Perioperative changes in oxygen consumption: estimations from minimal-invasive cardiac output and a-cvO$_2$ difference parallel to indirect calorimetry

Julia Jakobsson$^{1,2,*,#a}$, Carl Norén3, Eva Hagel$^{4,#b}$, Magnus Backheden4, Sigridur Kalman1,2, Erzsébet Bartha1,2

1Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Anaesthesia and Intensive Care, Karolinska Institutet, Stockholm, Sweden
2Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital Huddinge, Stockholm, Sweden
3Department of Anaesthesia and Intensive Care, Nyköping County Hospital, Nyköping, Sweden
4Department of Learning, Information, Management and Ethics (LIME), Medical Statistics Unit, Karolinska Institutet, Stockholm, Sweden

$^#a$Current address: Dept. of Cardiothoracic Surgery, Anaesthesia and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
$^#b$Current address: Soristat, Stockholm, Sweden

* Corresponding author:
E-mail: julia.o.jakobsson@akademiska.se or julialjakobsson@icloud.com

ORCID-ID:
Julia Jakobsson 0000-0002-5956-9942
Erzsébet Bartha 0000-0001-5048-4574

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Feasible estimations of perioperative changes in oxygen consumption could enable larger studies of its role in postoperative outcomes. Current methods, by pulmonary artery catheterisation or breathing gas analysis, are often regarded as either invasive or technically requiring. In this pilot study, we investigated the relationship between estimations of oxygen consumption, based on minimal-invasive cardiac output and arterial-central venous blood gas sampling, and indirect calorimetry in the perioperative period using the data collected during a clinical trial on perioperative oxygen transport.

In 20 patients >65 years during epidural and general anaesthesia for open abdominal surgery, Fick-based estimations of oxygen consumption (EVO₂), the product of cardiac output from LiDCO™ plus (LiDCO Ltd, Cambridge, UK) and arterial-central venous oxygen content difference, were compared with indirect calorimetry (GVO₂) using QuarkRMR (COSMED, srl. Italy). Eighty-five simultaneous intra- and postoperative measurements at different time-points were analysed for prediction, parallelity and by traditional agreement assessment.

There was an overall association between GVO₂ and EVO₂, 73 (95% CI 62 to 83) + 0.45 (95% CI 0.29 to 0.61) EVO₂ ml min⁻¹ m⁻², P<0.0001. GVO₂ and EVO₂ changed in parallel intra- and postoperatively when normalised to their respective overall means. Unadjusted mean difference between GVO₂ and EVO₂ indexed for body surface area was 26 (95% CI 20 to 32) with limits of agreement (1.96SD) of -32 to 85 ml min⁻¹ m⁻² and did not change over time.

There was low correlation for absolute agreement, ICC(A,1) 0.37 (95% CI 0.34 to 0.65) [F(84,10.2)=3.07, P=0.0266].

Despite lack of absolute agreement, the estimated oxygen consumption changed in parallel to the metabolic measurements in the perioperative period. Prediction or trending of oxygen consumption by this or similar methods could be further evaluated in larger samples.
Introduction

