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Abstract

Monitoring time-varying vaccine effectiveness (e.g., due to waning of immunity and the
emergence of novel variants) provides crucial information for outbreak control. Existing
studies of time-varying vaccine effectiveness have used individual-level data, most
importantly dates of vaccination and variant classification, which are often not available
in a timely manner or from a wide range of population groups. We present a novel
Bayesian framework for estimating the waning of variant-specific vaccine effectiveness in
the presence of multi-variant circulation from population-level surveillance data.
Applications to simulated outbreak and COVID-19 epidemic in Japan are also
presented. Our results show that variant-specific waning vaccine effectiveness estimated
from population-level surveillance data could approximately reproduce the estimates
from previous test-negative design studies, allowing for rapid, if crude, assessment of the
epidemic situation before fine-scale studies are made available.

Author summary

The emergence of immunity-escaping SARS-CoV-2 variants and the waning of vaccine
effectiveness have highlighted the need for near-real-time monitoring of variant-specific
protection in the population to guide control efforts. However, standard epidemiological
studies to this end typically require access to detailed individual-level dataset, which
may not be timely available in an ongoing outbreak. A more convenient and less
resource-intensive approach using routinely-collected data could complement such
studies by providing tentative estimates of waning vaccine effectiveness until the
conclusive evidence becomes available. In this paper, we propose a novel Bayesian
framework for estimating waning vaccine effectiveness against multiple co-circulating
variants that requires only population-level surveillance data. Using simulated outbreak
data of multiple variants,we showed that the proposed method can plausibly recover the
ground truth from population-level data. We also applied the proposed method to
empirical COVID-19 data in Japan, which yielded estimates that are overall in line with
those derived from studies using individual-level data.
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Introduction 1

Rapid development and distribution of highly effective vaccines against severe acute 2

respiratory syndrome coronavirus 2 (SARS-CoV-2) [1], with the earliest mass 3

vaccination campaign initiated in December 2020 [2], was initially expected to swiftly 4

end the coronavirus disease 2019 (COVID-19) pandemic. However, the waning of 5

vaccine-induced protection observed among those who are past months since 6

vaccination [3, 4], along with the emergence of novel variants that exhibit higher 7

transmission potentials and/or an immune escaping features [5], has compromised this 8

expectation, and the long-term outlook of the outbreak control including vaccine 9

booster strategies has become increasingly complicated [6, 7]. As of June 2022, many 10

countries have provided the third (i.e., booster) doses of COVID-19 vaccines to the 11

general population who are past a specified period of time since the second dose [2]; 12

moreover, some countries have been offering the fourth doses to some high-risk 13

groups [8]. With dynamically-changing population immunity landscapes in the presence 14

of emerging variants, monitoring the strength and duration of vaccine-induced 15

protection has become critically important in informing such dosing schedules and 16

decision making on supplemental control measures. 17

A number of studies have assessed the waning of vaccine-induced protection by 18

estimating the vaccine effectiveness as a function of time since vaccination [3, 9–15]. 19

Some of those studies reported variant-specific waning effects, which suggested that the 20

protection against the Omicron variant wanes quickly than the Delta variant [9, 14]. 21

While these studies have provided fine-scale and robust findings on the waning of vaccine 22

effectiveness, they are not necessarily the most rapidly/easily implemented studies as 23

they essentially require detailed individual-level data, which at least should include 24

timing of infection, the most-recent date of vaccination, and (where variant-specific 25

waning is of interest) either sequence data or proxy of variant identification (e.g., S-gene 26

target failure [16]). As a result, those data were often not available in the most timely 27

manner or only available in limited (resource-rich) settings. Given the continuously 28

evolving situations of the SARS-CoV-2 circulation, e.g., as with the recent emergence of 29

the Omicron sublineages [17], a more convenient and less resource-intensive, if crude, 30

approach to monitoring time-varying vaccine effectiveness would be warranted, which 31

could provide tentative estimates until fine-scale studies eventually become available. 32

