processes, including spatial normalization, feature distribution 173 

normalization, and resolution estimation, were applied to the images before calculation of V to 174 

account for resolution and intensity scale differences [17]. 175 

We generated four assessments of V with different proportions of erosion and image resolutions: 176 

V with 35% erosion and low resolution (V65L), V with 25% erosion and low resolution (V75L), 177 

V with 35% erosion and high resolution (V65H), and V with 25% erosion and high resolution 178 

(V75H). These four V assessments were highly correlated with each other (Fig. 1a). We used 179 

V65L as our primary univariate outcome, as it had the largest sample size. 180 

MD phenotypes and other covariates 181 

MD phenotypes were assessed from digitized film mammograms using Cumulus [22], a semi-182 

automated software, by a single trained reader [12, 23]. DA and NDA were generated for each 183 

mammogram; PD was calculated as DA divided by the total breast area. DA, NDA, and PD 184 

measures in the left and right breasts were averaged. Fig. 1b shows the scatter plots and 185 

correlations of V65L and the three MD phenotypes. Body mass index (BMI) was measured at 186 

mammogram collection for all participants. Women were considered as breast cancer cases if 187 
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they were diagnosed with breast cancer after blood or mammogram collection but before June 1, 188 

2004 (NHS), June 1, 2007 (NHSII), or August 2019 (MMHS). Age at mammogram collection 189 

was also retrieved. 190 

Genotyping, quality control, and imputation 191 

The full genotyping and quality control pipeline for NHS and NHSII is described elsewhere [24]. 192 

In the present study, we used genotype data from four platforms: A�ymetrix 6.0, Illumina 193 

HumanHap, Illumina OmniExpress, and Illumina OncoArray. Variants with call rate < 95% or 194 

Hardy-Weinberg equilibrium P < 1 × 10−6 were excluded. European ancestry principal 195 

component (PC) outliers or samples with call rate < 90%, gender discordance, or extreme 196 

heterozygosity were excluded.  197 

The full genotyping and quality control pipeline for MMHS is also described elsewhere [25]. 198 

Here, we used genotype data from iCOGS and OncoArray platforms. Variants with a call rate < 199 

95% or not in Hardy-Weinberg equilibrium were excluded. Samples with a call rate < 95%, 200 

extreme heterozygosity, or of non-European ancestry based on genetic PCs were further 201 

excluded.  202 

All genotype data were imputed to the 1000 Genomes Phase 3 version 5 reference panel 203 

separately by study and platform [26]. Number of individuals included in our GWAS by study 204 

and platform can be found in Additional file 1: Table S1. 205 

Association test  206 

All four V assessments (V65L, V75L, V65H, and V75H) were standardized to have mean zero 207 

and unit standard deviation before analysis. SNP association analyses were performed within 208 
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each study by platform for each of the four V assessments using linear regression assuming an 209 

additive dosage effect. RVtests [27] was used for NHS/NHSII cohorts (A�ymetrix 6.0, Illumina 210 

HumanHap, Illumina OmniExpress, and Illumina OncoArray) and variants were removed from 211 

individual platform results if the expected minor allele counts were below 10. PLINK 2.0 [28] 212 

was used for MMHS cohorts (iCOGS and OncoArray). We ran six models adjusting for different 213 

covariates: Model 0 was the base model adjusting for age and the top four genetic PCs to account 214 

for population structure. Model 1 further adjusted for BMI. In addition to the covariates in Model 215 

1, Model 2 further adjusted for PD, Model 3 further adjusted for DA, and Model 4 further 216 

adjusted for NDA. Model 5 was the fully adjusted model with age, BMI, genetic PCs, PD, DA, 217 

and NDA as covariates. Fixed effect meta-analyses across studies and platforms were conducted 218 

for each V assessment and model using METAL [29]. Cochran’s Q statistic was used to check 219 

for heterogeneity between studies and platforms. Quantile-quantile plots and genomic inflation 220 

factors were used to assess systematic inflation in test statistics due to population substructure. 221 

Manhattan plots were generated to visualize the overall GWAS results. LocusZoom plots [30] of 222 

the 1Mb region centered around the identified lead SNPs were generated to visualize the regional 223 

association results and nearby genes. 224 

Given that the four V assessments were highly correlated with each other and might be proxies 225 

for an underlying latent phenotype, we performed multivariate phenotype association tests to 226 

pool association evidence across the four V assessments and get a single summary test statistic 227 

for each variant. We used R package MPAT [31] to obtain the summary P values and 228 

corresponding Z scores using test statistics from the meta-analysis results for each V assessment 229 

and model, accounting for sample overlaps of the four V assessments. We referred to this 230 

summary phenotype as VSUM, which was used as our primary multivariate outcome. SNPs with 231 
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P < 5 × 10−8 in any of the six models for any of the four univariate V assessments or the 232 

multivariate VSUM were considered genome-wide significant. 233 

V, MD phenotypes, and breast cancer susceptibility variants 234 

We evaluated whether the identified V loci were also associated with MD phenotypes or breast 235 

cancer risk using GWAS results from Breast Cancer Association Consortium (BCAC) [8, 25, 32]. 236 

