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Objectives 

To examine the genetic architecture of cam morphology, using alpha angle (AA) as a proxy 

measure, we conducted an AA genome wide association study (GWAS), followed by 

Mendelian randomisation (MR) to evaluate its causal relationship with hip osteoarthritis 

(HOA).  

 

Methods: 

Observational analyses examined associations between AA derived from hip DXA scans in 

UK Biobank (UKB), and radiographic HOA (rHOA) and subsequent total hip replacement 

(THR). Afterwards, an AA GWAS meta-analysis was performed (n=44,214), using AA 

previously derived in the Rotterdam Study (RS). Linkage disequilibrium score regression 

assessed the genetic correlation between AA and HOA. Genetic associations with P<5x10-8 

instrumented AA for two-sample MR.  

 

Results 

DXA-derived AA showed expected associations between AA and rHOA (OR 1.63 [95% CI 

1.58-1.67]) and THR (HR 1.45 [1.33-1.59]) in UKB. The heritability of AA was 10% and 

AA had a moderate genetic correlation with HOA (rg=0.26 [0.10-0.43]). Eight independent 

genetic signals were associated with AA. Two-sample MR provided weak evidence of causal 

effects of AA on HOA risk (inverse variance weighted (IVW): OR=1.84 [1.14-2.96], P 0.01). 

In contrast, genetic predisposition for HOA had stronger evidence of a causal effect on 

increased AA (IVW: β=0.09 [0.04-0.13], P 4.58 x 10-05).  

 

Conclusions 
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Expected observational associations between AA and related clinical outcomes provided 

face-validity for the DXA-derived AA measures. Evidence of bidirectional associations 

between AA and HOA, particularly in the reverse direction, suggest that hip shape 

remodelling secondary to a genetic predisposition to HOA contribute to the well-established 

relationship between HOA and cam morphology in older adults.  
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Introduction 
 

Cam morphology describes a non-spherical femoral head which has been associated with hip 

osteoarthritis (HOA) (1, 2). Longitudinal studies have shown cam morphology precedes 

HOA and from this causation has been inferred (2, 3), prompting research into the benefits of 

surgical correction (4, 5). That said, observational studies showing temporal associations still 

suffer from confounding making causal inferences difficult (1, 6, 7).  

 

Alpha angle (AA), a measure of femoral head sphericity, is widely used to define cam 

morphology with a higher angle considered to be more severe (4, 8). Cam morphology has 

been suggested to develop in adolescence due to antero-lateral femoral head offset or 

increased impact as the growth plate fuses leading to greater bone deposition (9, 10). 

Additionally, a similar morphology may develop in later life as a consequence of modelling 

changes occurring as part of the osteoarthritic process. Croft scoring for HOA specifically 

recognises abnormal hip shape as the last stage of osteoarthritis (OA) (11).  

 

Femoro-acetabular impingement (FAI) has been proposed to explain the causal pathway 

between cam morphology and HOA (12). FAI syndrome encompasses individuals with hip 

pain, coexistent with cam morphology and specific examination findings (13). FAI syndrome 

is seen predominantly in younger adults before the onset of HOA. Surgical interventions to 

remove cam lesions in this population have been evaluated with limited success (4, 5). As 

well as potentially improving hip pain, these surgical procedures have been suggested to 

prevent the development or progression of HOA (5). 

 

One method to derive causal inferences from observational data is Mendelian randomisation 

(MR) which uses genetic loci as instrumental variables and largely removes the effects of 
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confounding and reverse causation (14). The UK Biobank study (UKB), a cohort study of 

adults aged 40-69 years at inception, provides the sample size required to study the 

relationship between hip shape and HOA using MR (15, 16). In this study, we aimed to 

provide face validity for our novel automated method for deriving AA from hip DXA scans 

in UKB by confirming expected relationships with HOA, perform an AA GWAS meta-

analysis to establish the genetic architecture of cam morphology, and finally use MR analysis 

based on genetic instruments identified from our AA GWAS to establish whether there is a 

causal relationship between increased AA and HOA.  
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Patients & Methods 
 
Alpha Angle 

This study included UKB participants with a left hip dual-energy X-ray absorptiometry 

(DXA) scan (iDXA GE-Lunar, Madison, WI). Outline points were automatically placed 

around each hip and features of radiographic HOA (rHOA) were measured semi 

automatically as previously described (15, 17, 18). AA was estimated using the outline points 

that excluded osteophytes (Figure 1) and a previously published Python code (19, 20). This 

study also included individuals from the Rotterdam Study (RS) who had AA measured from 

anterior-posterior pelvic radiographs using similar methods (see Supplementary Methods) 

(21). Ethics approval was given by the appropriate body for each study (see Ethics approval 

statement).  

