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Abstract  

Rationale: Heterogeneity of sepsis limits discovery and targeting of treatments. Clustering 

approaches in critical illness have identified patient groups who may respond differently to 

therapies. These include in acute respiratory distress syndrome (ARDS) two inflammatory 

sub-phenotypes, using latent class analysis (LCA), and in sepsis two Sepsis Response 

Signatures (SRS), based on transcriptome profiling. It is unknown if inflammatory sub-

phenotypes such as those identified in ARDS are present in sepsis and how sub-phenotypes 

defined with different techniques compare. 

Objectives: To identify inflammatory sub-phenotypes in sepsis using LCA and assess if these 

show differential treatment responses. These sub-phenotypes were compared to 

hierarchical clusters based on inflammatory mediators and to SRS sub-phenotypes. 

Methods: LCA was applied to clinical and biomarker data from two septic shock randomized 

trials. VANISH compared norepinephrine to vasopressin and hydrocortisone to placebo and 

LeoPARDS compared levosimendan to placebo. Hierarchical cluster analysis (HCA) was 

applied to 65, 21 and 11 inflammatory mediators measured in patients from the GAinS 

(n=124), VANISH (n=155) and LeoPARDS (n=484) studies.  

Measurements and Main Results: LCA and HCA identified a sub-phenotype of patients with 

high cytokine levels and worse organ dysfunction and survival, with no interaction between 

LCA classes and trial treatment responses. Comparison of inflammatory and transcriptomic 

sub-phenotypes revealed some similarities but without sufficient overlap that they are 

interchangeable. 



Conclusions: A sub-phenotype with high levels of inflammation and increased disease 

severity is consistently identifiable in sepsis, with similarities to that described in ARDS. 

There was limited overlap with the transcriptomic sub-phenotypes.  



Introduction 

Sepsis, life threatening organ dysfunction caused by a dysregulated host response to 

infection (1), causes 11 million deaths worldwide, annually (2). Sepsis is a heterogeneous 

syndrome, which is a barrier to finding novel therapies (3–5), prompting a search for sepsis 

sub-populations (also referred to as sub-phenotypes), with the hope that patients could be 

stratified for targeted treatments. 

Sub-phenotypes have been reported in sepsis (6–8) and ARDS (9–13).  In ARDS latent class 

analysis (LCA) using clinical and biomarker data, has consistently identified two sub-

phenotypes. A hyper-inflammatory sub-phenotype is characterized by higher cytokine 

levels, shock, worse acidosis, worse clinical outcomes and potentially different responses to 

treatment compared to the hypo-inflammatory sub-phenotype (9–13). The sub-phenotypes 

in ARDS are predominantly driven by differences in inflammatory mediators, yet in sepsis 

there has not yet been an attempt to apply LCA in this way (14).  

We have previously reported two sepsis sub-phenotypes from genome-wide gene 

expression profiling of peripheral blood leukocytes (Sepsis Response Signatures – SRS) in 

patients admitted to intensive care units (ICU) with community acquired pneumonia (20) or 

fecal peritonitis (21). Based on differential gene expression, SRS1 shows features of immune 

suppression compared with SRS2 and is associated with higher mortality. SRS sub-

phenotypes have shown potential to identify patients with septic shock who respond 

differently to hydrocortisone (22) with this intervention increasing mortality in SRS2 

patients but not in SRS1. It is unknown how these transcriptomic sub-phenotypes relate to 

other sub-populations based on clustering of alternative data types.  



To fully appreciate the utility of sub-phenotypes it is important to understand if they are 

specific to particular syndromes, such as ARDS, or are present in all critically ill patients with 

sepsis. It is also important to understand the relationship between sub-phenotypes defined 

using different types of data so that the optimal method can be used to inform a precision 

medicine approach to treatment.   

We hypothesized that LCA of clinical and inflammatory biomarker data would identify 

distinct sepsis sub-phenotypes  which might respond differently to levosimendan, 

hydrocortisone, or vasopressin and that LCA defined sub-phenotypes would be distinct from 

those defined by clustering of only inflammatory or transcriptomic data. Some of these 

results have been reported as an abstract (23). 

  



Methods 

Detailed methodology can be found in the supplement.  

Patients 

Blood samples and clinical data were available from the VANISH (24) and LeoPARDS (25) 

septic shock trials, which included patients with sepsis from any source, and the Genomic 

Advances in Sepsis (GAinS) (20, 26) study, which included patients with sepsis due to 

community acquired pneumonia or fecal peritonitis. All had ethics approval and informed 

written consent was obtained from patients or their legal representatives.  

VANISH was a factorial (2x2) randomized trial comparing vasopressin to norepinephrine and 

hydrocortisone to placebo in septic shock. Biomarker assessment was available for 176/409 

patients. The LeoPARDS trial was a randomized trial comparing levosimendan to placebo in 

septic shock. Biomarker assessment was available for 493/516 patients. GAinS was an 

observational study of patients admitted to ICU with sepsis or septic shock. Biomarker 

assessment was performed on 124 patients. 

 

Biomarker Measurement 

Plasma was collected on the first day of ICU admission (GAinS) or of septic shock (VANISH 

and LeoPARDS). Sixty-five inflammatory mediators were measured in GAinS, twenty-one in 

VANISH and eleven in LeoPARDS (Table S1). Biomarkers including the inflammatory 

mediators and other blood marker molecules were measured as described in the 

supplement.  

 

 



Transcriptomic Sub-phenotypes 

Genome-wide transcriptomic data in blood leukocytes, acquired using Illumina Human-HT-

12 v4 Expression BeadChips, were available from the VANISH and GAinS studies. SRS sub-

phenotypes have previously been assigned in the GAinS patients using unsupervised 

clustering on genome-wide transcriptomic data or a predictive 7-gene model, and in VANISH 

patients using the 7-gene model (20–22). 