To further identify shared susceptibility SNPs between V, MD phenotypes, and breast cancer 237 

risk, we conducted in silico lookups of 72 genome-wide significant MD phenotype SNPs 238 

identified by Sieh et al. [6] and Chen et al. [8], and 195 genome-wide significant breast cancer 239 

risk SNPs identified by Michailidou et al. [25] and Zhang et al. [32] in our GWAS of V. These 240 

candidate SNPs were considered significant for V if they passed the Bonferroni-corrected 241 

thresholds accounting for the number of MD (P < 0.05/72) or breast cancer (P < 0.05/195) SNPs 242 

tested in Model 0 for any V assessment. 243 

Genetic correlation and SNP-set test 244 

Genetic correlations of the four V assessments and VSUM with MD phenotypes, breast cancer 245 

risk, overall and stratified by estrogen receptor (ER) status, adult BMI, childhood body fatness, 246 

age at menarche, and age at natural menopause were estimated using linkage disequilibrium (LD) 247 

score regression [33, 34]. Sources of summary statistics of these traits for estimating genetic 248 

correlations are summarized in Additional file 2: Table S2. 249 

While genetic correlation quantifies the shared genetic contribution to two traits on genome-wide 250 

scale, it may also capture the contribution of other traits due to pleiotropy (e.g., the effect of BMI 251 

on the correlation between V and PD). Therefore, we further performed SNP-set tests to assess 252 
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the genetic relationship between V and the above-mentioned traits using only reported genome-253 

wide significant SNPs for those traits. SNPs for each trait were collected from published GWAS 254 

followed by LD clumping to remove any SNPs in LD (r2 > 0.1) with SNPs of smaller P value 255 

(see Additional file 2: Table S3). The test statistic for V and each trait was 256 

� �
∑ sgn��� · ������	 · |��|�

√�
 

where �� is the Z score from the SNP-specific association with V and ������ is the Z score from 257 

the SNP-specific association with the trait of interest, and � is the total number of tested genome-258 

wide significant SNPs for that trait. 259 

Sensitivity analysis 260 

Our study population contains both women who developed breast cancer and women who did 261 

not develop breast cancer during the follow-up period after mammogram collection. We 262 

therefore further adjusted for breast cancer case-control status in Model 5 to assess its impact on 263 

the genetic associations. We performed a multicollinearity check for the identified genome-wide 264 

significant SNPs for Model 5, where we adjusted for all three MD phenotypes, by calculating the 265 

variance inflation factor (VIF). To assess the potential impact of outliers on the association 266 

results at the identified GWAS loci, we calculated the studentized residuals for all samples for 267 

each genome-wide significant SNP. Samples with absolute studentized residual greater than 3 268 

were considered as outliers.  269 

  270 
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Results 271 

Our GWAS meta-analysis of V comprised 7,040 women of European ancestry within the NHS, 272 

NHSII, and MMHS cohorts (Table 1). Women in MMHS were older, had higher BMI and lower 273 

MD compared to women in NHS and NHSII. Quantile-quantile plots and genomic inflation 274 

factors indicate there was no evidence of systematic inflation of the GWAS test statistics in any 275 

model for any V assessment (Additional file 2: Figure S1). Manhattan plots showing the 276 

−log10(P) for all tested SNPs across chromosomes are present in Additional file 2: Figure S2. 277 

Quantile-quantile plots of the heterogeneity P value indicate there was limited evidence of 278 

heterogeneity in the test results across studies and platforms (Additional file 2: Figure S3). 279 

In total, we identified three independent loci that reached the genome-wide significant threshold 280 

of P < 5 × 10−8 in any model for any V assessment: 6q24.1 (ECT2L), 8q24.22 (LINC01591), and 281 

12q22 (PGAM1P5) (Table 2). 6q24.1 (Lead SNP: rs138141444, P = 1.24 × 10−8 for V75H, 282 

Model 0) is a novel locus that has not previously been associated with MD phenotypes or breast 283 

cancer risk. Fig. 2a shows the regional association results for 6q24.1 from Model 0 (adjusting for 284 

age and genetic PCs) for V75H where the association was genome-wide significant. The 285 

association results were consistent across models with the same direction and similar effect sizes 286 

as well as P values. 8q24.22 (Lead SNP: rs79670367, P = 2.38 × 10−8 for VSUM, Model 5) is 287 

neither a MD nor breast cancer risk locus. Fig. 2b shows the regional association results for 288 

8q24.22 from Model 5 (adjusting for age, BMI, DA, NDA, PD, and genetic PCs) for VSUM. 289 

The association between V and rs79670367 was more significant when we adjusted for PD 290 

(Model 2), DA (Model 3), or both (Model 5) and became less significant without adjustment for 291 

any MD phenotypes (Model 0 and 1) or adjusting for NDA only (Model 4). The direction of 292 

association was consistent across models. 12q22 (Lead SNP: rs113174754, P = 4.42 × 10−8 for 293 
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VSUM, Model 3) has previously been associated with NDA (rs11836367, P = 8.40 × 10−9, r2 = 294 

