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ABSTRACT 

 

Objective: Intracranially-recorded interictal high-frequency oscillations (HFOs) have been proposed as a 

promising spatial biomarker of the epileptogenic zone. However, HFOs can also be recorded in the healthy brain 

regions, which complicates the interpretation of HFOs. The present study aimed to characterize salient features of 

physiological HFOs using deep learning (DL). 

Methods: We studied children with neocortical epilepsy who underwent intracranial strip/grid evaluation. Time-

series EEG data were transformed into DL training inputs. The eloquent cortex (EC) was defined by functional 

cortical mapping and used as a DL label. Morphological characteristics of HFOs obtained from EC (ecHFOs) 

were distilled and interpreted through a novel weakly supervised DL model. 

Results: A total of 63,379 interictal intracranially-recorded HFOs from 18 children were analyzed. The ecHFOs 

had lower amplitude throughout the 80-500 Hz frequency band around the HFO onset and also had a lower signal 

amplitude in the low frequency band throughout a one-second time window than non-ecHFOs, resembling a bell-

shaped template in the time-frequency map. A minority of ecHFOs were HFOs with spikes (22.9%). Such 

morphological characteristics were confirmed to influence DL model prediction via perturbation analyses. Using 

the resection ratio (removed HFOs/detected HFOs) of non-ecHFOs, the prediction of postoperative seizure 

outcomes improved compared to using uncorrected HFOs (area under the ROC curve of 0.82, increased from 

0.76). 

Interpretation: We characterized salient features of physiological HFOs using a DL algorithm. Our results 

suggested that this DL-based HFO classification, once trained, might help separate physiological from 

pathological HFOs, and efficiently guide surgical resection using HFOs. 
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INTRODUCTION 

Intracranially-recorded interictal high-frequency oscillations (HFOs) have been proposed as a promising 

spatial biomarker of the epileptogenic zone (EZ).1, 2 Animal and human studies have demonstrated the association 

between HFOs and brain tissue capable of generating seizures.3-6 Several retrospective studies have linked 

favorable post-surgical seizure outcomes to the resection of cortical sites showing interictal HFOs.7-11 

However, despite the potential, HFOs can also be recorded in the healthy brain regions, which 

complicates the interpretation of HFOs when one attempts to guide resection using HFOs. Several recent studies, 

including a large multicenter prospective study, failed to correlate the removal of HFO-generating brain regions 

with postoperative seizure freedom; some patients became seizure-free despite part of the brain regions generating 

HFOs being preserved.12, 13 An ongoing clinical trial utilizing HFOs in electrocorticography to guide resection has 

excluded enrollment of occipital lobe epilepsy, due to abundant physiological HFOs in the visual areas.14 The 

current impasse is that there are no methods to separate pathological from physiological HFOs.  

Within the field of artificial intelligence, machine learning can bridge statistics and computer science to 

develop algorithms to complete tasks by exposure to meaningful clinical data without explicit instruction. Indeed, 

machine learning has been successfully applied to the problem of classifying HFOs based on a priori manual 

engineering of event-wise features, which includes: linear discriminant analysis,15 support vector machines,16, 17 

decision trees,18 and clustering.19 More recently, the deep learning (DL) framework has been adopted, which 

directly works with raw data (avoiding any a priori feature engineering) and yields better performance in the field 

of neuroimaging.
20  Leveraging DL's revolutionary success in the field of computer vision using Convolutional 

Neural Networks (CNNs), prior studies explored the use of CNNs in EEG analysis, especially converting one-

dimensional EEG signal into a two-dimensional image for CNNs input.21-23 The previous DL approaches 

conducted the HFO classification in a supervised manner, requiring human annotated labels which constrains the 

spectrum of usage of their methods, especially the needs of human expert labeling. In the context of medical 

image analysis, recent work has shown that optimized model architectures and loss functions could mitigate data 

labeling errors, thus making the DL framework even more applicable.24 Our recent work demonstrated that using 

the channel resection status as DL labels, a novel weakly-supervised DL algorithm characterized HFOs generated 

by the epileptogenic zone.25  

The present study aimed to characterize physiological HFOs, using functional cortical mapping results as 

DL training labels. We leveraged results from functional cortical mapping by stimulation and gamma-related 

language mapping in children with neocortical medication-resistant epilepsy who underwent intracranial EEG 

monitoring with a grid/strip approach. We characterized salient features of physiological HFOs represented by the 

eloquent cortices (ecHFOs) through the DL algorithm and also investigated if removal of cortical regions with 

HFOs excluding ecHFOs (non-ecHFOs, deemed pathological HFOs) correlated with postoperative seizure-

freedom. 
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METHODS:  

Patient cohort: This was a retrospective cohort study. Children (below age 21) with medically refractory epilepsy 

(typically with monthly or greater seizure frequency and failure of more than three first-line anti-seizure 

medications) who had intracranial electrodes implanted for the planning of epilepsy surgery with anticipated 

cortical resection with the Pediatric Epilepsy Program at UCLA were consecutively recruited between August 

2016 and August 2018. Diagnostic stereo-EEG evaluation (not intended for resective surgery) was excluded.  