 

Latent Class Analysis 

LCA was performed separately on the data from the two clinical trials, LeoPARDS and 

VANISH, agnostic of outcome. These datasets were used for LCA as both had the same 

biomarkers and clinical variables available and, being interventional trials, allowed 

exploration of sub-phenotype and treatment interaction. Variables were chosen for 

inclusion based on their associations with sepsis pathophysiology (PaO2/FiO2 ratio, 

creatinine, platelets, bilirubin, lactate, IL-1β, IL-6, IL-8, IL-10, IL-17, IL-18, MPO, sICAM, ANG-

2, sTNFr, MCP-1 (CCL2), troponin and NT-proBNP). The acute physiology element of the 

APACHE II (APS-APII) score was included as a covariate as we expected this severity score to 

be associated with the biomarkers independently of subclass. Other baseline clinical and 

demographic variables which may be predictive of subclass were included in the models as 

class predictors.  Biomarkers were log transformed and standardized due to skewness.  

Observations outside the limits of detection were treated as censored (27). Models were fit 

using the gsem package in Stata 15 (StataCorp. 2017. Stata Statistical Software: Release 15. 

College Station, TX: StataCorp LLC). 

 



Clinical Outcomes 

Differential treatment response based on LCA-defined sub-phenotypes were explored using 

the following outcomes. The primary outcome for the LeoPARDS trial data in this analysis, 

was survival at 3 months. Mean total SOFA score over 28 days (or ICU stay, whichever was 

shorter) and 28-day survival were examined as secondary outcomes. For the VANISH trial, 

we examined 28-day survival, as 3-month survival was not available.  Survival free of renal 

failure to 28 days amongst patients not in renal failure at baseline, and days alive and free of 

renal failure up to 28 days for all other patients were also examined. 

 

Hierarchical Cluster Analysis 

To understand how LCA defined clusters compared to those derived using a different 

clustering approach using only inflammatory mediator data, hierarchical cluster analysis 

(HCA) was applied to the inflammatory mediator panels in VANISH and LeoPARDs 

independently. As HCA is unable to handle missing data, only patients with complete panels 

were included. To facilitate comparison of inflammatory sub-phenotypes to previously 

defined SRS groups, HCA was also applied to the panel of inflammatory mediators measured 

in GAinS. Clustering was performed using the hclust function in R (28).  The optimal number 

of clusters was defined by inspection of the dendrograms, comparison of test sample 

distances in cross-validation, and by determining cluster robustness by consensus clustering 

(29).  

 

 

 



Differential Gene Expression 

Microarray data from GAinS and VANISH were co-normalized using the vsn package (30) and 

batch corrected using the ComBat function from the sva package (31) in R, resulting in 

28220 communal probes after quality control. Following additional quality control with 

MixupMapper (32), baseline gene expression data were available for 115 patients in GAinS 

and 149 in VANISH from those included in the inflammatory mediator HCA. Genes 

differentially expressed between sub-phenotypes were identified using the limma package 

(33). 

 

Statistical Analysis 

Data were compared using the Mann-Whitney U, Kruskal-Wallis, Chi-squared or Fisher’s 

exact test (Fisher’s exact test was used when the number of events was <10) as appropriate. 

The Benjamini-Hochberg procedure was applied to comparisons of inflammatory mediators 

between HCA and SRS groups, but as this was an exploratory analysis p-values for clinical 

comparisons were not corrected for multiple comparisons. All tests were two-sided and a p-

value or FDR <0.05 was taken as statistical significance. Statistical analysis was performed in 

R (28) and SPSS version 25 (IBM, USA). 

  



Results 

Latent Class Analysis 

For LeoPARDS, entropy was over 0.85 for all models and mean class probabilities were over 

0.90, indicating good class separation. The AIC and BIC decreased as the number of classes 

increased without reaching a minimum value, but the improvement from 3 to 4 classes was 

much smaller and models with more than four classes did not converge (Table S2, Table S3, 

Figure S1) so the simpler 3-class model was selected. The variables showing the greatest 

separation between classes were IL-6, IL-8, MCP-1(CCL2), IL-10 and IL-1β (Figure 1A).  

Around half the patients were assigned to class 2 (n=247), with 191 to class 1 and 55 to class 

3. Baseline clinical characteristics, outcomes and biomarker concentrations by class are 

shown in Tables 1 and 2.  Sensitivity analyses gave comparable results with 94% agreement 

in class assignment (Table S4). Survival varied by class (p=0.001) and was lowest in class 3 

(41.8% (23/55)) compared to other classes (69.8% (132/189) in class 1; 63.0% (155/246) in 

class 2).  A multinomial logit model with IL-6, IL-8, IL-10 and MCP-1 as predictors gave a 

sensitivity of around 0.9, and a specificity of 0.9 or over for all classes (Figure S2, Table S5). 

No treatment sub-phenotype interaction was seen for any of the outcomes in the LeoPARDS 

trial (Figure 2).  

 

For VANISH, models did not converge when all pre-specified class-predictors were included 

so reduced models were fit with age, source of infection, APS-APII and post-surgical 

admission as covariates and the number of censored indicators were reduced by treating 

values outside the limits as having values equal to the limit, for indicators with fewer than 5 

such values.  Based on model fit (Table S2, Figure S3) we selected a two-class model with 

zero covariances between indicators. IL-1β, IL-10, IL-6 and IL-8 showed prominent class 



separation (Figure 1, Table 2).  There was an even split between classes (90 individuals 

assigned to class 1 and 86 to class 2). Although baseline and demographic characteristics 

were similar between the two classes, class 1 was associated with greater survival at 28-

days and more renal failure free days than class 2 (Table 1). Sensitivity analysis gave 

comparable results with 97% agreement (Table S4). There was no evidence that treatment 

effects varied by class for any of the outcomes of the VANISH trial (Figure 2).  The effect of 

vasopressin on renal failure free survival at 28 days compared to norepinephrine was in 

opposite directions in class 1 (10% reduction in survival (95% CI -31% to 11%)) compared to 

class 2 (10% increase in survival (95% CI -16% to 35%)) but the confidence intervals were 

wide (difference in RD 20% (95% CI -13% to 53%)) (Figure 2A). This was also seen for renal 

failure free days. 