 

Outcome measures of osteoarthritis and observational associations in UK Biobank 

UKB participants were asked whether they had hip pain for >3months via questionnaire on 

the same day as their DXA scan. Hospital diagnosed HOA was based on hospital episode 

statistics (HES) data, termed HES OA, as was total hip replacement (THR) (17). Logistic 

regression was used to examine associations between AA with clinical outcomes, apart from 

with THR which was examined using Cox proportional hazard modelling. Further sensitivity 

analyses were performed defining cam morphology as an AA ≥60º (see Supplementary 

Methods). 

  

Alpha angle genome-wide association study 

AA was standardised to create a Z-score (standard deviation (SD)=1, mean =0). 

Subsequently, a GWAS meta-analysis of AA was conducted between a GWAS in each study 

(UKB n=38,173, RS1 (n=2,970), RSII (n=1,817) & RSIII (n=1,254)). EasyQC was used to 
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clean and harmonise the data (22), SNPs with a minor allele frequency (MAF) <0.01 and 

imputation score <0.4 were removed. Meta-analysis between the studies was performed using 

fixed-effects inverse variance weighting with METAL (23). A threshold of P-value <5x10-8 

was used to define genome-wide significance. The independent SNPs of interest for AA were 

identified using linkage disequilibrium (LD) clumping (see MR methods section). A 

sensitivity analysis using GCTA-COJO to verify independent SNPs was also done (24). 

Genetic correlations and heritability were estimated using LD score regression (LDSR) (25). 

See Supplementary Methods for further details. 

 

Downstream analyses 

Expression quantitative trait loci (eQTL) database GTEx v8 was searched for each SNP to 

identify cis-acting effects (26). Bayesian colocalisation was used to identify cis-acting genes 

within GTEx, in tissues with the greatest evidence of expression and cultured cell fibroblast 

given their similarity to joint tissue, using LocusFocus (27). In addition, colocalisation 

methods were utilised to examine eQTL data taken from human cartilage, a tissue that is not 

readily available in eQTL databases, using the coloc.fast package in R (28, 29). One 

megabase was examined either side of the sentinel SNP. Details of the cartilage samples can 

be found here (29) but briefly eQTL data were assessed on highly (diseased) and less 

degraded (healthy) cartilage retrieved following knee and hip joint replacements. A SNP was 

considered to colocalise with an eQTL if the posterior probability (PP) was >80% and 

suggestive if PP >60% (28). Regulatory elements of non-coding human genome were 

identified using RegulomeDB (30). Finally, immunohistochemistry staining in human knee 

osteochondral tissue was examined for any gene which colocalised in human cartilage 

(Supplementary Methods).  
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Mendelian randomisation 

Our AA GWAS meta-analysis provided genetic instruments for AA in two-sample MR. 

SNPs at p<5x10-8 were selected to satisfy the relevance assumption (31), having removed 

those which were palindromic with a minor allele frequency (MAF) >0.42, or those with a 

MAF<0.01. LD clumping was applied, using the TwoSampleMR package in R (32), to 

identify independent genetic signals by removing SNPs that are in LD (r2>0.001). A similar 

approach was used to provide a genetic instrument for HOA based on a GWAS of HES OA 

in UKB, for use in bi-directional MR analyses. This HOA GWAS excluded all individuals 

who had had a hip DXA to prevent any sample overlap with the AA GWAS. The MR 

analyses used the UKB AA GWAS rather than the meta-analysis to reduce heterogeneity. 