A postoperative imbalance between oxygen consumption and delivery, leading to increased oxygen extraction, has been associated with increased morbidity and mortality after major surgery.(1) The focus of goal-directed haemodynamic therapy (GDHT) has traditionally been on oxygen delivery, which is often easier to assess and to develop measurable optimisation strategies for.(2) Recently, interest is growing to reassess perioperative oxygen consumption in current surgical populations using modern monitoring and analytic methodologies.(3-5) Feasible estimations could enable larger studies on the role of oxygen consumption in postoperative outcomes. Available techniques, by pulmonary artery catheterisation or indirect calorimetry, are either deemed too invasive or difficult to manage in a clinical study setting during non-cardiac surgery. Using oxygen uptake calculated from fractions of inspiratory and expiratory oxygen in the closed breathing circuit during low-flow anaesthesia(6) has not demonstrated agreement when compared to standard methods.(7) Importantly, it can not be used in awake patients in the postoperative period. Commonly used haemodynamic monitoring in major surgery, such as minimal-invasive cardiac output with arterial and central venous access, could offer a possibility not only to estimate intra- and postoperative oxygen consumption but also to follow changes over time. By substituting mixed with central venous oxygen content and using the cardiac output derived from a minimal-invasive monitor, an estimation of oxygen consumption can be calculated by the reverse Fick principle.(8) The lack of absolute agreement between calorimetric and Fick-based methods has been reported previously, the latter do not include pulmonary oxygen consumption and global oxygen consumption values are usually reported around 20-40 ml min⁻¹m⁻² lower compared to those obtained from breathing gas analysis.(9-11) Yet, if this bias remains unchanged in the intra- and postoperative period, such estimations could be studied in larger samples and related to other clinical parameters and outcomes.

Our aim of this pilot study was to investigate the relationship and temporal changes between estimations of oxygen consumption, based on minimal-invasive cardiac output monitoring and arterial-central venous blood gas samples (EVO₂), and measurements by indirect calorimetry (GVO₂) in the perioperative period using the data collected during our oxygen transport study in elderly undergoing major abdominal surgery.(12)
Materials and methods

The present analysis was a secondary objective of a prospective observational study on perioperative oxygen transport in elderly patients undergoing major upper abdominal surgery (clinicaltrials.gov NCT03355118). The Regional Ethics Review Board of the Stockholm Region (ID 2017/291-31/4) approved the study and written informed consent was obtained from all participants. The primary aim of the study, i.e. the perioperative oxygen transport changes, has been published.(12) Data collection and analysis for the present publication were pre-planned and conducted simultaneously. The original cohort data was prospectively collected 2017-2018.

Patients and settings

A detailed description of the selection criteria, patient characteristics, perioperative management and oxygen transport outcomes can be found in the previous publication.(12) As stated there, 20 ASA II-IV patients over 65 years undergoing open pancreatic or liver resection surgery in epidural and general anaesthesia were included. The study was conducted at the Karolinska University Hospital in Huddinge, a tertiary referral center for upper abdominal surgery.

Data extraction and time-points

Paired values of oxygen consumption by estimations based on minimal-invasive cardiac output monitoring and arterial-central venous blood gas samples (EVO2) and indirect calorimetry GVO2 from five perioperative time-points were analysed; T1: during anaesthesia, right before surgical skin incision; T2: early during surgery, directly after skin incision; T3: later during surgery, >2h after skin incision; T4: early postoperatively, <12h after extubation; T5: late postoperatively, on postoperative day 1. The mean values for GVO2 during the approximate 20-minute measurement periods were compared with simultaneous cardiac output measurements averaged for each minute exported from LiDCOviewPRO (LiDCO Ltd, Cambridge, UK). The blood gas parameters were calculated as means of two simultaneously drawn arterial and central venous samples at 5 and 15 minutes into the measurement period.
Measurements of VO2 by indirect calorimetry (GVO2)

Indirect calorimetry was performed by QuarkRMR (COSMED srl, Italy). This device applies a breath-by-breath technique to measure gas flow and concentrations that are synchronised by data processing algorithms. The Haldane transformation is used to calculate oxygen consumption.(13) During intraoperative measurements, the flow meter (Flow-REE, COSMED srl, Italy), gas sampling line and moist filter were placed between the endotracheal tube and the Y-piece of the ventilator. The ventilator was set to a fresh gas flow of 2 L min⁻¹ and FiO₂ of 0.5 during measurements to allow for gas sampling. All other ventilation settings were left unchanged. Postoperative measurements were made with a tight-fitting face mask connected to a bidirectional turbine flow meter and a gas sampling line. No supplemental oxygen was administered during the postoperative measurements. The calorimeter was calibrated before start of intraoperative measurements and before each postoperative measurement after a warm-up time of 20 minutes with a standardised gas mixture containing 16% oxygen and 5% carbon dioxide. The gas sampling line, Flow-REE and moist filter were changed before each measurement (except before T2, continuous to T1) and all flowmeters were calibrated with a 3L-syringe.