In this study, we propose a novel Bayesian framework for estimating waning vaccine 33

effectiveness from population-level surveillance data in the presence of multi-variant 34

circulation. Assuming either parametric or semi-parametric temporal patterns of 35

waning, our model allows for estimation of variant-specific time-varying vaccine 36

effectiveness. As application examples, we used our method to estimate the waning 37

vaccine effectiveness in simulated and real-world outbreak datasets. 38

Materials and methods 39

Modelling framework 40

We construct a discrete renewal process that describes the incidence of new infections 41

among the unvaccinated and vaccinated populations and in week t. As partially 42

vaccinated individuals (i.e., those with only one dose of COVID-19 vaccines with a 43

two-dose regimen) typically account for only small fraction of the population over time, 44

hereafter we assume that individuals obtain ”vaccinated” status only when they are 45

fully vaccinated according to the regimen. Let it and jt be the number of new infections 46

among the unvaccinated and vaccinated populations in week t, respectively. Assuming 47

proportionate mixing [18–20], the renewal process among unvaccinated and vaccinated 48
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populations can be modelled as 49

E[it] = VtRi,t

t−1∑
τ=1

(iτ + jτ )ft−τ , (1)

E[jt] = (1− Vt)Rj,t

t−1∑
τ=1

(iτ + jτ )ft−τ , (2)

where E[·] denotes the operator of expectation, Ri,t is the mean number of unvaccinated 50

secondary cases generated by a primary case in a wholly unvaccinated population in 51

week t, and Rj,t is the mean number of secondary transmissions in a wholly vaccinated 52

population in week t, and ft is the probability mass function for the generation time 53

(i.e., time interval between infections of primary and secondary case pairs). Vt 54

represents the cumulative proportion vaccinated by week t. 55

Ri,t and Rj,t can be related using the variant-weighted cross sectional protection 56

(VCP; denoted as ϵt): 57

Rj,t = (1− ϵt)Ri,t. (3)

Here we define the VCP as the population-level relative risk reduction in week t, 58

weighted by the relative frequency of the circulating variants. VCP can be computed 59

from the variant-specific waning curves of vaccine effectiveness and the time-varying 60

relative frequency of variants: 61

E[ϵt] =
∑
n

t∑
s=1

un,tvt−swn,s, (4)

where un,t is the relative frequency of variant n in week t, vn,t is the weekly rate of 62

vaccination per capita, and wn,s represents waning vaccine effectiveness against variant 63

n as a function of the number of weeks since vaccination s. 64

We model the functional form of waning vaccine effectiveness wn,s in two 65

approaches, i.e., (i) parametric and (ii) semi-parametric approaches. 66

In the parametric approach, we assume an exponential decay of vaccine effectiveness: 67

wn,s = wn exp(−αn(s− 1)), (5)

where wn(≥ 0) and αn(≥ 0) denote the initial effectiveness and the weekly decay 68

constant, respectively. Alternatively, a logistic curve is used as part of the sensitivity 69

analysis, given as 70

wn,t = 2wn

(
1− exp(αn(t− 1))

1 + exp(αn(t− 1))

)
. (6)

In the semi-parametric approach, we use a natural cubic spline on the logit of wn,s, i.e., 71

wn,s =

exp

(
K∑

k=1

βkζn,s,t

)

1 + exp

(
K∑

k=1

βkζn,k,s

) , (7)

where ζn,k,t (k = 1, . . . ,K) are natural cubic spline basis functions with K equally 72

spaced internal knots, and βk is the spline coefficient [21]. We denote the values at the 73

spline knots by yn,k, which we treat as free parameters in the analysis. 74
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Bayesian inference 75

To account for the individual-level heterogeneity in vaccine-induced protection, we 76

introduce an overdispersion in VCP via hierarchical modelling. As VCP is defined as an 77

average over those exposed in week t, its variance is expected to be inversely 78

proportional to the sample size (i.e., the number of exposed vaccinated individuals in 79

week t), which we assume to be proportional to jt. As such, ϵt is assumed to be 80

beta-distributed with a mean E[ϵt]: 81

ϵt ∼ Beta (ηjtE[ϵt], ηjt(1− E[ϵt])) , (8)

where η is a hyperparamter that controls the variance of ϵt. For ηjt ≫ 1, we get 82