Standard protocol approvals, registrations, and patient consents: The institutional review board at UCLA 

approved the use of human subjects and waived the need for written informed consent. All testing was deemed 

clinically relevant for patient care, and also all the retrospective EEG data used for this study were de-identified 

before data extraction and analysis. This study was not a clinical trial, and it was not registered in any public 

registry. 

Patient evaluation: All children with medically refractory epilepsy referred during the study period underwent a 

standardized presurgical evaluation, which—at a minimum—consisted of inpatient video-EEG monitoring, high 

resolution (3.0 T) brain magnetic resonance imaging (MRI), and 18 fluoro-deoxyglucose positron emission 

tomography (FDG-PET), with MRI-PET co-registration.26 The margins and extent of resections were determined 

mainly based on seizure onset zone (SOZ), clinically defined as regions initially exhibiting sustained rhythmic 

waveforms at the onset of habitual seizures. In some cases, the seizure onset zones were incompletely resected to 

prevent an unacceptable neurological deficit. 

Subdural electrode placement: Macroelectrodes, including platinum grid electrodes (10 mm intercontact 

distance) and depth electrodes (platinum, 5 mm intercontact distance), were surgically implanted. The total 

number of electrode contacts in each subject ranged from 40 to 128 (median 96 contacts). The placement of 

intracranial electrodes was mainly guided by the results of scalp video-EEG recording and neuroimaging studies.  

All electrode plates were stitched to adjacent plates, the edge of the dura mater, or both, to minimize the 

movement of subdural electrodes after placement. 

Acquisition of three-dimensional (3D) brain surface images: We obtained preoperative high-resolution 3D 

magnetization-prepared rapid acquisition with gradient echo (MPRAGE) T1-weighted image of the entire head. A 

FreeSurfer-based 3D surface image was created with the location of electrodes directly defined on the brain 

surface, using post-implant computed tomography (CT) images.27 In addition, intraoperative pictures were taken 

with a digital camera before dural closure to enhance the spatial accuracy of electrode localization on the 3D brain 

surface. Upon re-exposure for resective surgery, we visually confirmed that the electrodes had not migrated 

compared to the digital photo obtained during the electrode implantation surgery. 
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Intracranial EEG (iEEG) recording: Intracranial EEG (iEEG) recording was obtained using Nihon Kohden 

Systems (Neurofax 1100A, Irvine, California, USA). The study recording was acquired with a digital sampling 

frequency of 2,000 Hz, which defaults to a proprietary Nihon Kohden setting of a low frequency filter of 0.016 

Hz and a high frequency filter of 600 Hz at the time of acquisition. For each subject, separate 10-minute and 90-

minute EEG segments were selected at least two hours before or after seizures, before anti-seizure medication 

tapering, and before cortical stimulation mapping, which typically occurred two days after the implant. All the 

study iEEG data were part of the clinical EEG recording. 

Functional cortical mapping: Cortical stimulation was performed as part of clinical management to define 

regions of the eloquent cortices (EC) to help guide resections. A pulse train of repetitive electrical stimuli was 

delivered to neighboring electrode pairs, with a stimulus frequency of 50 Hz, pulse duration of 300 µs, and train 

duration ranging up to 5 seconds (sensorimotor or visual mapping) or 7 seconds (language mapping). Stimulus 

intensity ranged from 1 mA to 13 mA. Seven out of 19 patients also underwent auditory and picture-naming tasks 

to supplement cortical stimulation mapping. In short, patients were instructed to overtly verbalize an answer to a 

given auditory question or name a picture. Each EEG trial data was transformed into the time-frequency domain 

using complex demodulation via BESA software (BESA GmbH, Germany). The iEEG signal at each channel was 

assigned an amplitude (a measure proportional to the square root of power) as a function of time and frequency 

(in steps of 10 ms and 5 Hz). The time-frequency transform was obtained by multiplication of the time-domain 

signal with a complex exponential, followed by a band-pass filter. iEEG traces were aligned to: (i) stimulus 

(question) onset; (ii) stimulus offset; and (iii) response (answer) onset. We determined whether the degree of such 

gamma-augmentation reached significance using studentized bootstrap statistics followed by Simes' correction.28, 

29 Sites surviving correction showing significant gamma-augmentation spanning (i) at least 20-Hz in width and 

(ii) at least 20-ms in duration were defined as 'language-related gamma sites'.30 Further methodological details of 

the gamma mapping are described in the prior studies.31 

Automated detection and classification of HFOs: A customized average reference was used for the HFO 

analysis, with the removal of electrodes containing significant artifacts.26, 32 Candidate interictal high frequency 

oscillations (HFOs) were identified by an automated short-term energy detector (STE).33, 34 This detector 

considers HFOs as oscillatory events with at least six peaks and a center frequency occurring between 80-500 Hz. 