Steiger filtering was applied to strengthen evidence that genetic instruments were upstream of 

the outcome (32). Bi-directional two sample MR was conducted using the inverse variance 

weighted method. Sensitivity analyses were conducted that are more robust to violations of 

the independence and exclusion restriction assumptions, they included MR Egger, weighted 

median, simple mode and weighted mode, along with single SNP and leave one out analyses 

(16). Further, we used causal analysis using summary effect estimates (MR-CAUSE) to 

examine for evidence of causality whilst considering the effects of both correlated and 

uncorrelated horizontal pleiotropy (33). The MR-STROBE guidelines provided a framework 

for this analysis (31). 
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Results 

Observational associations 

In order to provide validity for our DXA measurement of AA, the cross-sectional association 

of AA with clinical HOA outcomes was examined in our UKB population (n=40,337, 

Supplementary Table 1). The mean AA was 47.8º (31.8-115.0) with a positively skewed 

distribution (Supplementary Figure 1) similar to a previous study (34). In both unadjusted 

and adjusted analyses, higher AA was associated with hip pain (adjusted results: OR 1.15 

[95% CI 1.11-1.19]), rHOA grade ≥2 (1.63 [1.58-1.67]), HES OA (1.44 [1.35-1.54]) and 

subsequent THR (HR 1.45 [1.33-1.59]) (Table 1). Similar associations were seen when 

investigating cam morphology as a binary variable (Supplementary Table 2). 

 

Alpha Angle GWAS 

The GWAS meta-analysis comprised 44,214 participants (Supplementary Figure 2). The 

Manhattan plot showed 8 genome-wide significant signals (Supplementary Figure 3). The 

QQ plot showed some genetic inflation (λ 1.08) which was expected (Supplementary Figure 

4). SNP trait heritability was modest (h2 0.10). After LD clumping, 8 independent SNPs 

remained from the meta-analysis, see Supplementary Figure 5 for locus zoom plots of these 

signals (Table 2). Rs561578905 was the only genome-wide significant hit after meta-analysis 

that was not present in RS. To mitigate the effects of this, the SNP in highest LD (rs7302982, 

r2 0.77) was used instead for meta-analysis in the RS. Three SNPs showed weak evidence of 

heterogeneity (rs7571789: I2 53, heterogeneity P 0.09; rs10478422 I2 33, P 0.21; 

rs561578905 I2 25, P 0.26) (Supplementary Figure 6). The lead 8 SNPs showed the same 

direction of effect in a GWAS of cam morphology (AA ≥60º, n=38,173 in UKB) albeit with 

p-values above our genome-wide significance threshold (Supplementary Table 3). Seven 

independent SNPs were identified by GCTA-COJO (Supplementary Table 4), six were the 
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same SNPs as those identified by LD clumping, rs561578905 (SOX5) was removed and 

rs10478422 was replaced by rs455991 (TNFAIP8, r2 0.97). The closest gene to each 

independent SNP associated with AA was initially used to label the loci, namely TGFA, 

TNFAIP8, TFB1M-TIAM2, LMX1B, GRK5, SOX5, CYP19A1 and UQCC1) (Table 2). TGFA, 

LMX1B, SOX5, CYP19A1 and UQCC1-GDF5 loci have previously been associated with OA 

(35). The LMX1B locus shared the same sentinel SNP for AA and OA whereas SOX5, TGFA, 

UQCC1-GDF5 AA SNPs were in moderate-high LD (r2 0.30, 0.65 & 0.79 respectively) and 

CYP19AI showed only very weak LD (r2 0.06) with their OA equivalents.  

 

Downstream analysis of alpha angle hits 

The GTEx consortium eQTL database suggested rs10478422, rs62578126 and rs1048584 

were cis-eQTLs for TNFAIP8 (cultured fibroblasts, PP 0.97), LMX1B (adipose tissue, PP 

0.96), and CLDN20/RP11-477D19/TFB1M (cultured fibroblasts, PP 0.87/0.90/0.66), as they 

showed evidence of colocalisation (Supplementary Table 5). In further eQTL studies based 

on human cartilage (n=115), the AA genetic association signal at the TNFAIP8 locus 

colocalized with the cis-eQTL signal in highly degraded human cartilage (PP 0.97, 

Supplementary Figure 7). No other SNPs showed evidence of colocalisation with eQTL data 

from less or highly degraded cartilage (Supplementary Table 6). Rs7571789 (TGFA), 

rs6595186 (TNFAIP8), rs62578126 (LMX1B), rs561578905 (SOX5) and rs246939415 

(CYP19A1) were all predicted to affect enhancer or promotor activity, based on RegulomeDB 

probability scores >0.5 (Supplementary Table 7). 