V[ϵt] ≈ E[ϵt](1− E[ϵt])/ηjt. 83

We then construct the Poisson likelihood for observed incidence as 84

L(X1:t|Θ) =
∏
t

Pois(it|E[it]) · Pois(jt|E[jt]) · Beta(ϵt|ηitE[ϵt], ηit(1− E[ϵt])), (9)

where X1:t is the time-series of observed data: it, jt, ut, and vt. Θ is the set of 85

unknown parameters: (wn, αn, η, Ri,t) in the parametric approach; and (yn,k, η, Ri,t) in 86

the semi-parametric approach. The parameters and corresponding prior distributions 87

are summarised in Table 1. 88

Parameter Description Prior

Ri,t Mean secondary transmissions in a wholly unvaccinated
population (Ri,t ≥ 0)

LeftTruncatedNormal(1, 2)

wn Initial vaccine effectiveness (wn ≥ 0) Uniform(0, 2)
αn Exponential decay constant (αn ≥ 0) HalfNormal(10)

inv logit(yn,k) Vaccine effectiveness against variant n at the spline knots Beta(5, 2)
η Hyperparameter controlling the variance of ϵt (η ≥ 0) HalfNormal(100)

Table 1. Model parameters and corresponding priors.

Application examples 89

We applied our method to a simulated outbreak dataset and COVID-19 dataset in Japan 90

to estimate waning vaccine effectiveness in the presence of multi-variant circulation. 91

Simulated outbreak 92

We first used a simulated outbreak dataset of four variants (A, B, C, and D with 93

different transmission potentials) to assess if our model can recover the original 94

parameters from the generated outbreak data. The distribution of generation time ft 95

was borrowed from that of serial interval for COVID-19 [22]. The variant-specific basic 96

reproduction numbers were denoted as λn = rn|AλA, where rn|A represents the relative 97

transmissibility of variant n to variant A. The effective reproduction number for variant 98

n is then given as Rn,i,t = (1− ρt)Λn,t, where ρt represents the time-varying intensity of 99

non-pharmaceutical interventions (NPIs). We assumed that the waning of vaccine 100

effectiveness follows a logistic curve in Eq (6). Cross-sectional protection from vaccines 101

against each variant is modelled as 102

E[ϵn,t] =
t∑

s=1

vt−swn,s, (10)
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103

ϵn,t ∼ Beta (ηjn,tE[ϵn,t], ηjn,t(1− E[ϵn,t])) . (11)

The initial numbers of cases of variant A, iA,t and jA,t, were set as (i1, i2) = (5300, 5200) 104

and (j1, j2) = (3, 5). Those of other variants were (iB,15, iC,40, iD,55) = (30, 30, 5) and 105

(jB,15, jC,40, jD,55) = (15, 30, 15), respectively. We assumed that the number of 106

secondary transmissions of variant n in a wholly unvaccinated population by week (Λn,t) 107

randomly fluctuates around the mean transmission potential (λn,t): 108

log(Λn,t) ∼ Normal(log(λn), σ), (12)

where σ denotes the standard deviation of the normal distribution. The parameter 109

specifications for the simulation can be found in Table 2. 110

Parameter Description Selected value

λA Mean secondary transmissions of variant A per primary
case to unvaccinated individuals under no NPIs imple-
mented

1.3

rB|A Relative transmissibility of variant B to A 1.85
rC|B Relative transmissibility of variant C to B 2.1
rD|C Relative transmissibility of variant D to C 3
ρt Effectiveness of NPIs on curtailing infection 0 (t=1,..,29)

0.5 (t=30,..,54)
0.85 (t=55,..,73)

wA Initial vaccine effectiveness against variant A 0.95
wB Initial vaccine effectiveness against variant B 0.90
wC Initial vaccine effectiveness against variant C 0.90
wD Initial vaccine effectiveness against variant D 0.80
αA Exponential decay constant of variant A 0.01
αB Exponential decay constant of variant B 0.02
αC Exponential decay constant of variant C 0.01
αD Exponential decay constant of variant D 0.03
η Hyperparameter controlling the variance of ϵn,t (n=A, B,

C, D)
0.2

σ Standard deviation of the normal distribution for the daily
random fluctuation of the mean transmissibility

0.1

Table 2. Summary of model parameters for the simulation.