 

Hierarchical Clustering of Inflammatory Mediators 

Since cytokines were the indicators showing greatest separation between LCA classes, we 

clustered based solely on cytokines using hierarchical clustering analysis (HCA) to 

understand the impact of clustering approach on sub-phenotype identification and whether 

clinically meaningful patient clusters could still be identified. While LCA accommodates 

different data types and handles missing data, HCA is suitable for clustering based on only 

one type of continuous data and produces clearer inference of how each variable 

contributes to the clustering and the relation between samples as dendrograms. To include 

a more comprehensive profiling of cytokines and to allow comparison with previously 

defined transcriptomic sub-phenotypes (SRS), the GAinS cohort was included in HCA. Both 

VANISH and GAinS were best described by two classes (Figures 3A and S4) with consensus 

clustering based on HCA producing highly consistent assignments (94% for VANISH, 100% 



for GAinS). LeoPARDs could be described by either two or three classes (Figures 3A and S4) 

with the most consistent group assignment between HCA and consensus clustering being 

with a three-class model (91%). 

Principal component analysis showed separation of the classes along the first component 

(Figure 1B) which was strongly correlated with the median cytokine concentration of all 

samples (Spearman's rho = 0.982/0.904/0.896 for GAinS/VANISH/LeoPARDS). In all cohorts a 

‘high cytokine’ (HC) sub-phenotype had higher concentrations of inflammatory mediators 

than the ‘low cytokine’ (LC) sub-phenotype (Table 3, Table S6 and Figure 1A).  

Concordance between LCA and HCA classes was strong. In VANISH 96% of patients in LCA 

class 2 were also in the HC class and 85% of those in LCA class 1 were in the LC class. In 

LeoPARDS 98% of patients in LCA class 3 were in the HC class, 88% of those in LCA class 1 

were in the LC class and 76% of those in LCA class 2 were in the intermediate HCA class. 

Patients similarly classified by LCA and HCA had higher LCA class membership probabilities 

than patients with inconsistent classification (Table S7) suggesting lower certainty of LCA 

classification in those differently classified.   

Clinical differences between HCA sub-phenotypes can be seen in Table 4 and Table S8. 

Generally, HC sub-phenotype patients showed features of more severe disease such as 

higher heart rates, lower PaO2:FiO2 ratio and higher requirement for fluid and 

norepinephrine. Mortality at 28-days was highest in the HC sub-phenotype in VANISH 

(p=0.03) and LeoPARDS (p=0.002) with the same trend seen in the GAinS data (Table 4, 

Table S8). In LeoPARDS poorer survival in the HC sub-phenotype was also seen at 3- and 6-

months.  Patients in the HC sub-phenotype in VANISH had higher mean total SOFA scores 

over the duration of their ICU stay than patients in the LC sub-phenotype (p<0.001) as was 



the case in LeoPARDS where the mean total SOFA increased incrementally from the LC, 

through the intermediate to HC sub-phenotype (4.1 (2.9-6.1) vs 5.9 (3.9-9) vs 7.3 (4.3-13), 

p<0.001) (Table S8). 

 

Transcriptomic Sub-phenotypes and Inflammatory Clusters 

Comparing cytokines between SRS1 and SRS2, significantly different mediators were higher 

in SRS1 compared to SRS2 (Table S9) with the pro-inflammatory cytokines IL-6, IL-8, MCP-1 

and CCL3 being at significantly higher concentrations in SRS1 than SRS2 (FDR<0.05) in both 

GAinS and VANISH. 

In the VANISH cohort 63% of HC patients had the SRS1 sub-phenotype, compared with 26% 

of LC patients (OR of being SRS1 if in the HC vs LC sub-phenotype: 4.72 (95% CI 2.3-9.5), 

p<0.001, Table 4). Using the LCA classes from VANISH 60% of class 2 patients compared to 

35% of class 1 had the SRS1 sub-phenotype (OR of being SRS1 in LCA class 2 vs class 1: 2.8 

(95% CI 1.5-5.3), p=0.001). There was no relationship between the HCA clusters and the SRS 

sub-phenotypes in the GAinS cohort (p=0.51).  

Dividing patients using both cytokine and SRS sub-phenotypes consistently demonstrated 

lowest 28-day mortality in LC-SRS2 patients (Figure S6). In GAinS mortality remained 

predominantly associated with SRS, which was not the case in VANISH.  

 

Gene Expression Signatures of Inflammatory Clusters 

There were no significantly differentially expressed genes between inflammatory sub-

phenotypes in GAinS but 554 (665 probes) in VANISH (FDR<0.05 and FC>1.5, Figure 4A), 



which were enriched for Gene Ontology Biological Process terms involving multiple aspects 

of the immune and inflammatory response (e.g., ‘neutrophil degranulation’) as well as 

protein phosphorylation and angiogenesis (Figure 4B). There was a statistically significant, 

though weak, correlation between the fold changes from the comparisons between 

inflammatory sub-phenotypes in GAinS and VANISH (Pearson’s r=0.357, p<2.2x10-16, Figure 

4C) suggesting that the inflammatory sub-phenotypes in both datasets were capturing 

similar transcriptomic differences, although the magnitudes of difference observed were 

larger in VANISH.  

Significant correlations were observed between differential gene expression in SRS sub-

phenotypes and in cytokine clusters (Figure 4D, E), suggesting similarity between the 

inflammatory mediator clusters and SRS groups at the transcriptome level. 