 

Given the finding that the TNFAIP8 locus colocalized with the cis-eQTL signal in highly 

degraded human cartilage, we used immunohistochemistry to further explore TNFAIP8 

expression in human knee cartilage and bone (n=4). TNFAIP8 immunopositivity was 
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localised to chondrocytes and osteocytes within the osteochondral tissue samples (Figure 2-

A). An increase in percentage immunopositivity in both chondrocytes (P=5.1x10-3) and 

osteocytes (P=2.5 x10-3) was seen in highly degraded compared to less degraded tissues 

(Figure 2-B).  

 

Genetic correlations 

The inter-study AA genetic correlation was reasonable (rg=0.57 [0.05-1.09] but the estimate 

was unreliable due to the small size of the RS GWAS (Supplementary Table 8). There was a 

moderate genetic correlation between AA and HOA (rg=0.26 [95% CI 0.10-0.43]) and 

minimum joint space width (rg= -0.31 [95% CI -0.46- -0.15]) with an inverse relationship 

with the latter as expected. There was no or very limited evidence of a genetic correlation 

with hip pain, height, body mass index, bone mineral density or fracture (Supplementary 

Table 8).  

 

Mendelian randomisation 

The 8 SNPs identified by LD clumping provided our genetic instrument for AA (for SNP 

effects in the outcome GWAS see Supplementary Table 3). The mean F-statistic was 31.5 

indicating acceptable instrument strength. IVW analysis provided weak evidence of an effect 

of increasing AA on HOA risk (OR per SD change in AA 1.86 [1.09-3.15]) (Table 3). 

Sensitivity analyses, including MR Egger, weighted median, simple mode and weighted 

mode showed no evidence of a causal effect of AA on HOA risk (Figure 3). IVW and MR 

Egger Q statistics were 56.1 and 54.4 indicating heterogeneity and possible pleiotropy. 

Further sensitivity analyses, in the form of leave one out and single SNP analyses were used, 

in particular to assess the impact of rs561578905 which was identified by LD clumping but 
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not by COJO, these revealed similar effect estimates (Supplementary Figures 8&9) and 

suggested no single SNP was responsible for the heterogeneity. 

 

For MR analyses in the opposite direction, the HOA GWAS (323,948 participants) identified 

34 independent SNPs following LD clumping (mean F-statistic 45.0) (Supplementary Table 

9). In IVW analyses, genetic instruments for HOA showed a causal effect on AA (β 0.09 

[0.04-0.13], β is SD change in AA per doubling in odds of OA) (Table 3). Sensitivity 

analyses were broadly in agreement (Figure 3). IVW and MR Egger Q statistics were 97.6 

and 94.8 indicating heterogeneity.  

 

MR-CAUSE analyses, which use whole GWAS summary statistics, were performed to 

examine for causal effects and correlated pleiotropy (33). For AA versus HOA there was only 

weak evidence the causal model (model 2) performed better than the null model (model 1) 

(expected log pointwise predictive density (ELPD) -3.80, p=0.07, an ELPD ≤0 suggests 

model 2 fits the data better than model 1) (Supplementary Table 10). For HOA versus AA, 

there was stronger evidence that the causal model (model 2) performed better than the null 

(model 1) (ELPD -7.12, p=0.03), and better than the model assuming correlated pleiotropy 

(sharing model) (ELPD -3.65, p=0.02).   
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Discussion 

This is the first GWAS meta-analysis of AA, which identified eight loci and indicated a 

heritable component of 10%. TGFA, TNFAIP8, CLDN20-RP11-477D19-TFB1M, LMX1B, 

GRK5, SOX5, CYP19A1 and UQCC1 were implicated in increasing AA with TNFAIP8 

showing the strongest gene-SNP relationship. Despite strong evidence of observational 

associations, bi-directional two-sample MR analyses provided limited evidence of a causal 

association between increasing AA and the development of HOA, but rather showed greater 

evidence that a genetic predisposition to HOA causes an increase in AA, as measured by 

DXA in this subject cohort.  