COVID-19 in Japan (2021–2022) 111

We also applied our method to the COVID-19 outbreak in Japan from the week of 27 112

September 2021 to the week of 22 March 2022. The end date of the study period was 113

chosen to exclude the possible impact of booster doses (because booster status was not 114

reported in the dataset). Case counts by vaccination status and the daily number of 115

newly vaccinated individuals were publicly available [23–25]. A total 3,416,586 cases 116

were included. Unvaccinated cases under the age of 11 were excluded because the 117

administration of vaccine to this population had not been approved during the 118

timeframe. The weekly proportion of variants was obtained from the figures in [26]. 119

We compared the estimated vaccine effectiveness in our model with the estimates 120

from the previous test-negative case controls studies (in Canada against Delta and in 121

Japan against Omicron) [13,14]. 122
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Fig 1. Reported weekly number of COVID-19 cases with vaccine status and proportion
of each SARS-CoV-2 variant in Japan. (A) The light blue, dark blue, and green bars
show the number of cases with unknown status of vaccine, the status of no vaccine and
first dose of vaccine, and fully vaccinated status, respectively. (B) The light blue, dark
blue, light green, and dark green bars show Alpha, Delta, Omicron, and other variants,
respectively.

Markov chain Monte Carlo 123

We estimated the parameters for each of the datasets using the No-U-Turn-Sampler 124

algorithm. For the analysis of simulated outbreak data, 6,000 Markov chain Monte 125

Carlo (MCMC) samples were obtained from two chains, where the first 500 samples of 126

each chain were discarded as warm-up. For the analysis of COVID-19 epidemic in 127

Japan, we obtained 10,000 samples from two chains after discarding the first 500 128

samples as warm-up. The results of MCMC sampling showed an R-hat statistic of below 129

1.02 and an effective sample size of at least 400. All the analysis was conducted with 130

the ’rstan’ package in R version 4.0.2. 131

Results 132

Application example using simulated outbreak data 133

We simulated an outbreak consisting of four variants replacing one another over time 134

(Fig 2). Vaccine roll-out and waning of variant-specific vaccine effectiveness were also 135

simulated along the outbreak progression. For each variant n, The unvaccinated and 136

vaccinated cases were simulated by applying the renewal process in Eq (1) and Eq (2) 137

to each variant (Fig 2 (B)). We then estimated the waning vaccine effectiveness against 138

each of the variants from the simulated data. The results suggested that our parametric 139

approach with an exponential decay assumption plausibly recovered the ground truth 140

vaccine effectiveness (Fig 3 (A)–(D)). The comparison between the proportion 141

vaccinated and VCP shows that the model captured a gradual decline of VCP due to 142

waning, in particular after the replacement by variant D, against which vaccines were 143

assumed to be less effective and to wane more rapidly (Fig 3 (E)). Meanwhile, the 144

semi-parametric approach yielded overall consistent yet slightly unstable/biased 145

estimates, especially around the tail part of the waning curves (Fig 4). 146
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Fig 2. The simulated outbreak data in the presence of multi-variant circulation. (A)
The simulated epidemic curve by vaccination status. (B) Cross-sectional proportion of
the four variants in the simulation.