Estimation of VO2 by minimal-invasive cardiac output and arterial-central venous oxygen content difference (EVO2)

EVO₂ was calculated by the reverse Fick’s principle with central venous instead of pulmonary artery blood using the following formulas:(14)

\[EVO₂ = CO \times \text{Ca-cvO}_2 \times 10 \]

\[\text{Ca-cvO}_2 = \text{Hb} \times 1.31 \times (\text{SaO}_2 - \text{ScvO}_2) + 0.0225 \times (\text{PaO}_2 - \text{PcvO}_2) \]

\[[CO; \text{cardiac output in L min}^{-1}, \text{Ca-cvO}_2; \text{oxygen content difference between arterial and central venous blood in ml dl}^{-1}, \text{Hb; haemoglobin in g dl}^{-1}, \text{SaO}_2; \text{arterial oxygen saturation, ScvO}_2; \text{central venous saturation, PaO}_2; \text{partial pressure of oxygen in arterial blood, PcvO}_2; \text{partial pressure of oxygen in central venous blood, constants 1.31 and 0.0225, referring to the Hüfner constant and the solubility coefficient of oxygen (ml O}_2 \text{ dl}^{-1} \text{kPa}^{-1}), \text{and 10 as a conversion factor from dl to L.}] \]

Cardiac output was obtained from LiDCO™plus (LiDCO Ltd, Cambridge, UK). The device was calibrated and recalibrated according to the manufacturer’s instructions. Missing values from CO measurements (averaged for each minute) were substituted by linear interpolation if no more than 3 data points and no major haemodynamic changes occurred. Blood gases were
analysed immediately after sampling by ABL800 Flex or ABL90 Flex (Radiometer Medical ApS, Denmark). Cardiac output and measured oxygen consumption were indexed for body surface area using the DuBois formula yielding values of GVO\textsubscript{2} and EVO\textsubscript{2} in ml min-1m-2.(15)

Statistical analysis

The sample size calculation was performed for the primary study, in which 20 patients were expected to demonstrate a relevant change in oxygen consumption after induction of anaesthesia. This would yield a maximum of 100 paired measurements of EVO\textsubscript{2} and GVO\textsubscript{2} which was considered sufficient even in the presence of >10% data loss. Continuous data was tested for normality distribution and statistical tests applied accordingly. Statistical analyses were performed and constructed in R (version 3.5.3; R Foundation for Statistical Computing, Vienna, Austria, URL: https://www.R-project.org) and SAS (version 9.4; SAS Institute Inc, Cary, NC, U.S.). The statisticians conducting the analyses were not involved in the data collection. Mean difference between EVO\textsubscript{2} and GVO\textsubscript{2} with 95% confidence interval were calculated from the individual paired measurements and grouped by time point (T1-5). These changes over time were analysed by linear mixed models with Holm-adjusted Tukey post-hoc tests. To investigate the overall association between EVO\textsubscript{2} and GVO\textsubscript{2}, a random coefficient model was used based on individual slopes and coefficients. Analyses of the perioperative changes over time of GVO\textsubscript{2} compared to EVO\textsubscript{2} and its input variables (CI; cardiac index and Ca-cvO\textsubscript{2}) were conducted by random effect mixed models with method or component and time as fixed effects. Adjustment for differences in variances of the methods or components was made. In these models, the relative changes were normalised to the patients’ individual baseline measurements (T1). In the model analysing changes of each method in awake and anaesthetised subjects, the changes were normalised to the respective overall mean.