The root mean square (RMS) threshold was set at five standard deviations (SD), and the peak threshold was set at 

three SD. The HFO events are segments of EEG signals with durations ranging from 60 to 200 ms.34 The 

candidate HFOs were evaluated by our previously validated algorithm (recall = 98.0%, precision = 96.1%, F1 
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score = 96.8% against human experts validation) to reject artifacts for further analyses.25 For simplicity, we use 

HFO in the later paragraphs to represent the HFO after the artifact rejection. 

Weakly supervised deep learning using functional cortical mapping results as labels: The general workflow 

of the DL training and inference was shown in the flowchart (Figure 1A). The channel-wise annotations include 

behavior (positive behavioral changes with cortical stimulation mapping or language-related gamma sites), 

SZ/AD (channels with seizures or afterdischarges with cortical stimulation mapping), spike (cortical sites 

showing spontaneous interictal spikes), and none (no behavioral changes with mapping, SZ/AD, and spikes). We 

hypothesize that a morphologically distinct class of HFOs generated by EC, representative as physiological HFOs 

(defined as ecHFOs). We expect a large percentage of the HFOs in the behavioral channels are ecHFOs. However, 

such channels could also have HFOs that are morphologically distinct from ecHFOs, since each channel also 

picks up neuronal activities generated by other physiological or pathological processes. We refer to such 

complementary HFOs as non-ecHFOs. Since the physiological processes generating ecHFOs are also present in 

different regions of the brain, for example, the unstimulated brain region, we expect non-behavioral channels to 

also have ecHFOs. However, as there is no ground truth annotation for an ecHFO event, we relied on channel-

level annotations acquired from clinical experiments. Specifically, positive labels are assigned to HFOs from 

channels that only have behavior responses, excluding spike and SZ/AD channels, and negative labels are 

assigned to all other HFOs. When an HFO is from a channel with both behavior response and pathological 

(SZ/AD or Spike) response, we excluded them from the training set, as the distribution of ecHFOs and non-

ecHFOs might be comparable. Clearly, such labeling has errors. However, if ecHFOs have distinct morphological 

signatures, then we could utilize the generalization power of the neural network to distill the ecHFO from this 

weak supervision. 

Model architecture and Feature representation of HFOs: We adopt the same CNN architecture as the prior 

study because it has demonstrated excellent performance in classifying HFOs.25 A one-second window 

represented each HFO, centered on the HFO (0 ms). Then three images are constructed to capture the time-

frequency domain features as well as signal morphology information of the HFO window. Then these three 

images were resized into the standard size (224 x 224), serving as the input to the neural network (Figure 1B). 

Model training: We used 90 minutes of data from each patient for training. Since our task is binary classification, 

we use binary cross-entropy as the loss function, L=−[y⋅log(x)+(1−y)⋅log(1−x)], where y is the label (1 for ecHFO, 

0 for non-ecHFO [ecHFOs were subtracted from total HFOs]), and x is the model output ecHFO probability. In 

training, we adopt stratified sampling to balance the data distribution in different labels. The Adam optimizer was 

adopted with a learning rate of 0.0001. The training was conducted using 25 epochs (training iterations), and 

validation loss was plotted with respect to the number of epochs completed. For selecting the best model across 
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epochs, we picked the model corresponding to the balanced global minima over 25 iterations, i.e., the highest 

balanced accuracy (the averaged recall for each class). In order to fully explore the performance of the model, 

five-fold cross-validation was conducted using the pooled data across the full patient cohort. For each fold, 20% 

of the dataset was selected as the test set, 70% was selected as the training set, and the remaining 10% was used 

for validation. 

Performance analysis framework: Since the model was evaluated by using five-fold cross-validation, there 

were five distinctive models trained by different folds of data. For the downstream analysis, if an HFO is from a 

channel with both behavior response and SZ/AD response, the classification of these HFOs is determined by the 

mean of the probabilities from five models. Otherwise, the classification of the HFO is determined by the model 

where this specific HFO is in the test set.  

Characterization of ecHFOs: We adopted the same procedure as the prior study to determine whether the time-

frequency scalogram of ecHFOs differed from that of non-ecHFOs, that is, conducting a t-test across all pixels in 

the time-frequency scalogram (Figure 2A). The null hypothesis is that the values within the scalogram of ecHFO 

are not lower than those of non-ecHFO. We summarized the results via a histogram of the change in probabilities 

for each patient across all predicted non-ecHFOs. Additionally, a one-tailed t-test comparing values of ecHFOs 

and non-ecHFOs was performed on the change of output probability score to ensure that the change was 

significant and generalized well at the population level (Figure 2B). 

Interpretability analysis of ecHFOs: Perturbation on time-frequency plot: We adopted a similar perturbation 

analysis as prior work based on the characterization of ecHFO in the time-frequency plot (Figure 2C). We 

summarized the results via the histogram of the percentage of change in probabilities for each patient across all 

the predicted ecHFOs (Figure 2D). A one-tailed t-test was also performed on the change of that output 

probability score to ensure that the change was significant and generalized well at the population level. 