 

Of these eight loci, TNFAIP8 colocalized with cis-eQTL expression in chondrocytes obtained 

from highly degraded, but not healthy, cartilage of the same individual. This suggestion that 

TNFAIP8 is preferentially expressed in degraded cartilage was further explored by 

subsequent immunohistochemistry staining which showed greater expression of TNFAIP8 in 

chondrocytes and osteocytes from degraded joint tissue. TNFAIP8 is a tumour necrosis factor 

binding protein forming part of inflammatory, catabolic and neuro-sensitisation pathways 

during the pathogenesis of OA, and is also involved in cell apoptosis (36). Inflammatory 

changes are well recognised in HOA (37), and our findings provide evidence to support the 

hypothesis that TNFAIP8 expression in osteocytes/chondrocytes contributes to hip shape 

remodelling which increases AA, leading to the appearance of cam morphology. How hip 

shape and an individual’s AA changes over time is not well understood and it could be that 

the observed shape variation arises in later life as part of the HOA process, as distinct to cam 

morphology caused by altered shape development in adolescence (9). 
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Rs62578126 and rs1048584 loci showed evidence of colocalisation with cis-eQTL signals for 

LMX1B and CLDN20- RP11-477D19 -TFB1M in adipose tissue and fibroblasts respectively. 

LMX1B is the gene responsible for Nail-patella syndrome, which features poorly developed 

nails, patella and multiple limb malformations, and when knocked out in mice is associated 

with abnormal ventral limb development (38). TFB1M is important in preventing oxidative 

stress in mitochondria in the context of osteoarthritis (39). CLDN20 is from the claudin 

family which are known to regulate osteoblast activity (40). RP11-477D19 was also 

identified through co-localisation although little is known about its function. 

 

The other SNPs provided no specific evidence of a causal gene through eQTL or 

colocalisation analyses. In these cases, we highlight that many of the closest genes identified 

have previously been implicated in limb development and OA. An intronic variant of 

UQCC1 has been associated with developmental dysplasia of the hip (DDH) in a Han 

Chinese population (41). Interestingly, our UQCC1 SNP (rs4911180) was in high LD with 

the lead GDF5 OA SNP (r2 0.79) from previous GWAS (2). The UQCC1-GDF5 locus has 

been implicated in abnormal limb development and OA with both genes commonly 

expressed in chondrocytes (42-44). TGFA (rs7571789) is a growth factor which has been 

shown to be expressed in developing limbs in chicks (45) and important in the development 

of OA (46). SOX5 (rs561578905) has previously been shown to be critical in joint 

morphogenesis through its action on growth plate and articular chondrocytes (47). CYP19A1 

(rs146939415) has been associated with large joint osteoarthritis and is thought to act via 

aromatase inhibition (48). Finally, GRK5 is thought to regulate cartilage degradation and 

might be a possible therapeutic target for OA (49). 
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The eight independent AA SNPs had acceptable instrument strength when combined in 

subsequent MR analyses. However, there was only weak evidence of a causal link between 

increased AA and HOA. Interestingly, our bidirectional MR study provides stronger evidence 

that a genetic predisposition for HOA causes a higher AA, suggesting that the morphological 

features identified in this cohort may develop as part of, or in parallel to, the HOA process. 

Modelling changes are recognised by Croft grading in late-stage HOA (11), however we are 

not aware of any previous reports describing cam morphology as a specific feature of HOA. 

That said, in the same set of DXA images, we have recently found that hip shape changes 

suggestive of cam morphology are associated with more severe forms of HOA (50). 

 

Although the evidence for a causal effect of a genetic predisposition to HOA on AA was 

somewhat stronger than that of AA on HOA, it should be noted that our genetic instrument 

for HOA was stronger than that for AA, reflecting the greater number of SNPs, so caution 

needs to be exercised in comparing these effects. Moreover, given that the age of our cohort 

was 40 to 69 years of age at inception, it could be that variation in AA largely reflected 

modelling changes that are part of the HOA disease process as opposed to cam morphology 

developing in early life. Alternatively, rather than bi-directional causal effects, it may be that 

our findings reflect common genetic pathways involved in the development of AA and HOA 

causing them to develop in parallel rather than as a consequence of one another. Though MR-

CAUSE analysis favoured a causal over a shared model, this was only supported by weak 

evidence, and given the disparity in instrument strength between the two traits it is difficult to 

reach any firm conclusions. Nevertheless, to the extent that a causal effect of a genetic 

predisposition of HOA on AA and/or shared genetic pathways contribute to associations 

between cam morphology and HOA, our results suggest that HOA should not necessarily be 
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attributed to cam morphology especially in individuals where they might co-exist. This has 

implications when considering hip shape augmenting surgery in an older adult population. 