0.59 with rs113174754) [6], overall breast cancer risk (rs113174754, P = 1.08 × 10−24), and ER+ 295 

breast cancer risk (rs113174754, P = 1.37 × 10−18) [25]. This locus is also significantly 296 

associated with breast size (rs17356907, P = 1.30 × 10−13, r2 = 0.47 with rs113174754) [35].  Fig. 297 

2c shows the regional association results for 12q22 from Model 3 (adjusting for age, BMI, DA, 298 

and genetic PCs) for VSUM. The association between V and rs113174754 became non-299 

significant when we adjusted for NDA. The direction of association with V was consistent across 300 

models and consistent with the association with NDA (opposite direction) and breast cancer risk 301 

(same direction). 302 

We identified four additional loci that had previously been associated with MD phenotypes or 303 

breast cancer risk and reached the Bonferroni-corrected thresholds accounting for the number of 304 

MD or breast cancer SNPs tested (P < 0.05/72 = 6.94 × 10−4 for MD, P < 0.05/195 = 2.56 × 10−4  305 

for breast cancer risk) in Model 0:  5q23.2 (PRDM6), 8p21.2 (EBF2), 12p12.1 (SSPN), and 306 

16q12.2 (FTO) (Table 2). 5q23.2 (Lead SNP: rs335189, P = 7.30 × 10−5 for VSUM, Model 0) is 307 

a known locus for DA (P = 2.84 × 10−11) and PD (P = 5.78 × 10−10) [8]. The associations with V 308 

were significant in Model 0, Model 1 (adjusting for age, BMI, and genetic PCs), and Model 4 309 

(adjusting for age, BMI, NDA, and genetic PCs) but not with adjustment for DA, PD, or both 310 

(Model 2, 3, and 5). 8p21.2 (Lead SNP: rs13256025, P = 5.74 × 10−5 for VSUM, Model 0) has 311 

previously been associated with breast cancer risk (P = 1.40 × 10−8) [32]. The associations with 312 

V were significant in Model 0 and 1, and became non-significant when we adjusted for DA, 313 

NDA, or PD (Model 2, 3, 4, and 5). Although this locus has not been reported as a MD locus, the 314 

P value of the association between the lead SNP and PD was close to the genome-wide 315 

significant threshold (P = 4.46 × 10−7) [8]. 12p12.1 (Lead SNP: rs11836164, P = 6.69 × 10−5 for 316 
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VSUM, Model 0) is a known locus for DA (P = 1.66 × 10−9) [8]. The associations with V were 317 

significant in Model 0, 1, and 4, and became non-significant when we adjusted for DA, PD, or 318 

both (Model 2, 3, and 5). 16q12.2 (Lead SNP: rs17817449, P = 1.12 × 10−6 for VSUM, Model 0) 319 

is a known locus for PD (P = 5.06 × 10−9) [8], overall (P = 2.52 × 10−21), ER+ (P = 5.59 × 10−14), 320 

and ER− breast cancer risk (P = 1.80 × 10−10). This locus is also significantly associated with 321 

BMI (rs17817449, P = 5.10 × 10−19) [36] and breast size (rs62033406, P = 3.70 × 10−7, r2 = 0.89 322 

with rs17817449) [35]. The associations with V were significant in Model 0 and became non-323 

significant when we adjusted for BMI or any MD phenotype. The directions of association with 324 

V were consistent with those significant associations with MD (same direction for PD and DA, 325 

opposite direction for NDA) or breast cancer (same direction) for all four loci. Association 326 

results of all identified V loci for all models and V assessments can be found in Additional file 1: 327 

Table S4. There was no substantial difference between the results of different V assessments. 328 

The full lookup results of the 72 MD phenotype SNPs and 195 breast cancer SNPs can be found 329 

in Additional file 1: Table S5 and Table S6. 330 

We observed significant positive genetic correlations between V and dense area (rg = 0.79, P = 331 

5.91 × 10−5 for VSUM, Model 0) and percent density (rg = 0.73, P = 1 × 10−4 for VSUM, Model 332 

0) (Fig. 3a). The correlations became non-significant using GWAS results from Model 2 333 

(adjusting for age, BMI, PD, and genetic PCs). Positive correlations were also observed with 334 

overall (rg = 0.20, P = 6.90 × 10−3 for VSUM, Model 0) and ER+ (rg = 0.22, P = 4.60 × 10−3 for 335 

VSUM, Model 0) breast cancer and became non-significant when adjusting for PD. We also 336 

observed a significant negative association with adult BMI (rg = −0.36, P = 3.88 × 10−7 for 337 

VSUM, Model 0), which became non-significant when adjusting for BMI. A strong negative 338 

correlation was observed for NDA (rg = −0.60, P = 5.20 × 10−3 for VSUM, Model 0) before 339 
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adjusting for PD. Genetic correlation results were similar across V assessments; the full results 340 

are summarized in Additional file 1: Table S7.  341 

In addition to the genetic relationships of V with DA, NDA, PD, and breast cancer risk identified 342 

by genetic correlations, we further identified a significant positive association between V and 343 