Perturbation on amplitude coding plot: We adopted a data-driven approach to discover the effect of introducing a 

spike in the amplitude coding plot (Figure 3). As in our prior work, we built a detector to capture HFO with a 

spike (spk-HFO) trained on expert annotations (86.5% accuracy with an F1 score of 80.8%).25 The spk-HFO 

detector was applied to our data and predicted whether each HFO event was an spk-HFO or not. For all detected 

spk-HFOs in each patient, we separated these HFOs into upward spikes and downward spikes. The upward 

(downward) spikes are defined as spk-HFO events, with the average amplitude in the center 20-ms duration being 

greater (smaller) than the average amplitude in the peripheral 250 ms. We then created upgoing and downgoing 

spike templates by taking the average of all tracings. The corresponding amplitude coding plots of the upgoing 

and downgoing spike templates are built for perturbing the amplitude coding plots for each patient (Figure 3A, 

C). This perturbation is performed by adding two times the template to the amplitude coding plot of each 
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predicted ecHFO and measuring the change in model confidence. We summarized the results via the histogram of 

the percent change in probability for each patient across all the predicted ecHFOs (Figure 3B, D). A one-tailed t-

test was performed on the change of output probability to evaluate whether the change was significant and 

generalized well at the population level.  

Time Domain Characteristic ecHFO: We reported three time-domain characteristics of the predicted ecHFOs 

and non-ecHFOs, which are amplitude, duration, and max frequency. The duration is defined as the time duration 

of the HFO predicted by the RMS HFO detector (Figure 4). The amplitude is defined as the maximum absolute 

value within the HFO interval, and the max frequency is defined as the largest frequency component within a 

window  (0.2 seconds before and after) around the center of the HFO. We plotted the normalized histogram to 

compare the distribution of these three characteristics.      

Comparison of resection ratios of HFOs to postoperative seizure outcomes:  We estimated the probability of 

each patient's surgical success (for the 14 patients who underwent resective surgery with known seizure outcomes 

at 24 months) based on the resection ratio of HFOs (number of resected HFOs/number of detected HFOs) as a 

classifier. We constructed the receiver operating characteristic (ROC) curve and calculated the area under the 

curve (AUC) values in the resection ratio of unclassified HFOs and non-ecHFOs. Determination of the channel 

resection status (resected vs. preserved) was determined based on intraoperative pictures (pre-and post-resection) 

and also on post-resection brain MRI, based on discussion among a clinical neurophysiologist (HN), 

neurosurgeon (AF), and radiologist (SN). A multiple logistic regression model incorporating the resection ratio of 

non-ecHFOs and complete resection of SOZ was also created. The surgical outcomes were determined 24 months 

after resection as either seizure-free or not seizure-free. 

Statistical analysis: Above mentioned statistical calculations were carried out using Python (version 3.7.3; 

Python Software Foundation, USA). The deep neural network was developed using PyTorch (version 1.6.0; 

Facebook's AI Research lab). Quantitative measures are described by medians with interquartile or means with 

standard deviations. Comparisons between groups were performed using chi-square for comparing two 

distributions and Student's t-test for quantitative measures (in means with standard deviations). All comparisons 

were two-sided and significant results were considered at p < 0.05 unless stated otherwise. Specific statistical tests 

performed for each experiment were described in each section. 

Data sharing and availability of the methods: 

Anonymized EEG data used in this study are available upon reasonable request to the corresponding author. The 

python-based code used in this study is freely available at (https://github.com/roychowdhuryresearch/HFO-
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Classification). One can train and test the deep learning algorithm from their data and confirm our methods' 

validity and utility. 

 

RESULTS:  

Clinical information (patient characteristics): There were 19 patients (10 females) enrolled during the study 

period. The median age at surgery was 14 years (range: 3-20 years). The median electrocorticography monitoring 

duration was 4 days (range: 2-14 days), and the median number of seizures captured during the monitoring was 8 

(IQ range: 4-25). There were 15 patients who underwent resection, and 14 patients provided postoperative seizure 

outcomes at 24 months (9 of 14 became seizure-free). Due to unknown postoperative seizure outcomes, patient 

#10 was removed from the further HFO analyses. Details of patients' clinical information are listed in Table 1. 

Interictal HFO detection: A total of 63379 HFO events were detected (median 2258.5 events per patient) in 90-

minute EEG data from the 18 patients (patient #10 was removed for subsequent HFO analysis due to lack of 

seizure outcomes). There were 15111 HFOs recorded from the stimulated channels (48268 HFOs from non-

stimulated channels). There were 7173 HFOs obtained from behavior channels (positive behavioral responses 

from cortical stimulation mapping and/or gamma mapping), and "behavior only" channels (behavior channels 

without spontaneous spikes or SZ/AD) exhibited 3822 HFOs. There were 5317 HFOs obtained from "none" 

channels (no spontaneous spikes and no behavioral responses with mapping). After the DL training, we noted that 

22.9% (4547/19816) of the ecHFOs were HFOs with spikes, and 77.1% (30647/43563) of non-ecHFOs were 

HFOs with spikes (p < 0.0001, a chi-square test). 