Traditional agreement assessment was also performed by intraclass correlation and Bland-Altman analysis. Single score intraclass correlation was used, a in a two-way model yielding ICC coefficients with 95% CI. Bias and limits of agreement with 95% CI was visualised in Bland-Altman plots. Both ICC and Bland-Altman analyses were performed separately for each time-point T1-T5. The overall ICC and Bland-Altman analyses were not adjusted for repeated measurements as these were performed under varying intra- and postoperative conditions. Normality and homoscedasticity were assessed in residual plots. An alpha of 0.05 was considered significant.
Results

A total of 85 paired measurements of EVO2 and GVO2 were obtained in 20 subjects; 58 were obtained intraoperatively and 27 in the postoperative period. Four paired intraoperative measurements were not performed due to early termination of surgery (unexpected metastatic spread of malignancy) in two patients. Thirteen paired measurements could not be performed in the postoperative period because of technical or arterial line failure (n=2), logistical reasons (n=2), patients’ decline (n=3), exclusion due to short postoperative stay (n=4) and need for supplemental oxygen (n=2). Correct positioning of the CVC was confirmed by postoperative chest x-ray in all patients.

There was a overall mean difference between EVO2 and GVO2 \([F(1, 167) = 72.8, P<0.0001]\) estimated to -26 (95% CI -20 to -32; \(P<0.001\)) ml min\(^{-1}\) m\(^{-2}\). This difference was largely unchanged at the different time-points \([F(4, 168)=1.39, P=0.241]\). The means of GVO2 and EVO2 at the different perioperative time-points (T1-T5) are presented in Fig 1.

GVO2 and EVO2 changed in parallel when separated to the anaesthetised intraoperative state \([F(2, 49.9)=0.57, P=0.5669]\) and the awake postoperative state \(F(1, 22) = 0.00, P=0.9604\), see Figs 2a-b. An overall association between GVO2 and EVO2 was demonstrated in a random coefficient model (Fig 3). The two patients with early termination of surgery were excluded from this analysis. The variances of EVO2 and its components, oxygen content difference in arterial and central venous blood (Ca-cvO2) and cardiac index (CI) were larger compared to GVO2 at all time-points, these analyses are presented in Suppl S1.

Figs 3a-b. Results from the mixed effect models on perioperative changes of GVO2 (red) and EVO2 (black). Least square means estimates with 95% CI and normalised to overall means (=1.0) of each method in anaesthetised intraoperative (T1-T3) and awake postoperative
states (T4-T5). (T1) anaesthesia; Early surgery (T2); Late surgery (T3); Early postop (T4); Late postop (T5).

Fig 4. A random coefficient model for predicted GVO$_2$ from EVO$_2$ based on all perioperative time-points. $\text{GVO}_2 = \beta_0 + \beta_1 (\text{EVO}_2)$.

The traditional agreement analyses are presented as supplementary results. The overall unadjusted mean bias was 26 ml min$^{-1}$ m$^{-2}$ with limits of agreement (1.96SD) of -32 to 85 ml min$^{-1}$ m$^{-2}$. Excluding one outlier in the late postoperative period (a patient with a large Ca-cVO$_2$ difference) changed the unadjusted bias to 28 (LoA -20 to 75) ml min$^{-1}$ m$^{-2}$. Bland-Altman plots were constructed to illustrate the bias and limits of agreement at the different time-points Suppl S2. The overall correlation for *absolute* agreement was poor, with an intraclass coefficient ICC(A,1) of 0.37 (95% CI 0.34 to 0.65) [F(84,10.2)=3.07, $P=0.0266$], and did not improve much when adjusted for lower overall mean difference of EVO$_2$, ICC(A,1)=0.51 (95% CI 0.34 to 0.65) [F(84, 84) = 3.07, $P<0.001$]. Graphs depicting the correlation between indexed GVO$_2$ and EVO$_2$ at the different time-points (T1-5) including the unadjusted overall correlation are presented in Suppl S3.
Discussion

