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ABSTRACT 

 

Background: Pediatric disorders include a range of highly genetically heterogeneous 

conditions that are amenable to genome-wide diagnostic approaches. Finding a molecular 

diagnosis is challenging but can have profound lifelong benefits.  

 

Methods: The Deciphering Developmental Disorders (DDD) study recruited >33,500 

individuals from families with severe, likely monogenic developmental disorders from 24 

regional genetics services around the UK and Ireland. We collected detailed standardised 

phenotype data and performed whole-exome sequencing and microarray analysis to 

investigate novel genetic causes. We developed an augmented variant analysis and re-

analysis pipeline to maximise sensitivity and specificity, and communicated candidate 

variants to clinical teams for validation and diagnostic interpretation. We performed multiple 

regression analyses to evaluate factors affecting the probability of being diagnosed. 

 

Results: We reported approximately one candidate variant per parent-offspring trio and 2.5 

variants per singleton proband, including both sequence and structural variants. Using 

clinical and computational approaches to variant classification, we have achieved a 

diagnosis in at least 34% (4507 probands), of whom 67% have a pathogenic de novo 

mutation. Being recruited as a parent-offspring trio had the largest impact on the chance of 

being diagnosed (OR=4.70). Probands who were extremely premature (OR=0.39), had in 

utero exposure to antiepileptic medications (OR=0.44), or whose mothers had diabetes 

(OR=0.52) were less likely to be diagnosed, as were those of African ancestry (OR=0.51). 

 

Conclusions: Optimising diagnosis and discovery in highly penetrant genomic disease 

depends upon ongoing and novel scientific analyses, ethical recruitment and feedback 

policies, and collaborative clinical-research partnerships. 
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INTRODUCTION 

 

Genomic sequencing has made extraordinary strides towards identifying novel molecular 

causes for rare monogenic disorders, and is becoming increasingly available in diagnostic 

clinics throughout the world.1,2 Pediatrics has particularly benefited from the use of high-

throughput next generation sequencing technologies, partly because of the high clinical need 

and potential for lifelong impact of diagnosis and treatment.3 In addition, the early 

presentation of severe disease makes genetic diagnosis more tractable as causal variants 

are largely absent from control datasets.4 

 

Progress in pediatric rare disease genomics has been spearheaded by numerous diagnostic 

research groups across the world.5,6 One of the first studies to combine large-scale genomic 

research with individual patient feedback was the Deciphering Developmental Disorders 

(DDD) study,7–9 with >33,500 participants with exome sequence and microarray data and 

rich clinical phenotypes recorded by >200 clinicians across the UK and Ireland. Here we 

outline the analytical strategies developed over a decade by the DDD study to identify and 

classify thousands of new molecular diagnoses, and investigate factors affecting the 

probability of receiving a diagnosis. 

 

METHODS 

 

STUDY OVERVIEW 

The DDD study was granted UK Research Ethics Committee (REC) approval by the 

Cambridge South REC (10/H0305/83) and Republic of Ireland REC (GEN/284/12). A 

multicentre research collaboration was set up with all 24 Regional Genetics Services, and a 

management committee (comprising clinicians, scientists and a bioethicist) was created to 

provide ongoing ethical oversight (Table 1). In addition to genomic and data scientists, a 

social scientist was employed to do ethics research.10  
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COHORT  

13,610 cases (88% as parent-offspring trios) were ascertained and recruited between April 

2011-2015 by consultant clinical geneticists, facilitated by research nurses/genetic 

counsellors. Families gave informed consent for participation. Eligibility criteria included any 

of the following: neurodevelopmental disorders; congenital anomalies; abnormal growth 

parameters (single parameter >4SD or two or more parameters >3SD above the mean); 

dysmorphic features; unusual behavioural phenotypes; and genetic disorders with a 

significant impact for which the molecular basis was unknown. The study was initially limited 

to probands <16 years at the date of recruitment, but this age limit was later removed 

(except in Scotland). Most probands had previously undergone clinical chromosomal 

microarray (85%) and/or single gene testing (53%) but remained undiagnosed. Probands 

were assigned pseudonymised IDs and basic clinical information, quantitative growth data, 

developmental milestones and Human Phenotype Ontology (HPO)11 terms were recorded 

for all participants via a bespoke standardised interface in DECIPHER.12  

  