ER+ breast cancer (z = 3.41, P = 6.41 × 10−4 for VSUM, Model 0) and a significant negative 344 

association between V and childhood body fatness from the SNP-set test using genome-wide 345 

significant SNPs for childhood body fatness (z = −4.91, P = 9.05 × 10−7 for VSUM, Model 0) 346 

(Fig. 3b). The overall pattern of the associations was similar for genetic correlation and SNP-set 347 

test. It is worth noting that for MD phenotypes and childhood body fatness, the associations with 348 

V remained nominally significant (P < 0.05) if we further adjust for BMI and PD in the SNP-set 349 

test. Plots showing Z scores from GWAS of V and GWAS of MD phenotypes [8] and breast 350 

cancer [25] for the SNPs included in the SNP-set tests are present in Fig. 4. SNP-set test results 351 

across all models and V assessments can be found in Additional file 1: Table S8. 352 

No substantial change on the top findings was observed after including breast cancer case-353 

control status as a covariate (Additional file 1: Table S4). There was no multicollinearity issue 354 

for the effect estimates of the genome-wide significant SNPs in Model 5 (VIFs all close to 1). 355 

There were 10 outliers with absolute studentized residual greater than 3 for rs79670367 at 356 

8q24.22 from Model 5 for V65L. The effect estimates for the effect allele increased by 24% after 357 

removing those outliers. No substantial impact of outliers was found for other identified V SNPs.  358 

 359 

  360 
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Discussion 361 

While MD continues to be one of the most well-established and widely used mammographic risk 362 

factors for breast cancer, there are gaps in our knowledge of mammographic features themselves 363 

and their relationship with breast cancer risk. Current MD measures do not capture the 364 

heterogeneity in the distribution of dense breast tissue on a mammogram, known as texture 365 

variation. Increasing evidence have shown that the performance of texture variation on 366 

discriminating breast cancer outcomes is either comparable or even higher than the performance 367 

of MD measures [12, 16, 37, 38]. Understanding the contributing mechanisms of texture 368 

variation on breast cancer risk, especially the involved genetic components, would expand our 369 

knowledge on breast cancer development. In this study, we performed the first GWAS meta-370 

analysis of mammographic texture variation, focusing on a summary measure of gray scale 371 

variation on mammograms (V). We identified three genome-wide significant V loci: 6q24.1 372 

(ECT2L), 8q24.22 (LINC01591), and 12q22 (PGAM1P5), the first two of which have not 373 

previously been associated with MD or breast cancer risk. Four additional loci for MD or breast 374 

cancer risk, 5q23.2 (PRDM6), 8p21.2 (EBF2), 12p12.1 (SSPN), and 16q12.2 (FTO), were also 375 

found associated with V.  376 

Different models of the SNP-V association were fit to capture different effects. Model 0 with 377 

only age and genetic PCs as covariates can capture both the effect of genetic variants on V and 378 

the effect that was mediated by BMI or MD phenotypes. We also fit Model 5 adjusting for all 379 

MD phenotypes together to assess the variant effect that was independent of all adjusted 380 

covariates. Although PD can be calculated from DA and NDA, previous GWAS of MD still 381 

identified different loci and genetic effects for different MD measures. We therefore fit the fully 382 

adjusted Model 5 to minimize the effect of MD phenotypes on the V associations. Collinearity 383 
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issue in Model 5 did not have an impact on the effect estimates of the variants. Comparing the 384 

results from different models may also provide evidence for the underlying relationships between 385 

the genetic variants, V, and other adjusted covariates as well as boost power to detect V SNPs. 386 

For example, if we observed a SNP-V association in models with and without adjustment for 387 

MD, then it is likely that the SNP influences V through other pathways that are independent of 388 

density; if the SNP-V association was only observed in model without adjusting for density, then 389 

it indicates that the SNP effect on V might be largely mediated by density. Downstream analyses 390 

need to be performed to confirm the relationships. Both V65L and the calculated summary 391 

statistics of the four V assessments, VSUM, were used as our primary outcomes. We have a 392 

larger sample size thus a greater power for low resolution V assessments compared to high 393 

resolution assessments (sample size for V65L and V75L = 7,040; sample size for V65H and 394 

V75H = 4,763). Although a previous study looking at the relationship between V and breast 395 

cancer risk in NHS/NHSII used a different assessment, V75L, as the outcome [16], these two 396 

low resolution V assessments were highly correlated with each other (ρ = 0.98, Fig. 1) and there 397 

was no substantial difference in the GWAS results of these two assessments (Additional file 1: 398 

Table S4). Using VSUM also has the advantage of boosting power given that the SNP 399 

associations were similar across different V assessments.  400 

Among the three genome-wide significant V loci, 12q22 is also associated with NDA and breast 401 

cancer risk in consistent direction, suggesting that at least part of its genetic effect on V is 402 

mediated by NDA or the genetic effect on NDA is mediated by V, and there are potential shared 403 

biological pathways between these three traits. These hypotheses are further supported by the 404 

fact that 12q22 is also associated with total breast size and its association with V was most 405 

significant when adjusting for DA and became non-significant when adjusting for NDA. The 406 
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lead variant rs113174754 at 12q22 is an indel near pseudogene PGAM1P5 and is 30kb upstream 407 

of protein coding gene NTN4 (see Fig. 2c). NTN4 encodes a member of the netrin family of 408 

proteins, which involved in axon guidance, tumorigenesis, and angiogenesis. NDA SNP at 12q22 409 