Estimates of increased oxygen extraction, i.e low mixed or central venous saturation, are associated with poor surgical outcomes. However, cut-off levels remain unclear and the quality of evidence is low. In order to further study and distinguish the role of oxygen consumption in the perioperative period, feasible estimations are needed. To the best of our knowledge, this is the first pilot study investigating how a Fick-derived estimation method based on minimal-invasive haemodynamic monitoring (LiDCO™plus and blood gas sampling from arterial and central venous lines) can be used intra- and postoperatively. As expected, this estimation method had poor agreement concerning absolute values when compared to indirect calorimetry, but approximate to previous studies using pulmonary artery catheters. Importantly, the estimations based on routine haemodynamic monitoring for major surgery, were shown to change in parallel with the metabolic measurements in the perioperative period. We suggest that this or similar methods could be evaluated in larger samples and related to clinical outcomes.

Most previous studies investigating methods for oxygen consumption monitoring perioperatively or in critically ill patients were performed decades ago using traditional method comparison analytical methods. Some of the earlier method comparison studies are summarised in Table 1. Newer studies using non-invasive cardiac output monitors have not shown agreement with oxygen consumption measurements from indirect calorimetry or pulmonary artery catheters. However, the monitors used were not calibrated by transpulmonary or indicator dilution such as the PiCCO™ or LiDCO™plus systems and did not analyse changes over time.

A feasible oxygen consumption estimation method does not necessarily have to demonstrate perfect agreement to reflect changes in the perioperative period. Time effects and repeated
measurements in the same subject under changing conditions are important statistical challenges in studies involving perioperative patients. Previous studies have often used simple linear regression or correlation\((9, 10, 22, 24)\) or Bland-Altman analysis\((25)\) without correction for repeated measurements\((11, 22, 26, 27)\) except for some.\((21, 28)\) Only a few addressed the relationship between measurements over time.\((19, 29)\) In the present study, we developed a prediction model for \(\text{EVO}_2\) and \(\text{GVO}_2\) by using a random coefficient model based on individual slopes and intercepts. A significant positive association was demonstrated here, but such prediction models should obviously be evaluated in larger samples. We also present analyses of relative changes of \(\text{EVO}_2\) and its components with \(\text{GVO}_2\). The parallelity that was demonstrated could indicate an ability of \(\text{EVO}_2\) to track changes in oxygen consumption. To address this further, multiple measurements during shorter periods of time would be required. Analytic models previously used for cardiac output monitors such as polar plot approaches could be used to assess the magnitude and direction of changes.\((30)\) Intraclass correlation (ICC) was used as it better reflects reliability and agreement based on analysis of variance of the pooled data.\((31)\) When adjusted for the consistently lower values of \(\text{EVO}_2\), the ICC estimates of the model improved but not so much (ICC coefficient 0.51 vs 0.37). Bland-Altman analysis has since long been the standard method for visualisation of agreement when comparing different methods of \(\text{VO}_2\) monitoring.\((21)\) Myles and Cui further elaborated the methodological issues related to repeated measurements in the same subject already considered by Bland and Altman\((32)\) and proposed different random effects models to adjust limits of agreement.\((21)\) As measurements were performed under varying perioperative conditions, we present the time-points separately and did not adjust the overall limits of agreement for repeated measurements in the same patient.