 

  



Discussion 

In this study we used LCA of combined clinical and biomarker data in patients with septic 

shock to derive sepsis inflammatory sub-phenotypes. We then compared these to sub-

phenotypes derived using different approaches and data types. Two LCA sub-phenotypes 

described the patients from the VANISH trial whereas the larger LeoPARDS trial was 

represented by three. These classifications were broadly consistent with those derived from 

hierarchical clustering using only cytokine data. Across three data sets a sub-phenotype with 

greater levels of inflammation was associated with features of worse disease severity and 

higher mortality. Although some similarities existed between global gene-expression sub-

phenotypes and those derived from inflammatory mediators our data suggest that they 

capture different aspects of sepsis pathology and provide complementary information.  

 

The findings from LCA show similarities to those in ARDS (9–13) where a hyper-

inflammatory sub-phenotype is associated with higher levels of inflammatory mediators, 

high rates of organ failure and death compared to the hypo-inflammatory sub-phenotype. 

This supports the notion that there are distinct host responses to critical illness or “treatable 

traits” that are independent of syndromic diagnoses such as ARDS or sepsis (35). This 

concept is also supported by recent work demonstrating that inflammatory sub-phenotypes 

can be identified in ventilated patients without ARDS (36) and in pancreatitis (37). The fact 

that HCA of  inflammatory mediators alone provides very similar patient grouping to LCA of 

clinical and inflammatory data suggests that most group separation derives from 

inflammatory mediators that are not routinely measured in clinical practice and provides 

evidence that these groups are robust to the choice of clustering approach, enhancing their 

validity. Previous clustering of inflammatory mediators in sepsis has identified differing 



numbers of sub-phenotypes (15–19). Differences in patient populations, number of subjects 

and mediators measured make comparisons difficult. Yet, in common with our work, 

clusters with high cytokine concentrations have been identified amongst patients with 

sepsis that are associated with shock, organ dysfunction and increased mortality (15, 18).  

 

ARDS sub-phenotypes have shown potential to identify patients who may benefit from  

specific treatments (10, 12, 13). However, here we found no sub-phenotype treatment 

interaction in sepsis. This may reflect the specific treatments used in these trials, or that 

they were not powered for identifying differential responses. We have previously 

demonstrated an interaction between SRS gene expression sub-phenotypes and use of 

hydrocortisone (22), with patients in the SRS2, low mortality, group having higher mortality 

if given hydrocortisone compared with placebo, so it is noteworthy that no differential 

effect was seen using LCA inflammatory sub-phenotypes for this treatment.  

 

Our data suggests that inflammatory and gene-expression sub-phenotypes are not 

comparable, although there was some overlap. Although VANISH patients in the high 

inflammation groups were more likely to also be in the SRS1 transcriptomic sub-phenotype, 

a third of patients were not and in GAinS we found no significant relationship. This 

incomplete overlap between cytokine and transcriptomic sub-phenotypes could explain the 

differences seen in the interaction between treatment and sub-phenotype described here 

and previously (22). Differential gene expression analysis was able to highlight biological 

processes that distinguished the high cytokine from low cytokine sub-phenotypes, such as 

neutrophil degranulation and the inflammatory response. It is of note that it was generic 

pathways and not individual cytokines that were differentially expressed. This potentially 



explains the globally higher cytokine levels instead of differences in individual cytokines 

seen in the high cytokine sub-phenotypes.  

 

Comparison of cytokines between SRS sub-phenotypes also provided support for an overlap 

of these groups and cytokine groups. IL-6, MCP-1, IL-8 and CCL3 were significantly higher in 

SRS1 than SRS2 in both GAinS and VANISH while eight other markers (IL-10, IP-10, IL-2R, IL-

31, HGF, MIP-3α, MMP-1 and Ang-2) were also significantly higher in SRS1 in one of the two 

cohorts (six of these were only available in one of the two cohorts). Gene expression 

signatures on SRS discovery indicated that SRS1 is characterized by T-cell exhaustion, 

endotoxin tolerance and HLA class II down regulation (20). Both excessive pro-inflammatory 

cytokines (IL-6, IL-27, IFN-α) and anti-inflammatory cytokines (IL-10) can lead to T cell 

exhaustion (38–40) and IL-1β, TNFα, and IL-10 can induce cytokine-mediated tolerance of 

monocytes (40–43). In our study, other than IL-6, SRS1 had statistically higher 

concentrations of IL-10 in the VANISH cohort but not GAinS, although the trend was in the 

same direction. In GAinS, IFN-α and TNFα levels were higher in SRS1 compared with SRS2 

although not reaching statistical significance. Further work is needed to understand the 

causal and temporal relationship between inflammation and transition into the SRS1 sub-

phenotype with recent evidence, for example, of granulopoietic dysfunction involving 

specific neutrophil subsets (44). 

 

There are limitations to this work. Firstly, because of differences in patient cohorts, sample 

sizes, analytical platforms and panels of mediators measured it is impossible to be certain 

that the sub-phenotypes described are the same between patient cohorts. These 



differences may account for some of the discrepancy in clinical differences between 

cytokine clusters in GAinS, VANISH and LeoPARDS. Similarly, different timing of sample 

collection in relationship to the onset of the inflammatory response and sepsis complicates 

interpretation of the relationship between cytokine and transcriptomic sub-phenotypes 

across the datasets. However, the similarities in patterns of clinical features and cytokine 

levels between the clusters, irrespective of patient cohorts is reassuring. There were also 

limitations associated with the platforms used to measure the cytokines. The multiplex 

system used in VANISH resulted in several mediators with concentrations below the level of 

quantification. Censoring of this data with the value of the lower limit will have introduced 

imprecision, compromising the interpretation of the importance of these mediators. Finally, 

none of the trial datasets were designed with the intention of performing a sub-group 

analysis as reported here and as such are likely to be underpowered to detect a sub-

group/treatment interaction. Therefore, it is important that these results are viewed as 

exploratory and not as conclusive evidence that no sub-phenotype treatment interaction 

exists.  