(rs11836367-C, correlated with the effect allele of rs113174754) has been found to downregulate 410 

NTN4 in mammary tissue [6]. NTN4 has also been identified as a candidate breast cancer risk 411 

gene by colocalization analysis, where the C allele of SNP rs61938093 (r2 = 0.48 with the effect 412 

allele of rs113174754) at this region reduced NTN4 promoter activity and knockdown of NTN4 413 

promoted breast cell proliferation and tumor growth [39]. These findings suggest a shared 414 

genetic basis and potential biological mechanisms for mammographic risk factors, especially 415 

breast adipose tissue (represented by NDA), and breast cancer risk at this locus, and may also 416 

explain the observed association between V and breast cancer risk. 6q24.1 and 8q24.22 are V 417 

loci that have not been seen associated with MD phenotypes or breast cancer risk. The lead 418 

variant rs138141444 at 6q24.1 is an intronic indel in ECT2L. The lead variant rs79670367 at 419 

8q24.22 is an intronic SNP in LINC01591. Neither these two genes nor nearby genes have been 420 

associated with breast cancer risk. The genetic effects of these two loci on V are therefore likely 421 

through mechanisms not mediated by MD. It should also be noted that the effect allele frequency 422 

for rs79670367 is less than 5% and the outlier analysis indicated that the association results 423 

might be influenced by influential outliers. Moreover, only about half of the samples have 424 

genotype data on this variant (available in NHS/NHSII Illumina HumanHap and MMHS 425 

OncoArray). Further studies are needed to confirm the findings at these two loci. 426 

Four additional V loci have previously been associated with breast cancer risk or MD phenotypes. 427 

The lead variant rs13256025 at 8p21.2 is an intronic SNP in protein coding gene EBF2. EBF2 428 

encodes well conserved DNA-binding helix-loop-helix transcription factors, which involved in 429 
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differentiation of osteoblasts. Although little is known about the role of EBF2 in breast cancer 430 

development, studies have shown that inactivation of EBF genes can lead to tumorigenesis via 431 

accumulation and expansion of undifferentiated progenitor cells [40]. 16q12.2 is associated with 432 

both PD and breast cancer risk in the same direction with its lead SNP rs17817449 located in 433 

FTO. FTO is a well-established susceptibility gene for obesity [41]. In our analysis, the 434 

association was only significant in the base model and became non-significant when adjusting 435 

for BMI, suggesting that its genetic effect on V might be mediated by BMI. FTO is 436 

overexpressed in breast cancer cells, which affects the energy metabolism of the cells [42]. 437 

5q23.2 is a known locus for DA and PD. The lead variant rs335189 is an intronic SNP in 438 

PRDM6. PRDM6 encodes a transcriptional repressor involved in the regulation of endothelial 439 

cell proliferation, survival, and differentiation, and may play a role in breast cancer 440 

tumorigenesis [7, 43]. The lead variant rs11836164 at 12p12.1 is an intronic SNP near SSPN and 441 

is only associated with DA. Functional analysis needs to be performed to further investigate the 442 

role of identified V SNPs in mammary development and breast cancer etiology. 443 

Consistent with the phenotypic relationships we observed for V and MD measures, there were 444 

strong positive genetic correlations of V with DA and PD, and negative genetic correlations with 445 

NDA. The positive genetic correlations between V and breast cancer risk (overall and ER+ 446 

specific) were also nominally significant, further supporting that the observed phenotypic 447 

association between V and breast cancer risk can at least be partially explained by shared genetic 448 

components. The magnitude of these genetic correlations is comparable to those between MD 449 

and breast cancer risk [6]. A genetic variant can be associated with multiple traits, which is 450 

known as pleiotropy. Studies have shown that jointly analyzing GWAS data of multiple traits 451 

can boost power to detect genetic associations for each trait and improve the prediction 452 
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performance [44, 45]. In our analysis, we observed significant genetic correlations of V with MD 453 

phenotypes and BMI using genome-wide association results. It is therefore very likely that a 454 

substantial number of variants are associated with both MD phenotypes, especially NDA, and 455 

BMI, which would dilute the correlations we observed for any pair of the traits. SNP-set tests 456 

may provide more evidence for the shared mechanism underlying two traits using only 457 

susceptibility variants. Here, we found that even if we adjust for PD in the model, there were still 458 

significant correlations between V and PD based on genome-wide significant SNPs for PD, 459 

indicating that the genetic contribution of V cannot be fully explained by PD and PD is either a 460 

mediator or collider of the association between the genetic variants and V (Fig. 4a). Correlations 461 

of V with breast cancer and childhood body fatness were also stronger at the susceptibility 462 

variants. There were still correlations, though not significant, after adjusting for PD, providing 463 

evidence for the genetic relationship between V and these traits that were not mediated by MD 464 