Time-frequency plot characteristics of ecHFO and non-ecHFOs: The analysis of the time-frequency map 

demonstrated that ecHFOs had lower amplitude throughout the frequency band, including both ripples (80-250 

Hz) and fast ripples (250-500 Hz) around the center point (0 ms, where HFOs were detected) than non-ecHFOs 

(Figure 2A). We inspected the t-test map and selected regions greater than 0.7 to define the salient characteristic 

difference between ecHFOs and non-ecHFOs. The selected region resembled a bell-shaped (Figure 2B). 

Perturbation analyses: By utilizing the bell-shaped template found in the time-frequency map, we observed that 

the bell-shaped perturbation on the time-frequency plot significantly increased the model prediction probability 

towards non-ecHFOs (mean probability increase was 0.532 [95% confidence interval: 0.528–0.532], p < 0.001) 

(Figure 2C, D). Furthermore, we analyzed the effect of introducing a spike-like shape in the amplitude-coding 

plot. By introducing a downgoing or an upgoing spike in an ecHFOs event, the model confidence increased 

towards a non-ecHFO event (Figure 3A, C). On the population level, the prevalent probability increase in ecHFO 

events among all patients (Figure 3B, D) demonstrated the non-trivial model response by introducing a spike in 

the time domain (mean probability increase of  0.268 for a downgoing spike introduction [95% confidence 
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interval: 0.2633–0.2723], and 0.320 for an upgoing spike introduction [95% confidence interval: 0.3157–0.3237], 

both with p< 0.001). 

Feature characterization of ecHFOs vs. non-ecHFOs: We plotted the histogram of the peak frequency, 

amplitude, and duration of both ecHFO and non-ecHFO, respectively (Figure 4). The ecHFOs exhibited a smaller 

amplitude (p-value < 0.001), a lower max frequency (p-value < 0.001) and a trend of shorter HFO length (p-value 

= 0.07) than non-ecHFO. However, there was no decision boundary to clearly discriminate between ecHFO and 

non-ecHFO using each of these traditional features. 

Inference of channel characteristics: After the model was trained, it assigned one prediction label for all of the 

HFOs in each channel, and we plotted the ecHFO ratio (proportion of ecHFOs divided by the number of all 

HFOs) and the model confidence distribution towards ecHFOs in different channels (Figure 5). In channels with 

a physiological response (only behavior responses with functional mapping), the ecHFO ratio was high, and 

confidence scores were skewed towards ecHFOs. Channels with a pathological response (spike and SZ/AD with 

stimulation) showed a lower ecHFO ratio, and confidence scores were skewed towards non-ecHFOs. Channels 

with no behavioral responses showed the confidence scores skewed towards non-ecHFOs. Notably, channels with 

both properties, in which both behavioral responses and spikes or/and SZ/AD, model confidence showed a 

uniform distribution, suggesting the presence of both ecHFOs and non-ecHFOs.   

Clinical inference using postoperative seizure outcomes: We created the ROC curves using the HFO resection 

ratio to predict postoperative seizure freedom at 24 months (n = 14) (Figure 6). Using the resection ratio of HFOs 

showed acceptable prediction performance (AUC= 0.76; p < 0.001). The use of the resection ratio of non-ecHFOs 

exhibited a higher AUC value of 0.82 (p < 0.001). The performance was further augmented by using a multiple 

regression model incorporating both the resection ratio of non-ecHFOs and complete removal of SOZ (AUC = 

0.93, p =0.047). 

 

DISCUSSION 

HFOs with similar frequency ranges emerge despite considerably different mechanisms.35, 36 A traditional 

hypothesis-driven approach to separate physiological HFOs from pathological HFOs poses challenges because 

numerous yet-to-be-identified features must be considered. Simple engineering features of HFOs, including 

amplitude, frequency, and duration, do not appear to successfully separate pathological from physiological 

HFOs.37, 38 Visual classification of HFOs with or without spikes along with artifact removal (such as ringing) is 

commonly performed because HFOs with spike-wave discharges are considered representative of pathological 

HFOs.39 However, this task is time-consuming and exhibits poor inter-rater reliability among human experts.40, 41 

Fast ripples (250–500 Hz) might more specifically localize epileptogenic zones than ripples do (80–250 Hz), but 
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their detection rate is much lower than ripples.13 Correcting the HFO detection rate with region-specific normative 

values seems a reasonable approach,32, 42-44 but this does not determine each HFO event as either pathological or 

physiological.  