Application to COVID-19 in Japan (2021–2022) 147

The estimated vaccine effectiveness against Delta and Omicron in the parametric 148

approach with an exponential decay model is overall in a good accordance with the 149

estimates from test-negative design studies using individual-level case records (Fig 5 (A) 150

(B)). The estimated VCP showed a notable decline around the end of 2021 / beginning 151

of 2022, which coincides with the emergence of the immune-escaping Omicron variant 152

(Fig 5 (C)). The alternative parametric model (logistic curve) yielded essentially 153

identical results (S1 Fig). Both of the parametric models proved a good fit to the data 154

(S2 Fig, S3 Fig). The semi-parametric approach also yielded qualitatively similar results 155

(Fig 6, Fig S4). 156

Discussion 157

We have proposed a novel Bayesian framework that allows for crude but rapid 158

estimation of variant-specific waning vaccine effectiveness using routinely-collected 159

population-level surveillance data. Our application examples suggested that, with 160

reasonable constraints on the functional form of waning, the proposed approach could 161

plausibly produce estimates that are generally consistent with those from studies using 162

individual-level case records. Moreover, the estimated VCP in our approach can be used 163

to monitor the overall level of protection against the currently circulating variants in the 164

population. Compared to those standard approaches to waning vaccine effectiveness 165

that typically require extensive time and resource to construct fine-scale datasets, our 166

approach could provide preliminary/complementary estimates within a shorter time 167

frame, which would inform public health responses under rapidly evolving population 168

immunity landscapes in the presence of multiple variants. 169

In our analysis, we used both the parametric (exponential or logistic curves) and 170

semi-parametric approaches (cubic spline) to specifying the functional form of waning 171

vaccine effectiveness. The parametric approaches could provide stable estimates if one 172

can specify the model for the waning vaccine effectiveness whilst at the risk of bias 173

and/or overconfidence if the model is misspecified. Semi-parametric approach is more 174

robust to the risk of misspecification due to its flexibility, although it may become 175

unreliable in the absence of sufficient data to inform the full range of the waning curve. 176
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Fig 3. Estimated waning vaccine effectiveness with the exponential parametric model.
(A)-(D) The estimated and ground truth variant-specific vaccine effectiveness. The light
blue lines and shades indicate the medians and 95% credible intervals, respectively. The
silver dotted lines are the ground truth vaccine effectiveness. (E) The cumulative
proportion vaccinated (green bars) and the variant-weighted cross-sectional protection
(median and 95% credible intervals denoted by brown lines and shades, respectively).

In our simulation, both approaches exhibited plausible performances overall, with 177

the estimated waning curves for the co-circulating variants mostly in line with the 178

ground truth. However, compared with the results in the parametric models (Fig 3, S1 179

Fig), the estimates from the semi-parametric model were partly less reliable or biased 180

(Fig 4). This was likely because the simulated dataset did not include a sufficient 181

number of cases that can inform those sections of the waning curve. The majority of 182

vaccinated individuals were assumed to have had their dose around week 10–15 and 183

they were: up to around 10 weeks since vaccination when variant A was dominant; and 184

around 15–25 weeks, 30–50 weeks, and 50–65 weeks since vaccination when each of 185

variant B, C, and D was dominant, respectively (Fig 2). These periods almost exactly 186

correspond to the estimated waning curve for each variant was most certain and precise 187

(similar patterns were also observed for the parametric approach; Fig 3). The waning 188

curves for variant A and B showed a substantial deviation from the ground truth over 189
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Fig 4. Estimated waning vaccine effectiveness with the semi-parametric model. (A)-(D)
The estimated and ground truth variant-specific vaccine effectiveness. The light blue
lines and shades indicate the medians and 95% credible intervals, respectively. The
silver dotted lines are the ground truth vaccine effectiveness. (E) The cumulative
proportion vaccinated (green bars) and the variant-weighted cross-sectional protection
(median and 95% credible intervals denoted by brown lines and shades, respectively).

the tail end of the curves. This is not unexpected because there was essentially no data 190

corresponding to these sections; even the earliest-vaccinated individuals had not been 191

past those many weeks since vaccination before these variants were almost extinct in the 192

population. Meanwhile, waning curves for variant C and D did not show such a 193

substantial deviation probably because the data existed for almost the entire sections (if 194

scarce for some of them). 195

In contrast, the parametric model was able to capture the entire waning curves of 196

variant-specific vaccine effectiveness because the model was less flexible and can 197

extrapolate the sections for which the data was scarce. However, it should be noted that 198

the success was largely due to the correctly specified functional form for waning. The 199

results may be less reliable if the parametric model is misspecified. While it would be 200