(Fig. 4b). 465 

Our study focuses on a summary texture measure, V, but there are also many other texture 466 

features. For example, Manduca et al. systematically evaluated 1,443 textural features and 467 

identified six independently validated strongest features [13]. Malkov et al. identified 15 texture 468 

features that were significantly associated with breast cancer risk, several of which were only 469 

weakly correlated with PD [46]. Studying the genetics of these features or their combinations 470 

may provide additional information for the genetic architecture of breast parenchymal texture 471 

variation. Our study included breast cancer cases, which might be concerning since V has been 472 

associated with breast cancer risk. However, both theoretical [47] and empirical [48] evidence 473 

suggest that including cases of a rare outcome does not bias the association estimates in GWAS 474 

of a secondary outcome, except when both the genetic variant being analyzed and the secondary 475 
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outcome are very strong risk factors—stronger than those exhibited by breast cancer risk SNPs, 476 

V, or BMI. Indeed, we did not observe any substantial changes on the top findings after further 477 

adjusting for breast cancer case-control status in the model. Moreover, the direction of the 478 

associations we observed—e.g., a breast cancer risk allele was positively associated with V—are 479 

opposite of those expected if the SNP-V association is solely an artefact due to collider bias. 480 

Multiple testing issue caused by studying four V assessments may also be a concern, we 481 

therefore estimated a single summary test statistic, VSUM, to minimize the impact of multiple 482 

testing and to boost power. Studying the computerized automated texture feature can also reduce 483 

the potential bias caused by measurement error that studies on semi-automated MD measures are 484 

usually susceptible to.  485 

 486 

 487 

 488 

 489 

 490 

 491 

 492 

 493 

  494 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 25, 2022. ; https://doi.org/10.1101/2022.07.25.22278024doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.25.22278024
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24

Conclusions 495 

In conclusion, we performed a GWAS of breast parenchymal texture variation, V, and identified 496 

three independent loci at genome-wide significance, including 12q22 (PGAM1P5) that are 497 

associated with MD phenotypes and breast cancer risk, and 6q24.1 (ECT2L) and 8q24.22 498 

(LINC01591) that are novel V susceptibility loci. Four additional V loci were identified from 499 

looking up MD and breast cancer susceptibility SNPs in GWAS of V, including 5q23.2 500 

(PRDM6), 8p21.2 (EBF2), 12p12.1 (SSPN), and 16q12.2 (FTO). These findings provide the first 501 

evidence of the genetic basis of V and shared genetic components between V, MD, and breast 502 

cancer risk. Future studies are needed to confirm our findings and further improve our 503 

understanding of the mechanisms underlying the relationship between texture features, MD, and 504 

breast cancer development. 505 

 506 
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BCAC: Breast Cancer Association Consortium; BMI: body mass index; DA: dense area; ER: 515 

estrogen receptor; GWAS: genome-wide association study; LD: linkage disequilibrium; MD: 516 

mammographic density; MMHS: Mayo Mammography Health Study; NDA: nondense area; 517 

NHS: Nurses’ Health Study; PC: principal component; PD: percent density; SNP: single-518 

nucleotide polymorphism; VIF: variance inflation factor; V75H: V with 25% erosion and high 519 

resolution; V75L: V with 25% erosion and low resolution; V65H: V with 35% erosion and high 520 

resolution; V65L: V with 35% erosion and low resolution. 521 
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Tables 

 

Table 1 Characteristics of NHS/NHSII and MMHS study population 

 

 NHS/NHSII (n = 4831) 

Mean (SD) 

MMHS (n = 2209) 

Mean (SD) 

Age (years) 53.8 (9.2) 58.9 (11.9) 

BMI (kg/m2) 25.9 (5.3) 28.0 (6.2) 

Dense area 43.4 (29.3) 23.8 (17.0) 

Nondense area 109.3 (73.7) 130 (67.1) 

Percent density 32.8 (19.7) 17.9 (12.9) 

 

Abbreviations: NHS Nurses’ Health Study, MMHS Mayo Mammography Health Study, SD 
standard deviation, BMI body mass index 
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Table 2 Novel V loci and their associations with mammographic density phenotypes and breast cancer risk, overall and stratified by 
estrogen receptor status 
 

      V65L  VSUM  MD phenotypesb  Breast cancer riskb 

Region Lead SNP Position Genea EA/OA EAF Model β (SE) P value  Model Z score P value  Phenotype Z score P value  Phenotype β (SE) P value 
 