In the present study, we leveraged the robust clinical definition of the EC with cortical stimulation and 

gamma-related language mapping to identify cortical areas generating physiological HFOs (represented by 

ecHFOs). Our approach using a DL-based algorithm is distinct from other approaches. Based on our hypothesis 

that physiological HFOs look morphologically different from pathological HFOs, leveraging DL's ability to 

analyze imaging input (transformed from EEG time-series data) seemed logical. By training a DL model with 

labels based on functional cortical mapping results. We then investigated the salient features of the physiological 

HFOs through the DL algorithm. The novel findings include that we found a bell-shaped template in the time-

frequency plot as the discriminating feature of ecHFOs. More specifically, ecHFOs would have lower signal 

amplitude at the center of the HFO onset across the frequencies (including both ripple and fast ripple band) and 

lower signal amplitude in the low frequency band throughout the time window than non-ecHFOs (representing 

pathological HFOs). The ecHFOs generally had a slower peak frequency, a smaller amplitude, and tended to have 

a longer duration than non-ecHFOs. However, these time-domain characteristics showed significant overlaps 

between ecHFOs and non-ecHFOs, and none of such simple engineering features could clearly separate them, 

consistent with the previous studies.37, 38 Once the DL model was trained, we verified specific morphological 

features of ecHFOs via perturbation analysis. Insertion of spike templates significantly decreased ecHFO 

probability, which confirmed the traditional knowledge that HFOs with spikes are most likely pathological HFOs.  

Our findings have significant clinical implications. Using the resection ratio (removed HFOs/detected 

HFOs) of non-ecHFOs (likely representing pathological HFOs), we demonstrated that the prediction of 

postoperative seizure outcomes significantly improved compared to using the uncorrected HFO resection ratio 

(AUC of 0.82, increased from 0.76). Combined with the current clinical standard of complete resection of SOZ, 

the AUC further improved to 0.93. The above findings suggest that the classification of HFOs (physiological vs. 

pathological) can potentially improve the clinical utility of HFOs in guiding resection, and this can still be 

combined with our current clinical standard of capturing habitual seizures to decide the resection margin. 

A recent study demonstrated that a cortical location could produce different types of HFOs, such as both 

physiological and pathological HFOs.19 We probed this point by investigating cortical sites with both EC 

characteristics (behavioral responses with stimulation mapping or/and gamma activity with language tasks) and 

pathological properties (spontaneous spikes or/and AD/SZ). The ecHFO ratio was between cortical sites with only 

behavioral responses and that with spikes or/and SZ/AD only. The confidence scores of HFO type prediction are 

diffusely distributed from ecHFOs to non-ecHFOs, without clear bimodal distribution. If such "both" channels 

produce morphologically distinct physiological and pathological HFOs, one would expect to see a clear bimodal 

distribution. Our findings suggest that in cortical sites with both pathological and physiological properties, the 
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morphologies of HFOs are heterogeneous. This may be a limitation of using macroelectrodes since multiple local 

generators might influence each HFO morphology. 

There are several limitations in our study. We have analyzed only 18 patients to define physiological 

HFOs. Also, postoperative outcomes were correlated in only 14 patients. Although we analyzed an extended EEG 

dataset (90 minutes from each subject) to maximize the number of HFOs for analysis, we will need to analyze 

more patients to have a definitive conclusion. Although we assumed that HFOs from the healthy brain regions 

look morphologically similar, such characteristics may be different as a function of age and location of the brain 

regions. In addition, we analyzed only sleep EEG to maximize the number of HFOs for analysis. States of 

consciousness (including awake and different sleep stages) and vigilance levels may affect HFO morphology.45 

With more number of subjects, we will be able to characterize the difference in ecHFOs generated in functionally 

distinct cortical areas, such as somatosensory, language, and visual cortex. Lastly, with an increasing number of 

diagnostic stereotactic EEG (SEEG) studies, it is of interest to investigate how HFO morphologies via SEEG 

would look different compared to strip/grid-sampled HFOs. 

In summary, we proposed to use a weakly-supervised DL algorithm to characterize physiological HFOs 

using robust clinical outcomes (functional cortical mapping results) as training labels. Although future work to 

include a larger number of subjects will be needed, this method provided salient morphological features of 

physiological HFOs. Our results also suggested that this DL-based HFO classification, once trained, might help 

separate pathological from physiological HFOs, and efficiently guide surgical resection using HFOs. 
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FIGURE LEGENDS 
 