 

We report the first GWAS meta-analysis for AA in individuals from UKB and RS. Though 

we used continuous AA as a proxy measure for cam morphology, there are several limitations 

to this approach. For example, measuring AA on anterior-posterior images can be partially 

out of plane to the cam lesion, leading to an underestimation of size. However, our 

observational analyses suggest we are measuring a clinically relevant shape signal despite of 

this. When measuring AA in a population in later life there is the possibility that AA captures 

osteophytes or other features of OA. However, we rigorously excluded osteophytes and if 

these were included in our measures we might have expected to see a stronger causal 

relationship between AA and HOA. Though we used AA as a continuous measure to 

optimise statistical power, this method has less clinical relevance than dichotomising into the 

presence or absence of cam morphology based on a pre-defined cut-off (2, 21). Although, we 

found similar observational relationship between AA and cam morphology, and HOA 

outcomes irrespective of whether we used a continuous (AA) or binary (cam) measure. 

Moreover, sensitivity analyses based on a binary AA variable showed similar but 

underpowered GWAS results. Further work is needed to recruit hip imaging cohorts that are 

closer to UKB in terms of scale and phenotyping to allow for further replication of our 

results, and to extend our findings to more ethnically diverse populations. Finally, as with any 

MR study, several assumptions need to be made: the relevance assumption is satisfied by our 

ample F-statistics but the independence and exclusion restriction assumptions are harder to 

test (14). Several sensitivity analyses were performed to examine for possible pleiotropy 

which suggested this was present as has been discussed.  
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In conclusion, using a novel GWAS meta-analysis of AA, our study suggests that causal 

relationships between AA and HOA, and particularly a genetic predisposition for HOA and 

AA, contribute to observational associations between HOA and cam morphology. Changes in 

AA as a consequence of HOA development may involve up-regulation of 

inflammatory/catabolic pathways, given our observation that TNFAIP8, one of the top AA-

associated loci, was preferentially expressed in degraded human articular cartilage and bone. 

Further studies are justified to explore the contribution of increased AA to clinical 

consequence of HOA, and to determine whether targeting the underlying molecular 

mechanisms might prove useful in ameliorating these. 
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Data availability statement: 

The alpha angle GWAS meta-analysis summary statistics are to be uploaded to the GWAS 

catalogue (https://www.ebi.ac.uk/gwas/). The individual level data from this study will be 

available from UK Biobank in a forthcoming data release. Users must be registered with UK 

Biobank to access their resources (https://bbams.ndph.ox.ac.uk/ams/).  
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Table 1. Cross-sectional and longitudinal associations between standardised alpha angle and 
osteoarthritis outcomes in UK Biobank.  

Logistic regression was used to examine these associations apart from with total hip 
replacement which was examined using Cox proportional hazard modelling. OR/HR 
presented are per standard deviation increase in alpha angle. Adjusted model includes age, 
sex, height, weight. OR – odds ratio, CI – confidence interval, rHOA – radiographic hip 
osteoarthritis, HR – hazard ratio, P – p-value, HES OA – hip diagnosed hip osteoarthritis, 
THR – total hip replacement 
 

Cross-sectional analyses 
outcomes 

Standardised Alpha Angle 
Unadjusted Adjusted 

OR [95% CI] P OR [95% CI] P 

Hip Pain 1.05 [1.01-1.08] 6.98 x 10-03 1.15 [1.11-1.19] 5.52 x 10-14 

rHOA grade ≥2 1.75 [1.70-1.79] 1.00 x 10-271 1.63 [1.58-1.67] 4.00 x 10-271 

rHOA grade ≥3 2.00 [1.92-2.08] 3.00 x 10-244 1.91 [1.83-2.00] 1.00 x 10-174 

rHOA grade 4 2.17 [2.00-2.35] 2.10 x 10-80 2.10 [1.93-2.30] 4.70 x 10-62 

HES OA 1.35 [1.27-1.43] 1.70 x 10-23 1.44 [1.35-1.54] 2.77 x 10-28 
Longitudinal analyses 
outcomes HR [95% CI] P HR [95% CI] P 

THR 1.37 [1.27-1.49] 1.18 x 10-14 1.45 [1.33-1.59] 2.10 x 10-17 
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Table 2. The top independent single nucleotide polymorphisms associated with alpha angle.  