GENOMIC ANALYSES 

Detailed assay protocols13,14 and variant filtering pipelines7,15 have been described 

elsewhere (Supplementary Information). Briefly, three independent genomic assays were 

performed: whole exome sequencing (WES) of complete family trios and singleton 

probands; exon-array comparative genomic hybridisation (aCGH) of probands; and genome-

wide SNP-genotyping of probands. Multiple different algorithms were used to detect and 

annotate sequence and structural variants (Figure 1). De novo mutations (DNMs)16 and 

inheritance status of variants in the proband were determined by comparison with parental 

data. For clinical reporting, we selected high-quality, rare, non-synonymous variants 

overlapping genes in the Developmental Disorders Gene2Phenotype database (DDG2P)17 

with appropriate zygosity and inheritance (where available). We augmented this pipeline with 

additional analyses to find missing likely causal variants, including: mosaic DNMs;18 DNMs 
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creating upstream open reading frames;19 DNMs affecting splicing;20 DNMs of intermediate 

size;21 mobile element insertions;22 mosaic chromosomal alterations;23 and ClinVar 

pathogenic/likely pathogenic variants.24  

 

DEFINING A DIAGNOSIS 

Candidate diagnostic variants identified bioinformatically were reviewed by a central clinical 

review panel to evaluate analytical and clinical validity prior to reporting to regional genetics 

teams via DECIPHER (April 2014-2022, Figure S1). The referring clinician then evaluated 

the reported variant(s), requested diagnostic laboratory confirmation where required, and 

communicated diagnoses to the family. At the time of writing, clinical classifications of variant 

pathogenicity (benign/ likely benign/ uncertain/ likely pathogenic/ pathogenic) and 

contribution to the phenotype (full/ partial/ unknown/ none) were recorded in DECIPHER for 

84% of variants. These were supplemented by automated predictions for variant 

classification criteria (BA1, BS1, BP4, BP7, PVS1, PS1, PS2, PP3 and PM2) based on 

published guidelines from the American College of Medical Genetics and Genomics (ACMG) 

and Association of Molecular Pathologists25 and UK Association of Clinical Genetic 

Scientists (ACGS)26. A provisional variant classification was calculated using a log-additive 

Bayesian framework described elsewhere27 (Supplementary Information). Variants with a 

posterior probability of >0.9 were classified as likely pathogenic and pathogenic >0.99, or 

<0.1 as likely benign and benign <0.001. For genes with ≥10 pathogenic/likely pathogenic 

variants, computational phenotype matching was performed using IMPROVE-DD,28 applying 

the same Bayesian framework to combine variant classifications and gene-disease models; 

phenotype-based likelihoods were scaled appropriately and used at the evidence equivalent 

of “Strong”.27 Probands were categorised as “diagnosed” if ≥1 variant(s) or ≥2 compound 

heterozygous variants were annotated as pathogenic/likely pathogenic by either the 

proband’s referring clinician and/or the predicted classification. Factors influencing the 

chance of receiving diagnosis (based on clinical annotation only) were investigated using 
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multivariable logistic regression with Bonferroni correction to account for multiple hypothesis 

testing (Supplementary Information). 

 

DATA AVAILABILITY 

Datasets are available under managed access for research into developmental disorders via 

the European Genome-phenome Archive (EGAS00001000775). Individual pathogenic/likely 

pathogenic variants are openly accessible with phenotypes via DECIPHER. 

 

RESULTS 

 

COHORT CHARACTERISTICS 

The DDD study includes 13,450 probands (9,859 in parent-offspring trios) with severe, 

previously undiagnosed developmental disorders with WES, exon-aCGH and SNP 

genotyping data, recruited across the UK and Ireland with a median recruitment per centre of 

216 probands per million population (range=69-588). The median age was 7 years 

(range=0-63) at recruitment for probands and 31 years (range=15-90 at the proband’s birth) 

for parents; 58% of probands were male. A median of 6 HPO terms (range=1-36) were 

recorded per proband, including 65% with global developmental delay/intellectual disability, 

and 72% of probands were the only affected member of their family.  