Genome-wide significant locic 

 
6q24.1d rs138141444 139157426 ECT2L CT/C 0.58 0 −0.08 (0.02) 1.02E-05  0 −5.32 1.04E-07  DA −0.31 7.55E-01  Overall 0.00 (0.01) 8.09E-01 
      1 −0.07 (0.02) 3.06E-05  1 −5.06 4.10E-07  NDA −0.01 9.90E-01  ER+ 0.00 (0.01) 9.29E-01 
      2 −0.06 (0.01) 6.43E-05  2 −4.99 6.00E-07  PD −0.12 9.05E-01  ER− 0.02 (0.01) 2.32E-01 
      3 −0.06 (0.01) 2.28E-04  3 −4.62 3.87E-06         
      4 −0.06 (0.02) 1.14E-04  4 −4.96 7.12E-07         
      5 −0.05 (0.01) 1.95E-04  5 −4.69 2.78E-06         
8q24.22 rs79670367 136280666 LINC01591 A/C 0.02 0 −0.34 (0.14) 1.71E-02  0 −2.55 1.09E-02  DA 0.13 8.99E-01  Overall −0.08 (0.03) 1.92E-02 
      1 −0.41 (0.14) 2.75E-03  1 −3.08 2.05E-03  NDA 0.45 6.57E-01  ER+ −0.08 (0.04) 3.58E-02 
      2 −0.57 (0.11) 4.63E-07  2 −5.34 9.32E-08  PD −0.64 5.25E-01  ER− −0.10 (0.06) 1.25E-01 
      3 −0.55 (0.12) 2.41E-06  3 −5.07 3.97E-07         
      4 −0.39 (0.13) 2.23E-03  4 −3.30 9.72E-04         
      5 −0.56 (0.11) 3.61E-07  5 −5.58 2.38E-08         
12q22 rs113174754 96021847 PGAM1P5 A/ACCTGTAGT 0.57 0 0.07 (0.02) 1.25E-04  0 4.53 5.91E-06  DA −2.34 1.95E-02  Overall 0.07 (0.01) 1.08E-24 
      1 0.07 (0.02) 8.74E-05  1 4.61 4.05E-06  NDA −3.97 7.26E-05  ER+ 0.07 (0.01) 1.37E-18 
      2 0.06 (0.02) 3.39E-05  2 4.62 3.82E-06  PD 0.81 4.17E-01  ER− 0.06 (0.01) 3.44E-06 
      3 0.08 (0.02) 3.40E-07  3 5.47 4.42E-08         
      4 0.05 (0.02) 1.93E-03  4 3.65 2.65E-04         
      5 0.06 (0.01) 2.65E-05  5 4.44 8.90E-06         
 
MD or breast cancer risk locie 

 
5q23.2 rs335189 122446856 PRDM6 C/G 0.70 0 −0.07 (0.02) 2.15E-04  0 −3.97 7.30E-05  DA −6.66 2.84E-11  Overall −0.03 (0.01) 9.55E-05 
      1 −0.06 (0.02) 2.67E-04  1 −3.84 1.24E-04  NDA 2.60 9.39E-03  ER+ −0.03 (0.01) 1.54E-03 
      2 −0.03 (0.01) 6.26E-02  2 −2.26 2.35E-02  PD −6.20 5.78E-10  ER− −0.01 (0.01) 3.25E-01 
      3 −0.04 (0.02) 6.42E-03  3 −3.13 1.73E-03         
      4 −0.06 (0.02) 4.65E-04  4 −3.51 4.50E-04         
      5 −0.03 (0.01) 2.61E-02  5 −2.58 9.85E-03         
8p21.2 rs13256025 25831778 EBF2 T/C 0.20 0 0.09 (0.02) 6.23E-05  0 4.02 5.74E-05  DA 3.32 9.17E-04  Overall 0.04 (0.01) 2.12E-07 
      1 0.08 (0.02) 7.58E-05  1 3.94 8.01E-05  NDA −4.26 2.01E-05  ER+ 0.03 (0.01) 8.77E-04 
      2 0.04 (0.02) 1.69E-02  2 2.54 1.11E-02  PD 5.05 4.46E-07  ER− 0.06 (0.01) 1.78E-04 
      3 0.05 (0.02) 5.86E-03  3 2.92 3.47E-03         
      4 0.06 (0.02) 1.39E-03  4 3.23 1.22E-03         
      5 0.04 (0.02) 3.31E-02  5 2.37 1.79E-02         
12p12.1 rs11836164 26446625 SSPN T/C 0.76 0 −0.09 (0.02) 8.22E-06  0 −3.99 6.69E-05  DA −6.03 1.66E-09  Overall 0.01 (0.01) 6.95E-02 
      1 −0.08 (0.02) 7.20E-06  1 −4.05 5.19E-05  NDA −0.73 4.67E-01  ER+ 0.00 (0.01) 7.35E-01 
      2 −0.04 (0.02) 7.39E-03  2 −2.37 1.77E-02  PD −5.43 5.55E-08  ER− 0.03 (0.01) 5.72E-02 
      3 −0.05 (0.02) 3.18E-03  3 −2.55 1.09E-02         
      4 −0.08 (0.02) 1.14E-05  4 −4.17 3.03E-05         
      5 −0.04 (0.02) 6.93E-03  5 −2.47 1.34E-02         
16q12.2 rs17817449 53813367 FTO T/G 0.61 0 0.09 (0.02) 1.63E-07  0 4.87 1.12E-06  DA 4.64 3.49E-06  Overall 0.06 (0.01) 2.52E-21 
      1 0.06 (0.02) 2.46E-04  1 3.32 8.93E-04  NDA −3.10 1.94E-03  ER+ 0.06 (0.01) 5.59E-14 
      2 0.04 (0.01) 1.50E-03  2 2.85 4.36E-03  PD 5.85 5.06E-09  ER− 0.07 (0.01) 1.80E-10 
      3 0.05 (0.01) 1.51E-04  3 3.35 8.20E-04         
      4 0.05 (0.02) 2.42E-03  4 2.77 5.66E-03         
      5 0.04 (0.01) 1.46E-03  5 2.80 5.14E-03         