Figure 1: Processing workflow (A): The detected HFO (by STE detector) is first filtered by the artifact detect
The constructed image features along with the channel-wise clinical information are fed into the convolutional
neural network to train the model. HFO feature representation and model architecture (B): We captured th
time-frequency domain features as well as signal morphology information of the HFO window via three image
The time-frequency plot (scalogram) was generated by continuous Gabor Wavelets ranging from 10Hz to 500H
The EEG tracing plot was generated on a 2000 x 2000 image by scaling the time-series signal into the 0 to 200
range to represent the EEG waveform's morphology. The amplitude-coding plot was generated to represent the
relative amplitude of the time-series signal: for every time point, the pixel intensity of a column of the image 
represented the signal's raw value at that time. These three images were resized into the standard size (224 x 22
serving as the input to the neural network. We used ResNet 18 with a modified output layer for binary 
classification. The weights in the convolution layers are frozen and serve as feature extractors in the convolutio
neural network. 
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Figure 2: Characteristics in the time-frequency plot of ecHFOs against non-ecHFOs. (A) The time-freque
plot characteristics of the eloquent cortex and non-eloquent cortex HFOs for Pt 4, 5, 7, and 8. The yellow-colo
regions in the figure stood for the pixels, where the power spectrum of ecHFOs is statistically lower than (P-va
below 0.05 from the one-tailed t-test) non-ecHFOs. The figure showed one set of clearly interpretable 
distinguishing features between ecHFOs and non-ecHFOs: the ecHFOs generally have lower power at lower 
frequencies during the HFO event (center part along the time axis), Panel (B-top) was generated by taking the 
average of the individual binary images from each of the 18 patients. It showed the distinguishing features are 
also significant at the population level. The feature can be assembled as a "Bell-Shape" if we take the region > 
in the plot averaging all of the time-frequency plot characteristics (red color). (B-bottom). (C) The model's 
response to the Bell-shaped perturbation on the time-frequency plot. We provide two examples of perturbation
ecHFO events in Pt 3. Each row presents one example and the first column indicates the original time-frequenc
plot while the second indicates the perturbed time-frequency plot based on the Bell Shape perturbation. The 
prediction value of the model changed from 0.753 (therefore originally predicting it as non-ecHFO) to 0.1 (thu
change of 0.653), implying that the perturbed HFO would correspond to a non-ecHFO. (D) The change in mod
confidence in population level. Each column (along the y-axis) is a histogram of the percentage of change in 
confidence for one distinct patient. It shows the frequency distribution of confidence changes after adding the b
shape perturbation to the time-frequency plot to all classified ecHFOs for the given patient. The change in 
confidence level is significant, with an average of 53% with a 95% confidence interval [52.8, 53.2] noted as th
solid red line in the histogram. HFO = high-frequency oscillation; ecHFOs = eloquent cortex HFOs; non-ecHF
= non-eloquent cortex HFOs. 
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Figure 3: The model’s responses to injecting a spike-like feature into the amplitude-coding plot. Example
of introducing a downgoing (A) and upgoing (C) spike feature into classified non-ecHFO events. These 
demonstrate that on the introduction of a spike-like perturbation, the model predicts higher confidence towards
non-ecHFOs (B, D). Subfigure A shows the amplitude encoding image before perturb, spike template, and the 
after-perturb (top row), and the corresponding time-series signal with downgoing spike perturbation (bottom ro
Similarly, subfigure C shows the same information on a different classified ecHFO but with upgoing spike 
perturbation. For each patient, we compute a histogram for the distribution of the change in confidence (B). Th
same steps are repeated for upgoing spike perturbation, and the results are shown in (D). The percentage of 
change in confidence for both up-and-downgoing spike perturbation is significantly greater than zeros, with 
means downgoing: 0.268 (95% confidence interval [0.2633,  0.2723]) and upgoing: 0.320 (95% confidence 
interval  [0.3157, 0.3237]), which are noted as solid red lines in each histogram. HFO = high-frequency 
oscillation; ecHFOs = eloquent cortex HFOs; non-ecHFO = non-eloquent cortex HFOs. 
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Figure 4: Traditional feature characterization of ecHFO and Non-ecHFO: The normalized histogram of p
frequency (A), amplitude (B), and duration (C) of predicted ecHFO. (A) The ecHFO generally has a lower pea
frequency than the non-ecHFO (p-value < 0.001).  (B) The ecHFO generally has a smaller amplitude than the 
non-ecHFO (p-value < 0.001). (C) The ecHFO generally has the trend of having a longer HFO than the non-
ecHFO (p-value = 0.07). However, there are no clear decision boundaries that can be drawn to clearly 
discriminate between ecHFO and non-ecHFO using each of these traditional features. 
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Figure 5. Inference of channel characteristics: (A) The ratio of ecHFOs (eHFOs/total HFOs) in different typ
(physiological: behavior or gamma only; pathological: SZ/AD or spike only; both: both physiological and 
pathological) of channels from all patients (n=14) is plotted in box plots. The percentage of ecHFOs was highe
physiological channels than that in pathological channels. (B) The model confidence distribution of each 
individual eHFOs in channels with Physiological, Pathological, and both categories are shown. The distributio
both channels is closer to a uniform distribution. 
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Figure 6. The accuracy of prediction models incorporating HFO resection ratio. We constructed 
postoperative seizure outcome prediction models using the HFO resection ratio derived from EEG data (n�=�
Each receiver-operating characteristics (ROC) curve delineates the accuracy of seizure outcome classification 
given model, using the area under the ROC curve statistics. (A) Unclassified HFO resection ratio was used as a
single classifier. (B) non-ecHFO resection ratio was used as a single classifier, which showed significant 
improvement in the prediction. (C) A multiple regression model incorporating the resection ratio of non-ecHFO
and complete removal of the SOZ (yes or no) was used, which demonstrated further improved predictive value
postoperative seizure outcomes. HFO = high-frequency oscillation; non-ecHFO = non-eloquent cortex HFOs; 
SOZ = Seizure onset zone. 
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Table 1. Cohort characteristics 
            

Pt 
No. 