 

GENETIC FINDINGS  

To date, 19,286 potentially pathogenic sequence and structural variants have been identified 

in DDD probands and reported to referring clinicians through up to six rounds of iterative re-

analysis, involving 18 different variant detection algorithms (Figure 1 and Table S1).7,15 The 

majority of variants were identified using a clinically-curated database of 1,840 DD-

associated genes (DDG2P)17 which was updated at a rate of approximately 100 genes/year 

through literature curation and cohort-wide enrichment analyses (including 60 novel DD-

associated genes identified by DDD; Figure S1);5,13,14,29,30 44% of reported variants were in 
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genes added to DDG2P after the first round of reporting in 2014. The majority of reported 

variants were single nucleotide variants and small insertions/deletions detected using WES 

data (71% protein-altering, 19% protein-truncating, 3% non-coding variants), while structural 

variants were identified through a combination of microarray and WES analyses (6% copy 

number variants, 1% other structural variants; Figure S2). On average, one variant was 

reported per trio versus 2.5 per singleton proband (Figure S3), and each new round of 

analysis resulted in approximately one additional variant being reported for every six trios. 

Consistent with similar studies,31 DNMs in the proband and variants inherited from a mosaic 

parent (i.e. post-zygotic parental DNMs) in dominant genes provided the highest diagnostic 

yield, with 79% of reported variants clinically classified as pathogenic/likely pathogenic; in 

contrast, 32% of variants in autosomal recessive genes, 23% maternally inherited on the X-

chromosome, 11% dominantly inherited from an affected parent or with unknown inheritance 

were clinically classified as pathogenic/likely pathogenic (Figure 2).  

 

There was a high rate of concordance between clinical and predicted classifications of 

variant pathogenicity and benignity (N=4425; sensitivity=99.5%, specificity=85.0%, 

PPV=96.5%, NPV=97.9%; Figure S5).25–27 Discrepancies (N=149; 3%) were due to false 

positive variant calls, incorrect clinical classifications (e.g. atypical disease presentations) or 

inappropriate ACMG/ACGS criteria assignment (e.g. incorrect disease mechanisms). Based 

on concordance between clinical and predicted classifications of variant pathogenicity, we 

estimate that a minimum of 25% of probands (N=3359) are diagnosed, which rises to 32% 

(N=4237) for predicted only, 34% (N=4507) for clinical only, and 41% (N=5511) for either 

clinical or predicted (Figure 3). Of those who were diagnosed by clinical assertion, 67% 

(N=3032) have a pathogenic DNM, 12% (N=559) are partially diagnosed, and a further 3% 

(N=128) have two or more different genetic diagnoses potentially resulting in a composite 

phenotype.32 Although 30% (N=4021) have no reported variants, the rest of the cohort have 

variants of uncertain significance, of which 0.7% (N=99) have a predicted Bayesian posterior 

probability of pathogenicity 0.8-0.9. High rates of concordance were also seen in the subset 
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of variants for which we were able to derive a phenotype-based gene-disease model using 

IMPROVE-DD,28 and a further 18 variants of uncertain significance were predicted to be 

pathogenic/likely pathogenic based on the individual’s phenotype. 

 

FACTORS INFLUENCING DIAGNOSTIC RATE 

We performed multiple logistic regression to investigate how demographic, clinical, 

phenotypic, prenatal and ancestral factors affected the chance of receiving a clinical 

diagnosis from the DDD study (Figure 4). The model explained ~14% of the variance. Being 

in a parent-offspring trio had the largest impact on the chance of being diagnosed (OR: 4.70, 

95% CI: 4.16-5.31). Other factors significantly increasing the chance of diagnosis included: 

having severe intellectual/ developmental delay (OR: 2.41, 95% CI: 2.10-2.76); time since 

recruitment (increased odds of diagnosis: 1.25 per additional year, 95% CI: 1.20-1.30); being 

the only affected family member (OR: 1.74, 95% CI: 1.57-1.92) or having fewer affected first-

degree relatives (Figure S6); having features suggestive of a syndrome (OR: 1.23, 95% CI: 

1.12-1.34); and having more organ systems affected (increased odds of diagnosis: 1.08 per 

additional organ system, 95% CI: 1.06-1.11). Probands born prematurely (OR: 0.73, 95% CI: 

0.64-0.82), or who had in utero exposure to antiepileptic medications (OR: 0.44, 95% CI: 

0.29-0.67) or whose mothers had diabetes (OR: 0.52, 95% CI: 0.41-0.67) were less likely to 

have a genetic diagnosis. Male sex (OR: 0.72, 95% CI: 0.67-0.79) also reduced the odds of 

getting a diagnosis, as did increasing homozygosity due to consanguinity (decreased odds 

of diagnosis: 0.72 for each increase equivalent to the offspring of first cousins, 95% CI: 0.62-

0.83). Probands with African ancestry had a lower diagnostic rate than those with other 

ancestries (OR: 0.51, 95% CI: 0.31-0.78), which was driven by fewer diagnoses in singleton 

probands (Figure S7). Probands with non-European ancestry had more variants reported 

back to clinical teams (Wilcoxon p-value <0.001), particularly in singleton cases (Figure S8).  