reasonable to impose some realistic constraints, e.g., monotonic decrease, on the 201

functional form of waning curves to guide estimation, the possibility of misspecification 202
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Fig 5. The waning of vaccine effectiveness estimated in parametric model with
exponential function using Japan data. (A)(B) The estimated and ground truth
variant-specific vaccine effectiveness. The blue lines and shades indicate the medians
and 95% credible intervals, respectively. Reference values from other studies are also
displayed with their 95% uncertainty bounds. (C) The cumulative proportion
vaccinated (green bars) and the variant-weighted cross-sectional protection (median and
95% credible intervals denoted by brown lines and shades, respectively).

should be carefully considered. Assessing concordance between the observed and 203

modelled incidence (as shown in S2 Fig–S4 Fig) and comparing results from multiple 204

candidate models (both parametric and semi-parametric) can be useful. In addition, as 205

was the case for the semi-parametric model discussed above, one should also carefully 206

assess which sections of the estimated waning curve was fully informed by the data. 207

In the application example to COVID-19 in Japan (Fig 5), estimated vaccine 208

effectiveness against the Delta variant from both parametric and semi-parametric 209

approaches were overall in line with those in existing test-negative design studies. The 210

estimates of vaccine effectiveness against the Omicron variant were lower than those 211

against the Delta variant, as had been suggested previously [27], although they lay 212

slightly above the reference estimates from elsewhere [14]. The suggested difference in 213

the waning curves between vaccine effectiveness against Delta and Omicron as well as 214

the decline in the estimated VCP from the week of the emergence of the Omicron 215

variant might have provided an early warning if our method had been applied to the 216

surveillance data in a timely manner. 217

It should be noted that we made several simplifying assumptions in our study. First, 218

we assumed that the contact behaviours of unvaccinated and vaccinated individuals 219

were identical and that individuals from these groups mix nonassortatively (i.e. 220

July 14, 2022 10/15

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 15, 2022. ; https://doi.org/10.1101/2022.07.14.22277647doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.14.22277647
http://creativecommons.org/licenses/by/4.0/


0

10

20

30

40

50

60

70

80

90

100

1 5 9 13 17 21 25 29 33 37 41 45
Week since completion of required dose(s)

V
ac

ci
ne

 e
ffe

ct
iv

en
es

s 
[%

]

Estimated waning vaccine effectiveness
British Columbia
Quebec

Waning vaccine effectiveness against Delta in JapanA

0

10

20

30

40

50

60

70

80

90

100

1 5 9 13 17 21 25 29 33 37 41 45
Week since completion of required dose(s)

V
ac

ci
ne

 e
ffe

ct
iv

en
es

s 
[%

]

Estimated waning vaccine effectiveness
Japan (NIID)

Waning vaccine effectiveness against Omicron in JapanB

0

25

50

75

100

06
/0

5/
21

13
/0

5/
21

20
/0

5/
21

27
/0

5/
21

03
/0

6/
21

10
/0

6/
21

17
/0

6/
21

24
/0

6/
21

01
/0

7/
21

08
/0

7/
21

15
/0

7/
21

22
/0

7/
21

29
/0

7/
21

05
/0

8/
21

12
/0

8/
21

19
/0

8/
21

26
/0

8/
21

02
/0

9/
21

09
/0

9/
21

16
/0

9/
21

23
/0

9/
21

30
/0

9/
21

07
/1

0/
21

14
/1

0/
21

21
/1

0/
21

28
/1

0/
21

04
/1

1/
21

11
/1

1/
21

18
/1

1/
21

25
/1

1/
21

02
/1

2/
21

09
/1

2/
21

16
/1

2/
21

23
/1

2/
21

30
/1

2/
21

06
/0

1/
22

13
/0

1/
22

20
/0

1/
22

27
/0

1/
22

03
/0

2/
22

10
/0

2/
22

17
/0

2/
22

24
/0

2/
22

03
/0

3/
22

10
/0

3/
22

Week since completion of required dose(s)

P
op

ul
at

io
n−

le
ve

l p
ro

te
ct

io
n

P
ro

po
rt

io
n 

va
cc

in
at

ed
 [%

]