Oxygen consumption calculated by the reverse Fick equation is consistently reported lower than simultaneous measurements by analysis of respiratory gas exchange.\((7, 9-11, 19, 24, 26, 28, 29, 33-36)\) This difference or bias has been attributed to the pulmonary oxygen consumption.\((35, 37, 38)\) However, variability of Fick-derived measurements\((34, 36)\) and wide limits of agreement\((21)\) has made it difficult to estimate a systematic methodological bias. Many previous studies have either been performed in thoracic or cardiovascular surgery\((9-11, 19, 37)\) or in critically ill patients.\((24, 26, 36, 39)\) Pulmonary \(\text{VO}_2\) can be expected to increase after thoracic surgery\((11)\) and in intensive care patients with varying degrees of lung injury.\((40)\) Some studies that involve patients undergoing predominately abdominal surgery have shown acceptable agreement between the methods.\((27, 41)\)
the studies is also reflected by the frequent use of the Deltatrac Metabolic Monitor® (Datex Instrumentarium, Helsinki, Finland), a metabolic monitor using a mixing-chamber technique and which is no longer in production. Many metabolic monitors in modern clinical use are based on breath-by-breath technology such as the Es-COVX® (GE Healthcare, Helsinki, Finland) or the QuarkRMR® in our study. Although there is supporting evidence for some overestimation of VO\(_2\), the technology has shown clinically acceptable agreement when compared with mixing-chamber methods(42, 43) and it has been validated in the semi-closed circle absorber systems commonly used in anaesthesia.(44) Our results on GVO\(_2\) were comparable with studies using Deltatrac II when corrected for difference in units (Table 1). The estimations of oxygen consumption rely on accurate cardiac output determinations and oxygen content difference measurements. The LiDCO™plus has shown acceptable performance against the pulmonary artery catheter and other devices in cross-comparisons in cardiac output accuracy studies. (45, 46) During rapidly changing haemodynamic situations, concerns regarding trending ability and underestimation of cardiac output have been raised.(30, 47) The 20-minute data extraction periods in this study were specifically chosen to represent perioperative time points that usually are without considerable circulatory instability. Central and mixed venous oxygen saturation have not shown interchangeability(48-50) but some studies have suggested that trends in ScvO\(_2\) can replace SvO\(_2\).(51-53) During stable intraoperative conditions, oxygen content difference is not expected to vary to a large extent whereas cardiac output can show considerable in- and between patient variability.(23) In our study, oxygen content difference and cardiac output demonstrated similar coefficients of variation.

The present study has several major limitations in addition to those discussed above. The sample size and number of observations are small, although in the same range as many earlier studies comparing calculated and measured VO\(_2\), and this could explain the large variability of EVO\(_2\). There was a considerable loss of data in the postoperative period limiting the conclusions on changes over time.

In summary, we have evaluated an oxygen consumption method that requires no extra equipment if perioperative CO-monitoring and CVC are used. Our results indicate that the performance could be equivalent to pulmonary artery catheters, and we have demonstrated parallelity in changes over time. Compared to earlier studies, we have used modern and commonly used calibrated CO-monitoring. We have also addressed the relationship between
measurements over time using updated statistical analysis. The results should be regarded as indicative and further studies on larger samples are needed to establish if this method of estimating perioperative VO$_2$ can prove useful.

Acknowledgements

The authors would like to thank research assistant nurses at the Clinical Research Unit, Dept. of Upper Abdominal Surgery, Karolinska University Hospital Huddinge, Birgitta Holmberg and Sirje Laur, for their help in recruiting and informing the patients included in this study.

Statements and declarations: The authors have no conflicts of interest to declare.