 

DISCUSSION 
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The DDD study has identified and communicated molecular diagnoses to thousands of 

families across the UK and Ireland affected by severe, previously undiagnosed 

developmental disorders. Our analysis highlights the value of using diverse variant detection 

algorithms combined with stringent variant filtering rules and iterative variant analysis and 

classification.15 The high burden of pathogenic de novo mutations and current diagnostic 

yield estimate of 34-41% are consistent with similar studies,33 but also reflect the challenges 

of making a robust genetic diagnosis in genetically and phenotypically heterogeneous 

conditions when both genomic knowledge and disease phenotypes change over time.  

 

Our analysis re-enforces clinical intuition about the likelihood of establishing a molecular 

diagnosis in developmental disorders (e.g. availability of parental genotype data, as well as 

sex, ethnicity and phenotypic severity) and moves towards quantifying the expectation of 

making such a diagnosis. The work also highlights groups with lower diagnostic rates in our 

cohort (e.g. singletons, families with multiple affected members, and those with non-

European ancestry or high consanguinity). Excluding cohort-specific factors, our 

multivariable logistic regression model predicts that probands in the top decile of probability 

of being diagnosed have a diagnostic rate of 52% versus 16% in the bottom decile. We 

hypothesise that the lower diagnostic rate found in probands with certain prenatal factors 

reflects a larger role for environmental influences in these individuals. Prematurity34, 

maternal diabetes35 and in utero exposure to antiepileptic medications36 are known risk 

factors for developmental disorders. Further exploration is needed to better understand the 

relative contributions and interplay of genetic/environmental influences in this cohort. 

 

The genetic architecture of developmental disorders is heterogeneous; although the large 

burden of highly-penetrant DNMs facilitates both diagnosis and large-scale gene-disease 

discovery,5 the number of composite and partial diagnoses suggests that many individuals 

are likely to have multiple contributing factors, including rare and common incompletely 

penetrant genetic variants and non-genetic causes. Under a liability threshold model of 
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disease,37 probands who have a significant environmental contribution may require less 

severe or even no large-effect genetic variants to develop a neurodevelopmental disorder. 

Nonetheless, statistical burden analyses suggest that many more diagnoses remain in 

protein-coding genes than in non-coding elements,38 which will likely be identified through 

novel DD-associated gene discovery (especially for dominant disorders), evaluation of 

incompletely penetrant variants, and functional assays to improve interpretation of existing 

candidate variants. 

 

The DDD study pioneered a hybrid clinical-research approach, requiring development of new 

methodologies to facilitate both large-scale analysis and individual variant feedback, which 

has since become standard practice in genomic medicine. The study primarily recruited 

infants and children and hence pioneered a conservative approach to individual variant 

feedback that focussed on diagnosis,7–9 whilst exploring attitudes to communicating 

incidental findings39 that influenced subsequent approaches.1 A large network of expert 

clinician-researchers and the integration of ethics at a high level throughout the project 

lifecycle served to both facilitate collaboration and enable real-time ethical issues to be 

openly and responsibly addressed (Table 1). To date, in addition to making thousands of 

new diagnoses for patients, the DDD study has resulted in >270 publications 

(https://www.ddduk.org/publications.html), identified around 60 new disorders and enabled 

>350 genotype/phenotype-specific projects led by clinician-researchers across all 24 

recruitment sites. DECIPHER12 was another key component of the DDD study, enabling 

nationwide recruitment, systematic phenotyping, individual feedback, variant interpretation 

and data sharing. DECIPHER is a live online platform enabling reported variants to be re-

evaluated with current data (e.g. gene-disease associations, population frequencies, co-

located variants reported in ClinVar, DECIPHER or publications) each time a patient is 

reviewed in the clinic, thus facilitating new opportunities for diagnosis as knowledge grows. 
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Although many of our conclusions are widely applicable across a range of rare diseases, the 

generalisability is limited by a number of factors. Recruitment of families following routine 

diagnostic testing (karyotyping, aCGH and targeted single gene testing) resulted in a cohort 

depleted of clinically recognisable syndromes and large structural variants, reducing the 

diagnostic yield relative to first-tier testing and skewing the factors affecting getting a 

diagnosis. The diagnostic yield in DDD therefore represents a conservative estimate with 

higher yields anticipated if genomic sequencing had been offered as a first-line investigation. 