 

In conclusion, we found that both LCA and HCA identified a sub-phenotype of patients with 

high levels of inflammatory mediators and worse disease severity and outcomes. 

Inflammatory sub-phenotypes showed some similarities with transcriptomic sub-

phenotypes although these two approaches did not identify identical patient groups. We 

conclude that future patient stratification, either for prognostication or for treatment 

allocation, will need to combine multiple types of biological data, such as gene expression 



and cytokine data, to allow the most accurate classification and that the balance of data 

types may depend on the clinical question that needs to be addressed.  
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Table 1 Baseline characteristics and outcomes overall and by LCA assigned class. Values are median (interquartile range) for continuous variables and n (%) 

for categorical variables. 

 LeoPARDS N=493 VANISH N=176 

Class Overall 
N=493 

Class-1 
N=191 

Class-2 
N=247 

Class-3 
N=55 

missing (n) Overall 
N=176 

Class-1 
N=90 

Class-2 
N=86 

missing (n) 

Age (years) 68  
(58, 76) 

68  
(57, 77) 

69  
(62, 76) 

65  
(51, 73) 

0 65  
(53.5, 77) 

65.5  
(54, 77) 

64.5  
(53, 76) 

0 

Male 274 (56) 108 (56.5) 138 (55.9) 28 (50.9) 0 112 (63) 58 (64.4) 54 (62.8) 0 

Ethnicity     0    0 

Caucasian 461 (94) 180 (94.2) 229  
(92.7) 

52 
(94.6) 

 146 (83) 77 
(85.6) 

69 
(80.2) 

 

Black 10 (2) 3 (1.6) 5 (2) 2 (3.6)  14 (8) 8 (8.9) 6 (7)  

Asian 19 (4) 7 (3.7) 11 (4.5) 1 (1.8)  13 (7) 4 (4.4) 9 (10.5)  

Other 3 (1) 1 (0.5) 2 (0.8) 0 (0)  3 (2) 1 (1.1) 2 (2.3)  

BMI 27.1  
(23.4, 31.0) 

26.7  
(23, 30.8) 

27.3  
(23.4, 30.7) 

27.8  
(24.2, 33.6) 

6 26.1  
(22.5, 31.3) 

24.7  
(22.2, 31.6) 

26.2  
(22.6, 31.1) 

9 

Co-morbidities          

NYHA Class IV 5 (1) 1 (0.5) 4 (1.6) 0 (0) 0 0 (0) 0 (0) 0 (0) 0 

Severe COPD 23 (5) 10 (5.2) 11 (4.5) 2 (3.6) 0 10 (6) 7 (7.8) 3 (3.5) 0 

Chronic renal failure 35 (7) 18 (9.4) 15 (6.1) 2 (3.6) 0 8 (5) 2 (2.2) 6 (7) 0 

Cirrhosis 9 (2) 6 (3.1) 3 (1.2) 0 (0) 0 11 (6) 4 (4.4) 7 (8.1) 0 

Immunocompromised 45 (9) 14 (7.3) 22 (8.9) 9 (16.4) 0 11 (6) 2 (2.2) 9 (10.5) 0 

Site of infection     3    1 

Lung 192 (39) 106 (55.5) 74 (30.1) 12 (21.8)  74 (42) 42 (48.3) 32 (37.2)  

Abdomen 181 (37) 45 (23.6) 111 (45.1) 25 (45.5)  35 (20) 17 (19.5) 18 (20.9)  

Urine 29 (6) 13 (6.8) 13 (5.3) 3 (5.5)  28 (16) 10 (11.5) 18 (20.9)  

Primary bacteremia 10 (2) 0 (0) 6 (2.4) 4 (7.3)  3 (2) 2 (2.3) 1 (1.2)  

Neurological 5 (1) 3 (1.6) 2 (0.8) 0 (0)  4 (2) 4 (4.6) 0 (0)  

Soft tissue or line 26 (5) 10 (5.2) 10 (4.1) 6 (10.9)  6 (3) 3 (3.5) 3 (3.5)  

Other 49 (10) 14 (7.3) 30 (12.2) 5 (9.1)  23 (13) 9 (10.3) 14 (16.3)  



SOFA  8 (6, 9) 7 (6,8) 8 (7,10) 9 (7,11) 22 7 (5, 9) 6 (4,8) 8 (5,10) 16 

APACHE II 25 (21, 31) 24 (21, 30) 26 (21, 31) 27 (22, 30) 1 24 (19, 30) 24 (18, 29) 23.5 (20, 30) 0 

Post-surgical 
admission 

180 (37) 49 (25.7) 114 (46.2) 17 (30.9) 0 26 (15) 17 (18.9) 9 (10.5) 0 

Outcomes     p-value for 
difference 

   p-value for 
difference 

Mean daily SOFA, 
mean (SD) 

 4.93 (2.88) 6.67 (3.94) 9.97 (4.60) <0.001†     

3-month survival, n/N 
(%) 

 132/189 
(69.8%) 

155/246 
(63.0%) 

23/55  
(41.8%) 

0.001*     

28-day survival, n/N 
(%) 

 143/190 
(75.3%) 

165/247 
(66.8%) 

26/55  
(47.3%) 

<0.001*  72/90  
(80.0%) 

57/86  
(66.3%) 

0.04* 

28-day renal failure-
free survival, n/N (%)1 

      51/75  
(68.0%) 

32/60  
(53.3%) 

0.08* 

Renal failure-free 
days, median (IQR)2 

      19 (3,26) 8 (0, 23) 0.03‡ 

 

NYHA= New York Heart Association, COPD=Chronic Obstructive Pulmonary Disease, SOFA=Sequential Organ Failure Assessment, APACHE=Acute Physiology 

and Chronic Health Evaluation; * χ2 test; † Kruskal-Wallis test; ‡ Mann-Whitney test; 1 in patients not in renal failure at baseline; 2 in patients who die or 

experience some renal failure by day-28. 