Results presented are from the fixed-effects meta-analysis after linkage disequilibrium 
clumping. Only SNPs with MAF >0.01 and p <5x10-8 are listed. UK Biobank GWAS 
adjusted for age, sex, genetic chip and 20 principal components and Rotterdam Study GWAS 
adjusted for age, sex and 4 principal components. CHR – chromosome, BP – Base position, 
EA – effect allele, NEA – non-effect allele, EAF – effect allele frequency, P - p-value. 
†rs561578905 was not available in Rotterdam and rs7302982 (r2 0.77) was used instead. 
 

RSID 
Closest 
gene CHR BP EA NEA EAF Beta P 

rs7571789 TGFA 2 70714793 T C 0.48 0.04 7.52 x 10-09 

rs10478422 TNFAIP8 5 118747441 T C 0.30 0.04 9.64 x 10-10 

rs1048584 TFB1M 6 155578599 A T 0.39 -0.04 7.67 x 10-09 

rs62578126 LMX1B 9 129375338 T C 0.37 -0.04 9.00 x 10-09 

rs10787959 GRK5 10 121131313 A G 0.28 -0.04 1.08 x 10-08 

rs561578905† SOX5 12 24206118 A C 0.27 0.05 3.37 x 10-08 

rs146939415 CYP19A1 15 51522210 C G 0.01 0.17 2.47 x 10-08 

rs4911180 UQCC1 20 33972948 A G 0.63 -0.04 1.25 x 10-11 
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Table 3. Bi-directional Mendelian randomisation results comparing the causal effects 
between alpha angle and hip osteoarthritis.  
 

+MR Egger intercept 0.02, p-value 0.68. †MR Egger intercept -0.01 p-value 0.34. AA – alpha 
angle, HOA – UK Biobank GWAS of hospital diagnosed hip osteoarthritis, MR – Mendelian 
randomisation. OR – odds ratio, per standard deviation change in alpha angle. Beta – per 
doubling in odds of hip osteoarthritis. 
  

MR Method 
 

Exposure AA, Outcome HOA Exposure HOA, Outcome AA 

OR [95% CI] P Beta [95% CI] P 
Inverse variance weighted 1.84 [1.14-2.96] 0.01 0.09 [0.04-0.13] 4.58 x 10-05 
MR Egger 1.22 [0.18-8.37]+ 0.84 0.15 [0.01-0.30]† 0.05 
Weighted median 1.22 [0.93-1.59] 0.16 0.08 [0.04-0.12] 7.77 x 10-05 
Simple mode 1.33 [0.91-1.93] 0.16 0.10 [0.00-0.19] 0.05 
Weighted mode  1.18 [0.92-1.51] 0.27 0.12 [0.02-0.21] 0.02 
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Figure 1. Calculating alpha angle automatically in UK Biobank. 
Left – UK Biobank DXA image with outline points marked and lines connecting the points. 
Right - the same points are visualised in Python, where a circle of best fit is plotted, and the 
AA is calculated from the femoral neck mid-point (yellow) and the point at which the 
femoral neck intersects the circle (yellow). In this individual the AA is 41.7º. 
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Figure 2. Immunohistochemistry localisation of TNFAIP8 within human osteochondral 
tissues.  
A: TNFAIP8 immunohistochemistry staining was identified in chondrocytes and osteocytes 
particularly in highly degraded (High Grade) tissues, IgG controls were negative, Middle 
zone cartilage shown within images. Scale bar = 50μm. (Insert shows zoomed cells) B: 
Percentage immunopositivity   
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Figure 3. Bi-directional Mendelian randomisation results comparing the causal effects 
between alpha angle and hospital diagnosed hip osteoarthritis in the UK Biobank study. 
 A – shows the MR analyses using eight genetic instruments for alpha angle (AA) as the 
exposure and hospital diagnosed hip osteoarthritis (HOA) as the outcome. B – shows the MR 
analyses using thirty-four genetic instruments for HOA as the exposure and AA as the 
outcome.  
 