Our genotyping approach (WES and microarrays) did not assay most non-coding variants 

and could not detect all complex structural variants or tissue-specific mosaicism, and our 

analytical approach was insensitive to incomplete penetrance. Furthermore, the study was 

not funded to capture longitudinal phenotype data, evaluate parental phenotypes in detail, 

record the impact of diagnosis on subsequent clinical management of families, or assess 

social or environmental contributions to developmental disorders – all of which, in retrospect, 

would have enhanced the project. Finally, despite the large cohort size, due to the enormous 

genetic and phenotypic heterogeneity, we often had insufficient probands (particularly across 

ethnicities) with the same ultra-rare condition to enable confident variant interpretation, 

highlighting the need to aggregate phenotype information and structured electronic health 

data across cohorts internationally to improve variant interpretation. 

 

CONCLUSION 

 

The DDD study pioneered nationwide genomic analysis of a large clinical cohort using a 

hybrid clinical-research model, with the aim of advancing understanding of the genetic 

architecture of developmental disorders and catalysing improved diagnosis. Converting 

genomic data into robust clinicomolecular diagnoses for patients requires sophisticated 

informatics and multidisciplinary expertise. The DDD study shows how the fusion of clinical 
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expertise, genomic science, bioinformatics and embedded ethics can drive diagnosis and 

discovery in genomic medicine. 
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TABLES 

 

Table 1. Ethical considerations in the DDD Study. 

The DDD study depended crucially upon integration of ethics into decision-making and 

collaboration-building, both upfront and throughout the project, allowing important ethical 

questions to be identified and ethical policies to be developed through a consensual 

process.  

Ethical Domain Key Issues Resolution within DDD Study 

Building and 
maintaining 
partnerships at 
clinical-research 
interface 

● Ensuring trust between 
researchers, clinicians, and 
patients/families. 

● Trade-off between creating large 
research dataset versus 
maintaining small clinical cohorts. 

● Managing practical ethical 
considerations throughout the 
lifecycle of the DDD study. 

● Scientific scope limited to 
understanding causes of 
developmental disorders. 

● Local training sessions and regular 
discussion with stakeholders around 
project planning and decisions. 

● Regular DDD management committee 
meetings and annual national 
collaborators meetings. 

Consent, 
capacity, and 
eligibility 

● Most DDD probands lack capacity 
to give consent, either due to 
young age or intellectual disability. 

● Initial DDD eligibility limited to 
those <16 years, creating inequity; 
however, recruitment of adults 
lacking capacity is extremely 
challenging in Scotland. 

● Confidentiality of DDD study 
participants should be protected 
where possible. 

● Detailed consent materials and 
website developed for 
families/guardians. 

● New consent materials written, and 
recruitment opened to adults 
with/without capacity in England, 
Wales, Northern Ireland, and Ireland. 

● Pseudonymised IDs used throughout 
study; minimum data required for 
research stored and personal 
identifiable data (such as date of birth) 
not stored within DECIPHER. 

Sample 
inclusion, 
collection, and 
verification 

● Balance between scientific benefit 
of sampling parents and clinical 
concerns around scope and data 
management. 

● Many children with developmental 
disorders are very distressed by 
hospital visits to have blood 
samples drawn. 

● Potential for misattributed 
parentage and sample mix-ups in 
DDD (either within families, at 
recruitment centres or at the 
Wellcome Sanger Institute). 

● Parents recruited into DDD with the 
agreement that their data would only 
be used where it is relevant to 
understanding their child’s disorder. 

● Saliva sample kits used to collect child 
and parental samples, allowing sample 
collection at home. 