 
aNearest gene within 500kb of the lead SNP 
bSummary statistics were from Breast Cancer Association Consortium [8, 25] 
cGenome-wide significant loci (P < 5 × 10−8) in any model for any V assessment  
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d6q24.1 (rs138141444) is genome-wide significant for V75L (Additional file 1: Table S4)  
eSignificant V loci at the Bonferroni-corrected threshold of P < 6.94 × 10−4 accounting for the 72 MD phenotype SNPs tested or P < 

2.56 × 10−4 accounting for the 195 breast cancer SNPs tested based on Model 0. 

 

Abbreviations: SNP single-nucleotide polymorphism, EA effect allele, OA other allele, EAF effect allele frequency, MD 

mammographic density, DA dense area, NDA nondense area, PD percent density, ER estrogen receptor 
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Figures 

 

Fig. 1 Scatter plots of four V assessments and V65L by three mammographic density phenotypes. 

a = scatter plots of four V assessments; b = scatter plots of V65L by dense area (DA), nondense 

area (NDA), and percent density (PD). Spearman correlation between the two measures is shown 

on the upper left or right corner of each plot. Red lines on the plots are the diagonal lines. 

Fig. 2 Regional association plots for the three genome-wide significant V loci. a = 6q24.1 

(rs138141444; V75H, Model 0); b = 8q24.22 (rs79670367; VSUM, Model 5); c = 12q22 

(rs113174754; VSUM, Model 3). Model and V assessment with the most significant results for 

each locus are shown. Each plot is centered around the lead SNP of each locus. SNPs in the 95% 

credible set at each locus are shown in color. Physical positions are based on NCBI Genome 

Reference Consortium Human Build 37. Plots were generated using LocusZoom [30]. 

Abbreviations: SNP single-nucleotide polymorphism 

Fig. 3 Genetic correlation and SNP-set test results of V with mammographic density phenotypes, 

breast cancer risk, and other breast cancer risk factors. a = genetic correlations between V and 

other traits; b = SNP-set test results of the relationship of V and other traits. Results of Model 0 

and 2 for V65L and VSUM are shown. Estimates passed the Bonferroni threshold (P < 0.05/40 = 

1.25 × 10−3) are marked with triple asterisk (***); estimates with P < 0.01 are marked with 

double asterisk (**); estimates with nominal significance (P < 0.05) are marked with single 

asterisk (*). Genetic correlations between VSUM (Model 2) and MD phenotypes were not 

estimated due to the out of bounds heritability of V. 

Abbreviations: SNP single-nucleotide polymorphism, DA dense area, NDA nondense area, PD 

percent density, ER estrogen receptor, BMI body mass index 

Fig. 4 Z scores from GWAS of V, mammographic density phenotypes, and breast cancer risk for 

SNPs included in SNP-set test. a = scatter plots of Z scores from GWAS of V by Z scores from 

GWAS of percent density (PD), dense area (DA), and nondense area (NDA) for mammographic 

density SNPs; b = scatter plots of Z scores from GWAS of V by Z scores from GWAS of overall 

breast cancer risk and stratified by estrogen receptor (ER) status for breast cancer SNPs. For each 
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SNP, GWAS results from Model 0 and 2 for VSUM are shown with gray and red dots, 

respectively. RS number for some SNPs are not shown on the plots. Gray line is the fitted linear 

regression line of Z scores for results from Model 0; red line is the fitted linear regression line of 

Z scores for results from Model 2. Note that some of the overall breast cancer risk SNPs are not 

genome-wide significant because we obtained the Z scores from one study and those SNPs were 

reported by other studies. 

Abbreviations: GWAS genome-wide association study, SNP single-nucleotide polymorphism 
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Additional files 

Additional file 1 (XLSX):  

Table S1. Number of GWAS subjects by study and platform. 

Table S4. GWAS results of significant V loci for all V assessments and models. 

Table S5. Lookup results of 72 MD phenotype SNPs in GWAS of V.  

Table S6. Lookup results of 195 breast cancer SNPs in GWAS of V.  

Table S7. Genetic correlation results of all V assessments and models. 

Table S8. SNP-set test results of all V assessments and models. 

 

Additional file 2 (DOCX):  

Table S2. Sources of summary statistics of breast cancer risk and breast cancer risk factors for 

calculating genetic correlation. 

Table S3. Sources of summary statistics of breast cancer risk and breast cancer risk factors for 

the SNP-set test. 

Figure S1. Quantile-quantile plots of the GWAS meta-analysis results.  

Figure S2. Manhattan plots of the GWAS meta-analysis results. 

Figure S3. Quantile-quantile plots of the P value of heterogeneity. 
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