 

  



Table 2 Biomarker data by class, with study participants assigned by highest posterior class probability in LCA. Biomarker values are median (interquartile 

range) for values within the limit of detection.  The number of values outside the limit of detection as a percentage of non-missing values is given. 

 

 LeoPARDS (N=493) VANISH (N=176) 

 Class-1 
N=191 

Class-2 
N=247 

Class-3 
N=55 

n (%) 
outside limits 

Class-1 
N=90 

Class-2 
N=86 

n (%) 
outside limits 

Organ dysfunction        

PaO2/FiO2 ratio (kPa) 29.1 (22, 39.7) 29.3 (20.2, 39.4) 25.8 (16.6, 36) 0/491 32.5 (21, 43.5) 21.1 (14.6, 34.9) 0/169 

Creatinine (μmol/l) 107 (69, 166) 151 (107, 231) 173 (137, 295) 0/491 91.5 (67, 163) 140 (106, 270) 0/176 

Platelets (x109/l) 243 (182, 350) 203 (131, 294) 136 (76, 215) 0/490 206 (145, 335) 150 (83, 246) 0/171 

Bilirubin (μmol/l) 12 (7, 19) 17 (10, 30) 17 (9, 31) 0/483 12 (7, 23) 16.5 (11, 42) 0/156 

Inflammation markers        

IL-1β (pg/ml) 0.915 (0.651, 1.41) 1.53 (0.948, 2.88) 7.96 (2.93, 11.3) 43/486 (8.8) 4.9 (4.34, 6.25) 11.2 (7.71, 19.4) 109/162 (67.3) 

IL-6 (pg/ml) 232 (92, 481) 1588 (583, 3874) 19582 (11926, 27584) 34/490 (6.9) 426 (175, 1376) 6385 (2277, 19641) 15/162 (9.3) 

IL-8 (pg/ml) 48.2 (30.4, 84.8) 257 (159, 516) 3015 (1252, 7336) 4/490 (0.8) 64.8 (28.3, 173) 1075 (225, 3293) 16/162 (9.9) 

IL-10 (pg/ml) 26.3 (17.4, 49.8) 123 (66.1, 205) 554 (314, 1429) 1/490 (0.2) 15.1 (8.27, 32.9) 159 (66, 446) 16/162 (9.9) 

IL-17 (pg/ml) 6.61 (4.71, 10.1) 9.79 (6.52, 19.5) 21.5 (8.1, 49.9) 9/486 (1.9) 15.6 (7.36, 22.6) 18 (10.6, 38.8) 108/162 (66.7) 

IL-18 (pg/ml) 559 (373, 996) 804 (565, 1278) 1065 (724, 1759) 16/486 (3.3) 434 (163, 595) 562 (331, 836) 3/162 (1.9) 

Leukocytes        

Myeloperoxidase 
(pg/ml) 

332192  
(204356, 581390) 

489569  
(291316, 987773) 

541091  
(340269, 1405943) 

47/486 (9.7) 264802  
(122264, 433825) 

675769  
(448047, 1195365) 

3/168 (1.8) 

sICAM (pg/ml) 271181  
(168034, 414706) 

311864  
(187557, 515209) 

432439  
(298658, 886124) 

23/486 (4.7) 243841  
(165654, 326461) 

341912  
(208505, 550529) 

6/168 (3.6) 

Endothelial injury        

Angiotensin-2 (pg/ml) 3197  
(1906, 5419) 

7487  
(4491, 14867) 

13040  
(7373, 23168) 

15/486 (3.1) 3162  
(1503, 5551) 

6592 
 (3681, 11564) 

3/168 (1.8) 

Cardiovascular        

Troponin (ng/L) 62 (16.8, 536) 77.8 (23.7, 381) 139 (45.2, 589) 0/483 21 (6, 94) 149 (31, 729) 0/95 



B-natriuretic peptide 
(pg/ml) 

9054  
(3318, 17410) 

10269  
(4922, 23317) 

18406 
(9844, 31718) 

36/492 (7.3) 3611  
(1238, 7416) 

8130  
(3590, 16890) 

3/168 (1.8) 

Other markers        

sTNFr-1 (pg/ml) 5939  
(3923, 9802) 

13457  
(8749, 20337) 

18099  
(12379, 27759) 

0/492 3856  
(2064, 5555) 

8315  
(5743, 12645) 

2/168 (1.2) 

Lactate (mmol/l) 1.5 (1, 2.1) 2.6 (1.8, 4) 5.2 (3, 7) 0/490 1.8 (1.2, 2.5) 3.5 (2.3, 5.3) 0/172 

MCP-1 (CCL2) (pg/ml) 384 (272, 592) 995 (676, 1590) 4049 (3105, 5621) 6/490 (1.2) - - - 

 

 

  



Table 3. Comparison of inflammatory mediator concentrations between clusters identified in the GAinS, VANISH and LeoPARDS datasets. Only 16 mediators 

measured in both GAinS and VANISH are shown in this table. The full table including 54 additional mediators are available as supplementary Table S6. Data 

are given as median and interquartile range in units of pg/mL and comparison has been made with the Mann-Whitney U test for two-group comparisons 

and the Kruskal-Wallis tests for three-group comparisons. FDR values in bold are those <0.05.  