● Genetic ‘barcodes’ for all samples 
created using 60 SNP-genotyping; 
individual and family data cross-
checked; discordant samples or 
biologically unrelated parents excluded 
from further analysis. 
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Sharing 
clinically- 
relevant  
variants 

● Public opinion about feedback of 
incidental findings from genomics 
research largely unknown and 
unexplored. 

● Balance between benefits and 
harms of returning different types 
of clinically actionable findings. 

● Pertinent findings (i.e. potentially 
relevant to the child’s 
developmental disorder) deemed 
within the scope of research study 
and clinical testing, where benefits 
likely to outweigh harms. 

● Incidental findings deemed outside 
the scope and expertise of 
clinicians/researchers, with 
unclear relevance particularly in 
children, where harms likely to 
outweigh benefits. 

● Ethics/social science researcher 
embedded in DDD study to investigate 
attitudes amongst the public, patients, 
scientists and health professionals to 
feedback of incidental findings in 
genomics. 

● DDD documentation states that 
pertinent findings would be reported to 
clinical teams for communication with 
families, but not incidental findings. 

● DDG2P database and variant filtering 
rules developed to select plausibly 
pathogenic variants for reporting into 
linked DECIPHER records; DDG2P 
genes associated with adult-onset 
diseases flagged for review. 

● Pathogenic variants and phenotypes 
shared openly via DECIPHER once 
family had been informed.   

Sharing 
genome-wide 
variants  

● Requests received from DDD 
parents for genomic data to be 
returned directly to them. 

● Access to research data should be 
prioritised for the hundreds of 
clinicians and scientists involved in 
recruitment and management of 
DDD families. 

● Research data should be shared 
widely with external researchers to 
advance research, but datasets 
are sensitive as they relate to 
severely unwell children and 
consent is limited to understanding 
causes of DD. 

● Requests for individual/family genomic 
data declined based on concerns 
about sample identity, lack of 
resources to provide informatics 
support, and inability to mitigate 
against unintended consequences. 

● Collaborative Analysis Project system 
created, with research plans reviewed 
by management committee and data 
shared by secure file transfer protocol. 

● Genomic data shared with bona fide 
researchers under managed access 
via EGA; anonymised variants of 
potential relevance shared through 
DECIPHER as research variants. 

Managing 
withdrawal 

● DDD participants are allowed to 
withdraw from the study at any 
time, requiring a range of actions 
to manage samples, data, and 
associated records. 

● Previously shared data cannot be 
withdrawn and may be required to 
support published findings.  

● Upon receiving a withdrawal request, 
samples are destroyed, unshared data 
are removed, and individual 
DECIPHER records are deleted to 
break any link to the family. 

● Data in previously published datasets 
not withdrawn, as stated in consent 
materials.  
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FIGURES 

 

Figure 1. Overview of DDD variant detection and filtering pipelines. 

Assays are shown in grey boxes, variants in blue boxes, variant subsets in light blue circles, 

and reported and diagnostic variants in red boxes; variant callers and analytical processes 

are annotated on arrows (further detail and references in Supplementary Information). 

aCGH = array comparative genomic hybridisation; CNVs = copy number variants; DDG2P = 

Developmental Disorders Gene2Phenotype database; indels = insertions/deletions; MAF = 

minor allele frequency; MEI = mobile element insertion; OMIM = Online Mendelian 

Inheritance in Man database; P/LP = pathogenic/likely pathogenic (variants in the ClinVar 

database); SNP = single nucleotide polymorphism; SNVs = single nucleotide variants; SVs = 

structural variants; UPD = uniparental disomy; uORFs = upstream open reading frames; 

VEP = Variant Effect Predictor; VCFs = variant call files.  
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Figure 2. Proportion of clinically classified variants. 

(a) Total number and (b) percentage of candidate variants deposited in DECIPHER, 

separated by mode of inheritance of gene-disease entries in DDG2P and inheritance of 

variants in probands based on comparison with parental genotypes (trios only).  
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Figure 3. Summary of diagnoses in the DDD study.  