C

Fig 6. The waning of vaccine effectiveness estimated in semi-parametric model using
Japan data. (A)(B) The estimated and ground truth variant-specific vaccine
effectiveness. The blue lines and shades indicate the medians and 95% credible intervals,
respectively. Reference values from other studies are also displayed with their 95%
uncertainty bounds. (C) The cumulative proportion vaccinated (green bars) and the
variant-weighted cross-sectional protection (median and 95% credible intervals denoted
by brown lines and shades, respectively).

proportionate mixing [18–20]). Our estimation may be likely biased by heterogeneity 221

that susceptibility differs amongst vaccinated individuals under not randomly mixing 222

pattern [28]. Potential differences between the characteristics between unvaccinated and 223

vaccinated individuals are typically addressed by adjustment for covariates in standard 224

vaccine effectiveness studies where individual-level data is available. Such adjustment is 225

inherently impossible in our approaches relying on population-level data, which 226

constitutes one of the reasons why the results should be deemed preliminary. Second, 227

we did not consider the depletion-of-susceptible bias, which typically arise when 228

unvaccinated individuals are more likely to have experienced prior infection (thus to 229

have developed immunity) than vaccinated individuals. Although this bias is suggested 230

to be minor in the case of the current COVID-19 outbreak because of the high baseline 231

vaccine effectiveness [29], the potential caveat needs to be recognised in a broader 232

context (e.g., when applying our approach to other diseases). Third, our approach 233

implicitly assumes that the epidemic is limited to a closed population (i.e., no imported 234

cases), although the model could be extended to include imported cases if the 235

distinction between imported and local cases is available in the dataset. Fourth, we 236

excluded the effect of booster vaccines from analysis due to the limitation of the 237

publicly available dataset. However, our framework could be naturally extended to 238

jointly estimate waning vaccine effectiveness with primary and booster doses if incidence 239

data and vaccine doses data are both separately available for booster vaccination. 240
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Taken together, the present study provides a useful and practical tool to estimate 241

waning vaccine effectiveness in multi-variant epidemics from population-level 242

surveillance data. Continuous emergence of SARS-CoV-2 variants with different levels 243

of immune-escape properties has highlighted the need for monitoring vaccine 244

effectiveness as a dynamic metric shaped by waning and variant replacement. Our 245

method would inform control efforts by providing the tentative yet timely estimates of 246

vaccine effectiveness against co-circulating variants in the current and future pandemics. 247

Supporting information 248

S1 Fig. The waning of vaccine effectiveness estimated in parametric model 249

with inverse logit function using Japan data. (A)(B) The estimated and ground 250

truth variant-specific vaccine effectiveness. The blue lines and shades indicate the 251

medians and 95% credible intervals, respectively. Reference values from other studies 252

are also displayed with their 95% uncertainty bounds. (C) The cumulative proportion 253

vaccinated (green bars) and the variant-weighted cross-sectional protection (median and 254

95% credible intervals denoted by brown lines and shades, respectively).. 255

S2 Fig. Simulation to check the fitness of the parametric model with 256

exponential function to outbreak data in Japan. The figures are the comparison 257

between model-informed and observed epidemic curve with unvaccinated and vaccinated 258

incidence. The dark blue bars show the observed incidence and the light blue bars show 259

the estimated value of incidence out of posterior MCMC samples. 260

S3 Fig. Simulation to check the fitness of the parametric model with 261

logistic function to outbreak data in Japan. The figures are the comparison 262

between model-informed and observed epidemic curve with unvaccinated and vaccinated 263

incidence. The dark blue bars show the observed incidence and the light blue bars show 264

the estimated value of incidence out of posterior MCMC samples. 265

S4 Fig. Simulation to check the fitness of the semi-parametric model to 266

outbreak data in Japan. The figures are the comparison between model-informed 267

and observed epidemic curve with unvaccinated and vaccinated incidence. The dark 268

blue bars show the observed incidence and the light blue bars show the estimated value 269

of incidence out of posterior MCMC samples. 270
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