 GAinS VANISH LeoPARDS 

Analyte 

LC cluster HC cluster 

FDR 

LC cluster HC cluster 

FDR 

LC cluster IC cluster HC cluster 

FDR 
(Low cytokine) (High cytokine) (Low cytokine) (High cytokine) (Low cytokine) 

(Intermediate 
cytokines) 

(High cytokine) 

n 70 54 - 71 84 - 191 208 85 - 

MCP-1 
(CCL2) 

231.6 444.1 
<1x10-5 

890.1 4410.2 
<1x10-10 

390.3 867.2 3236.6 
<1x10-50 

(124.2-402.6) (285.7-874.3) (533.9-1477.5) (2061.5-9789.2) (279.5-623.9) (640.1-1333.3) (1944-5282.3) 

IL-6 
980.3 1768.5 

<1x10-5 
337.4 11535.1 

<1X10-10 
266.5 1089.3 24761.5 

<1x10-50 
(726.9-1516.6) (1384.7-3005.1) (163.2-941.8) (3394.2-34623.2) (100.4-575.6) (434.3-3169.8) (9608.8-40000) 

IL-8 
314.1 624.4 

<1x10-10 
32.1 839.8 

<1X10-10 
48.4 226 1931.8 

<1x10-50 
(187.7-411.5) (515-1052.1) (7.7-95.0) (186.3-3192.8) (30.4-91.6) (138.7-375.2) (787-5332.2) 

IL-10 
156.9 359.7 

<1x10-10 
10.2 151.4 

<1x10-10 
25.4 112.5 432.2 

<1x10-50 
(91.7-242.2) (239.3-701.9) (4.2-27.1) (44.7-397.5) (16.7-43) (70-196.9) (203.7-1049.9) 

IL-18 
607.5 1173.5 

<1x10-10 
354.3 536.9 

<0.001 
577.6 912.5 896 

<1x10-5 
(483.8-877.5) (999.9-1551.3) (148.1-595.2) (335.7-823.4) (381.3-905.3) (567.9-1363.3) (556.9-1642.5) 

CCL3 
72.1 138.3 

<1x10-10 
11.9 79.4 

<1x10-10 - - - - 
(60-97.4) (108.6-176.9) (3.8-22.5) (32.0-144.0) 

IP-10 
332.6 784 

<1x10-05 
443.3 1248.6 

<1x10-5 - - - - 
(234.8-544.4) (409.5-787.5) (214.1-783.4) (584.8-5498.9) 

IFN-γ 
487.7 977.5 

<1x10-10 
3.6 11.4 

<0.001 - - - - 
(385.9-609.2) (741.7-1520.9) (2.3-13.2) (3.6-175.0) 

IL-1β 
28 151.7 

<1x10-10 
3.2 3.8 

0.001 
0.8 1.4 4.6 

<1x10-20 
(12.7-65.3) (71.8-282.6) (2.8-3.8) (3.0-10.7) (0.5-1.3) (0.7-2.6) (1.9-10.3) 

IL-2 
24 42.6 

<1x10-05 
4.5 8.2 

0.02 - - - - 
(22-31.8) (32-59.5) (3.3-9.5) (4.5-14.5) 

IL-17 
488 846.4 

<1x10-05 
4.6 6 

0.03 
6.6 9.6 18 

<1x10-10 
(330.2-646.7) (699.9-1147.5) (2.7-7.7) (4.4-17.7) (4.6-9.7) (6.1-19) (7.7-48) 



TNF-α 
56.2 138.2 

<1x10-10 
3.1 3.9 

0.03 - - - - 
(34.5-82.4) (104.3-187) (2.4-5.3) (3.0-6.7) 

IFN-α 
75 172.9 

<1x10-10 
3.6 3.9 

0.07 - - - - 
(75-104.6) (130.6-229.6) (2.8-4.6) (2.9-6.9) 

IL-12p70 
49.1 151.7 

<1x10-10 
2.9 3.7 

0.1 - - - - 
(24.7-75.1) (111.6-225) (2.4-4.4) (2.9-5.2) 

IL-4 

1856.2 3319.6 

<1x10-05 

2.6 4.9 

0.18 - - - - (1402.9-
2561.8) 

(2659.1-4507.2) (2.5-5.4) (2.6-5.7) 

IL-1α 46.3 153.8 
<1x10-10 

4.8 5.3 
0.52 - - - -  (27-63.3) (106.5-188.7) (2.8-15.9) (3.9-15.6) 

 



Table 4. Comparison of baseline variables and clinical outcomes between clusters from the hierarchical cluster analysis in GAinS, VANISH and LeoPARDS. 

Only a subset of representative variables are shown in this table while the full list of variables compared is available as supplementary Table S8. Continuous 

variables have been compared with the Mann-Whitney U test or Kruskal-Wallis test and categorical variables with the chi-squared test or Fisher’s exact test 

(if number of events <10). P-values in bold are those <0.05. No adjustment has been made for multiple comparisons. (APACHE=Acute Physiology and 

Chronic Health Evaluation, GCS=Glasgow Coma Scale, IQR=interquartile range, ICU=Intensive Care Unit).  

  



 

 

GAinS VANISH LeoPARDS 

LC cluster HC cluster p-
value 

LC cluster HC cluster p-value LC cluster IC cluster HC cluster p-value 

(Low cytokine) (High cytokine) (Low cytokine) (High 
cytokine) 

(Low cytokine) (Intermediate 
cytokine) 

(High cytokine) 

n 70 54 - 71 84 - 191 208 85 - 

Age median (IQR), y 68 (52-77) 69 (62-76) 0.5 65 (54-77) 64 (52-77) 0.46 68 (58-77) 69 (60.3-76) 66 (52-74) 0.13 

Men, No./total (%) 42/70 (60) 38/54 (70) 0.23 49/71 (69) 52/84 (62) 0.36 106/191 (55) 116/208 (56) 46/85 (54) 0.97 

APACHE II score, 
median (IQR) 

15 (11-20) 16 (12-21) 0.23 23 (18-28) 24 (20-31) 0.07 24 (21-30) 26 (22-31) 26 (21.5-32.5) 0.02 

Physiological variables,  
median (IQR) 

          