(a) Venn diagram showing overlap of diagnoses based on clinical assertion (white) versus 

predicted ACMG/ACGS variant classifications (grey), augmented with phenotype-based 

IMPROVE-DD gene-disease models (blue); figure created using eulerr. (b) Diagnostic 

ranges in trios and singleton probands, based on clinical and/or predicted variant 

classifications. (c) Example of computational Bayesian variant classification, incorporating 

genotypic and phenotypic data in a DDD proband: only PM2 could be applied to the 

missense variant, resulting in an uncertain classification, but the proband’s phenotype was 

consistent with the IMPROVE-DD model for NSD1, allowing the variant to be upgraded to 

likely pathogenic; additional data (e.g. epigenomic profiling)40 was used to further increase 

the robustness of the diagnosis of Sotos syndrome.  
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Figure 4. Factors influencing the probability of being diagnosed. 

Odds associated with being fully or partially diagnosed by the DDD study (based on clinician 

assertions of variant pathogenicity) are shown for covariates included in a multivariable 

logistic regression, adjusted for recruitment centre and number of variants reported in 

DECIPHER. Odds ratios are presented for binary and categorical variables. For quantitative 

variables (italics), odds change per one unit of measure of increase are presented. P-values 

and 95% confidence intervals are also shown; filled circle = significant after adjusting for 

multiple hypothesis testing (Bonferroni p-value<0.003); unfilled circle = not significant; 

underline in variable column = outcome variable plotted, with N referring to the number of 

probands in this group. See Supplementary Information for further analysis of the number 

of affected first-degree relatives (Figure S6) and ancestry (Figure S7 and S8).
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Less likely to be diagnosed More likely to be diagnosed

Significant at multiple hypothesis 
testing correction threshold

Not significant 

7818

Age of proband at recruitment

Sex (Male/Female)

13368

13368Homozygosity of the genome 

13368Time since recruitment

In trio (Yes/No) 9807

9617Proband only affected family member (Yes/No/Unkown)

Number of organ systems affected 13368

122Proband has died (Yes/No)

Had neonatal intensive care stay (Yes/No/Unknown) 4067

4454Features suggestive of syndrome (Yes/No)

2466

No ID/DD acting as comparison (N = 4744) 

European ancestry acting as comparison (N = 11202)

Term(37wk+) acting as comparison for premature infants (N = 1 1222)  

Variable
     N in group

Total = 13 368

937Mild

Moderate 1893

1543Severe

Unspecified severity 4251

1744Moderately premature (32- 36wks)

Very premature (28- 31wks) 291

111Extremely premature (22- 27wks)

Maternal diabetes (Yes/No) 482

2763Maternal history of pregnancy loss (Yes/No) 

Maternal use of anti-epileptics (Yes/No) 175

1252South and Central Asian

Hispanic 462

243Middle Eastern

East Asian 59

African 150

Seizures (Yes/No)

Non-European Ancestry

Prenatal

Intellectual/Developmental Disability

Demographic

Clinical

Study Related

Odds Ratio/Odds change

(95% Confidence interval) P-Values

1.01 (1.00 — 1.01) 

0.72 (0.67 — 0.79) 

0.72 (0.62 — 0.83) 

1.25 (1.20 — 1.30) 

4.70 (4.16 — 5.31) 

1.74 (1.57 — 1.92) 

1.08 (1.06 — 1.11) 

0.90 (0.57 — 1.41) 

0.96 (0.87 — 1.06) 

1.23 (1.12 — 1.34) 

1.12 (1.01 — 1.24) 

1.07 (0.90 — 1.28) 

1.53 (1.34 — 1.75) 

2.41 (2.10 — 2.76) 

1.59 (1.44 — 1.76) 

0.78 (0.69 — 0.89) 

0.52 (0.38 — 0.71) 

0.39 (0.22 — 0.68) 

0.52 (0.41 — 0.67) 

0.96 (0.86 — 1.06) 

0.44 (0.29 — 0.67) 

0.88 (0.74 — 1.05) 

0.69 (0.50 — 0.96) 

0.85 (0.68 — 1.06) 

0.77 (0.41 — 1.43) 

0.51 (0.31 — 0.78) 

0.11

<1 x 10-10

6.7 x 10-6

<1 x 10-10

<1 x 10-10

<1 x 10-10

1.2 x 10-10

0.65

0.38

4.3 x 10-6

0.03

0.44

1.7 x 10-10

<1 x 10-10

<1 x 10-10

2.3 x 10-4

5.3 x 10-5

9.2 x 10-4

1.8 x 10-7

0.37

1.2 x 10-4

0.17

0.14

0.03

0.41

0.002

Odds ratio/
Odds change per one unit of measure increase

Log scale
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