References

Supporting information

S1 File
S2 File
S3 File
<table>
<thead>
<tr>
<th>Author, year</th>
<th>Subjects, N=</th>
<th>Number of paired measurements</th>
<th>Method derived VO₂</th>
<th>Method derived VO₂</th>
<th>Bias (SD or 95% CI), limits of agreement in ml min⁻¹ m⁻²</th>
<th>Statistical methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bizouarn et al., 1992</td>
<td>Postop cardiac surgery, N=10</td>
<td>50</td>
<td>IC Deltatrac®</td>
<td>PAC thermodilution</td>
<td>34 (SD 27) LoA: -33 to 88</td>
<td>B-A ANOVA for time-effects</td>
</tr>
<tr>
<td>Bizouarn et al., 1995</td>
<td>Postop cardiac surgery, N=9</td>
<td>54</td>
<td>IC Deltatrac®</td>
<td>PAC (continuous</td>
<td>15 (95% CI, 13 to 17) LoA: -3 to 33</td>
<td>B-A PE-RE</td>
</tr>
<tr>
<td>Epstein et al., 2000</td>
<td>Trauma ICU, N=38</td>
<td>152</td>
<td>IC Puritan Bennett®</td>
<td>PAC thermodilution</td>
<td>41 (95% CI, 20 to 63) LoA*: lower -40 to -72, upper 120 to 149</td>
<td>B-A</td>
</tr>
<tr>
<td>Hofland et al., 2003</td>
<td>Intraop vascular surgery, N=11</td>
<td>73</td>
<td>CC Physioflex®</td>
<td>PAC thermodilution</td>
<td>36 (not presented) LoA**: -40 to 112</td>
<td>B-A Linear regression/Spearman rank correlation</td>
</tr>
<tr>
<td>Inadomi et al., 2008</td>
<td>Postop major abdominal surgery, N=28</td>
<td>56</td>
<td>IC Puritan Bennett®</td>
<td>CVC+PDD</td>
<td>33 (not presented) LoA: -31 to 97</td>
<td>B-A Linear regression</td>
</tr>
<tr>
<td>Keinanen and Takala, 1997</td>
<td>Periop cardiac surgery, N=9</td>
<td>45</td>
<td>IC Deltatrac®</td>
<td>PAC thermodilution</td>
<td>33 (25) LoA (not analysed)</td>
<td>B-A Linear regression/ANOVA</td>
</tr>
<tr>
<td>Leonard et al., 2002</td>
<td>Periop cardiac surgery, N=29</td>
<td>29***</td>
<td>CC Biro method</td>
<td>PAC thermodilution</td>
<td>75 (121) LoA: -162 to 311</td>
<td>B-A</td>
</tr>
<tr>
<td>Peyton and Robinson, 2005</td>
<td>Intraop cardiac surgery, N=9</td>
<td>18</td>
<td>Modified Bains circuit</td>
<td>PAC thermodilution</td>
<td>19 (20) (95% CI, 9 to 29) ml min⁻¹ LoA (not analysed)</td>
<td>Mean difference</td>
</tr>
<tr>
<td>Saito et al., 2007</td>
<td>Periop oesophagectomy, N=35</td>
<td>210</td>
<td>IC Deltatrac®</td>
<td>PAC thermodilution</td>
<td>23 (95% CI, 20 to 27) LoA: -23 to 69</td>
<td>B-A Correlation Difference over time</td>
</tr>
<tr>
<td>Smithies et al., 1991</td>
<td>General ICU, N=8</td>
<td>20</td>
<td>CC spirometry</td>
<td>PAC thermodilution</td>
<td>36 (SD29) ml min⁻¹ LoA (not analysed)</td>
<td>Mean difference</td>
</tr>
<tr>
<td>Soussi et al., 2017</td>
<td>ICU burns patients, N=22</td>
<td>44</td>
<td>IC E-COVX®</td>
<td>CVC +PICCO®</td>
<td>60 (not presented) LoA: -84 to 203</td>
<td>Linear regression Bland-Altman</td>
</tr>
<tr>
<td>Stuart-Andrews et al., 2007</td>
<td>Intraop cardiac surgery, N=30</td>
<td>30***</td>
<td>Modified semi-closed breathing circuit</td>
<td>PAC thermodilution</td>
<td>21 (25) LoA (overall in graph)</td>
<td>Correlation Bland-Altman</td>
</tr>
<tr>
<td>Walsh et al., 1998</td>
<td>ICU hepatic failure, N=17</td>
<td>98</td>
<td>IC Deltatrac®</td>
<td>PAC thermodilution</td>
<td>-41(30) (95 % CI, -31 to -47) LoA: -101 to 19 (Fick – Gas)</td>
<td>Bland-Altman Repeatability</td>
</tr>
</tbody>
</table>