Mean arterial pressure, 
mmHg 

64 (55-71) 60 (56-70) 0.67 69 (61-78) 69 (62-75) 0.41 75 (70-81) 73.5 (67-79) 71 (65-75.5) 0.002 

Lowest heart rate, 
beats/min 

76 (65-86) 82 (74-88) 0.008 85 (75-101) 100 (90-118) <0.001 86 (73-100) 98 (84-113) 110 (92-121) <1x10-13 

           
Lactate, mmol/L 2.2 (1.6-3.4) 2.3 (1.4-3.5) 0.98 1.8 (1.2-2.8) 3.0 (2.0-5.0) <0.001 1.5 (1-2.2) 2.7 (1.8-3.9) 3.9 (2.5-6.2) <1x10-28 
PaO2/FiO2, mmHg 154 (100-226) 120 (80-186) 0.048 271 (160-332) 160 (109-260) <0.001 212.1 (158.9-297.4) 226 (160-301.9) 193.6 (123.2-263.5) 0.01 
Creatinine, mg/dL 1.1 (0.7-1.6) 1.1 (0.8-2.0) 0.39 1.1 (0.8-1.8) 1.5 (1.0-2.8) 0.004 1.2 (0.8-1.9) 1.8 (1.2-2.6) 1.8 (1.4-2.9) <1x10-10 
Bilirubin, mg/dL 0.6 (0.4-1.0) 0.6 (0.5-1.4) 0.23 0.6 (0.4-1.2) 1.0 (0.6-2.3) 0.005 0.7 (0.4-1.1) 1 (0.5-1.9) 1 (0.5-1.8) <1x10-6 
Platelets, ×103/μL 194 (153-273) 190 (154-257) 0.8 206 (151-342) 170 (96-264) 0.03 243.5 (181.3-350.5) 208 (131-299) 163.5 (87.3-241.3) <1x10-7                       
Renal replacement therapy, 
No./total (%) 

5/70 (7) 6/54 (11) 0.53 2/71 (3) 3/84 (4) 1 15/191 (8) 47/208 (23) 24/85 (28) <0.001 

SRS1 No./total (%) 35/66 (53) 29/49 (59) 0.51 18/68 (26) 51/81 (63) <0.001 - - - - 

SRS2 No./total (%) 31/66 (47) 20/49 (41) 50/68 (74) 30/81 (37) - - - - 

Outcomes 

28-d Mortality, No./total (%) 13/69 (19) 14/54 (26) 0.35 14/71 (20) 30/84 (36) 0.03 46/190 (24) 71/208 (34) 38/85 (45) 0.002 

ICU mortality, No./total (%) 10/69 (14) 14/54 (26) 0.11 12/71 (17) 24/84 (29) 0.09 48/191 (25) 61/208 (29) 38/85 (45) 0.004 

Hospital mortality, No./total 
(%) 

19/69 (27) 17/54 (26) 0.63 14/71 (20) 28/84 (33) 0.06 54/190 (28) 75/208 (36) 39/85 (46) 0.02 



Figure 1 Estimated latent class analysis (LCA) class means of each indicator by class, A) LeoPARDS 

trial B) VANISH trial. Indicators have been standardized to ensure zero population mean and 

facilitate comparison.  Indicators are ordered by the difference between classes for almost all 

indicators. In the LeoPARDS trial indicators are ordered by the difference between class 1 and class 

3, the estimated means for class 2 were in between those for classes 1 and 3. 
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Figure 2 A) Forest plot showing treatment differences by latent class and trial for binary outcomes. 

LeoPARDS trial: 3-month survival, 28-day survival. VANISH trial: 28-day survival, 28-day survival free 

of renal failure. (V-N, vasopressin – norepinephrine; HC-P = hydrocortisone-placebo; RF, renal 

failure); B) Forest plot showing treatment differences by latent class and trial for continuous 

outcomes. LeoPARDS trial: mean daily SOFA score. VANISH: renal failure free days. (V-N, vasopressin 

– norepinephrine; HC-P = hydrocortisone-placebo)  
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Figure 3. Unsupervised patient structure in GAinS (n=124, left), VANISH (n=155, middle) and LeoPARDS (n=484, right). A) Heatmaps colored by inflammatory 

mediator concentration, patients shown as columns and mediators as rows, solid bars represent Sepsis Response Signature (SRS) assignments in GAinS and 

VANISH (light purple=SRS1, dark purple=SRS2, blank=no assignment available). A full-size version of the heatmap in GAinS where all mediators are labelled 

is available as Figure S5. B) Principal component analysis scores plot where data points are shaded based on median inflammatory mediator concentration 

by sample (circles= low cytokine cluster (LC), squares,= intermediate cytokine cluster, triangles= high cytokine cluster (HC)). Percentage of variance 

explained by the principal components (PC) 1/2 are stated in parentheses. C) Loadings of inflammatory mediators on PC1/2. (A, C) For better display in 

GAinS, we only annotated mediators that are anti-inflammatory, or have been more strongly related with type 1/2/17 T helper cells or have the largest 

loadings. 



 



Figure 4. Gene expression comparisons between inflammatory clusters, and correlation between 

inflammatory cluster comparisons and SRS transcriptomic sub-phenotype comparisons. A) Volcano 

plot for LC versus HC clusters in VANISH and B) the enriched Gene Ontology Biological Processes of 

the differentially expressed genes. C) Log2 fold change correlations between the inflammatory 

cluster comparisons in VANISH and the inflammatory cluster comparisons in GAinS. D, E) Log2 fold 

change correlations of the inflammatory cluster comparisons and the SRS comparisons in GAinS (D) 

and in VANISH (E). P-values are shown for tests of correlations using Pearson's product moment 

correlation. In the volcano plot (A), red points indicate probes (n=665) for 554 differentially 

expressed genes (FDR<0.05 and FC>1.5, dashed lines indicate these thresholds). Genes on the right-

hand side have higher expression in LC.  

  



 

 

 