Table 1
Figure 1

Assessed for eligibility (n = 209)

Excluded (n = 175)
- Not meeting inclusion criteria (n = 97)
- Not approached (n = 35)
- No study participation (n = 15)
- In other perioperative trial (n = 12)
- Declined to participate (n = 6)
- Other reasons (n = 10)
 - Surgery after study completion (n = 5)
 - Surgery postponed or cancelled (n = 5)

Eligible and informed consent provided (n = 34)

Perioperative oxygen consumption assessment (n = 20)
- 85 paired measurements of EVO₂ and GVO₂

Excluded (n = 14)
- Research team not available (n = 9)
- Conflicting surgery (n = 3)
- Late cancellation of surgery (n = 2)

Intraoperative (n = 20)
- 58 paired measurements of EVO₂ and GVO₂
- 4 measurements not performed
 - Surgery not completed due to metastatic spread of malignancy
 - No late intraoperative or postoperative measurements (n = 2)

Postoperative (n = 18)
- 27 paired measurements of EVO₂ and GVO₂
- 13 measurements not performed
 - Supplemental oxygen requirement (n = 2)
 - Technical failure (n = 1)
 - Arterial line failure (n = 1)
 - Patient’s decline (n = 3)
 - Logistical (delayed transfer to postoperative ward) (n = 2)
 - Short postoperative stay (n = 4)
Assessed for eligibility
\((n = 209) \)

Excluded \((n = 175) \)
- Not meeting inclusion criteria \((n = 97) \)
- Not approached \((n = 35) \)
- No study participation \((n = 15) \)
- In other perioperative trial \((n = 12) \)
- Declined to participate \((n = 6) \)
- Other reasons \((n = 10) \)
 - Surgery after study completion \((n = 5) \)
 - Surgery postponed or cancelled \((n = 5) \)

Eligible and informed consent provided
\((n = 34) \)

Perioperative oxygen consumption assessment
\((n = 20) \)
- 85 paired measurements of EVO₂ and GVO₂

Excluded \((n = 14) \)
- Research team not available \((n = 9) \)
- Conflicting surgery \((n = 3) \)
- Late cancellation of surgery \((n = 2) \)

Intraoperative
\((n = 20) \)
- 58 paired measurements of EVO₂ and GVO₂
- 4 measurements not performed
 - Surgery not completed due to metastatic spread of malignancy, no late intraoperative or postoperative measurements \((n = 2) \)

Postoperative
\((n = 18) \)
- 27 paired measurements of EVO₂ and GVO₂
- 13 measurements not performed
 - Supplemental oxygen requirement \((n = 2) \)
 - Technical failure \((n = 1) \)
 - Arterial line failure \((n = 1) \)
 - Patient's decline \((n = 3) \)
 - Logistical (delayed transfer to postoperative ward) \((n = 2) \)
 - Short postoperative stay \((n = 4) \)
Intraoperative changes: EVO_2 and GVO_2

- GVO_2
- EVO_2

Postoperative changes: EVO_2 and GVO_2

- GVO_2
- EVO_2

Figure 3
Figure 4

![Graph showing the relationship between predicted GV_{O2} and EVO_2.](image-url)

<table>
<thead>
<tr>
<th>INTERCEPT β_0</th>
<th>ST. ERROR</th>
<th>df</th>
<th>t-value</th>
<th>Lower 95% CI</th>
<th>Upper 95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLOPE β_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\beta_0 = 72.69$</td>
<td>5.04</td>
<td>17</td>
<td>14.43</td>
<td>62.06</td>
<td>83.32</td>
<td><0.0001</td>
</tr>
<tr>
<td>$\beta_1 = 0.449$</td>
<td>0.0742</td>
<td>17</td>
<td>6.05</td>
<td>0.292</td>
<td>0.605</td>
<td><0.0001</td>
</tr>
</tbody>
</table>