Se
x 

Age 
range 
at 
surger
y (yr) 

Epilepsy 
duration 
(yr) 

Anti-
seizure 
medications 

No. of 
electrodes 
placed 

No. of 
electrodes 
resected 

% of 
electrodes 
resected 

Durati
on of 
EEG 
(days) 

No. of sz 
captured 

MRI 
lesion/FDG
-PET 
hypometab
olism 

Electrode 
coverage 

Surgery Pathology 

Functional  
Cortical 
Mapping 
type 

No. of 
HFOs 
detected 
(90 min) 

Outcome 
(follow-up 
at 24 
months) 

1 M 16-21 6 
CLB, LVT, 
LCM 

40 9 22.50% 3 21 NL/ R FP R FP 

R focal 
resection of 
sensorimotor 
cortex 

Gliosis 
Stimulation 
(sensorimot
or) 

953 Sz free  

2 M 11-15 9 
CLB, CNZ, 
LVT, RFD, 
PPN  

80 18 22.50% 3 26 
R PO/ R 
PO 

R FTPO 

R focal 
resection 
around 
parietal tumor 

Ganglioneu
rocytoma 

Stimulation 
(sensorimot
or and 
language) 

1493 Sz free  

3 F 16-21 9 LVT, LCM 92 27 29.35% 5 8 R F/  R F R FTP 
R focal 
resection of 
frontal cortex 

FCD 1b 
Stimulation 
(sensorimot
or) 

2696 Sz free 

4 F 11-15 10 
CLB, LTG, 
LCM 

64 28 43.75% 2 7 L F/ L F L FP 

L frontal 
lobectomy 
sparing 
sensorimotor 
cortex 

Gliosis 

Stimulation 
(sensorimot
or and 
language) 

5301 Sz free 

5 M 6-10 7 CLB, LTG 100 83 83.00% 6 4 
R TPO/ R 
TPO 

R FTPO R TPO Gliosis 
Stimulation 
(sensorimot
or) 

2428 Sz free  

6 F 0-5 2 CLB, OXC 96 42 43.75% 2 18 R F/ R FP R FTP 

R frontal 
lobectomy 
sparing 
sensorimotor 
cortex 

FCD 2a 
Stimulation 
(sensorimot
or) 

2089 
Sz 
recurrence 
after 1 day 

7 M 0-5 3 
PB, PPN, 
OXC 

104 82 78.85% 2 22 L FP/ L FP L FTP 

L frontal 
lobectomy 
including 
resection of 
sensorimotor 
cortex 

FCD 2a 
Stimulation 
(sensorimot
or) 

8653 Sz free  

8 F 16-21 7 LVT, LCM 104 0 0.00% 2 23 
R TPO/ R 
TPO 

R FTPO 

No resection 
(RNS 
placement of 
R 
frontoparietal 
area)  

NA 
Stimulation 
(sensorimot
or) 

5176 
Sz 
reduction 
by 50% 

9 M 11-15 6 
OXC, LTG, 
CLB 

72 5 6.94% 6 7 R P/ R P R FP 
R focal 
resection of 
parietal cortex 

FCD 2a 
Stimulation 
(sensorimot
or) 

1253 

Sz 
recurrence 
after 10 
days 
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10 F 6-10 7 CLB, OXC 108 43 39.81% 8 35 L F/ L FP L FTP 

L frontal 
lobectomy 
sparing 
sensorimotor 
cortex 

FCD 1c 

Stimulation 
(sensorimot
or and 
language) 

NA 

Sz free for 
20 months, 
then lost 
follow-up 

11 F 6-10 7 
LVT, 
LCM, CLB 

66 14 21.21% 6 1 L T/ L TP L FTP 
L temporal 
lobectomy 

Multinodul
ar and 
vacuolating 
neuronal 
tumor 
(MVNT) 

Stimulation 
(sensorimot
or and 
language), 
gamma 
mapping 

1639 Sz free 

12 F 16-21 17 CLB, LTG 84 12 14.29% 3 25 L P/ L P L FTP 
L focal 
resection of 
parietal cortex 

Gliosis 

Stimulation 
(sensorimot
or and 
language), 
gamma 
mapping 

1423 
Sz 
recurrence 
after 3 days 

13 F 11-15 3 
LCM, 
LVT, OXC 

86 9 10.47% 4 4 R F/ R F R FTP 

R focal 
resection 
around frontal 
tumor 

Oligodendr
oglioma 

Stimulation 
(sensorimot
or), gamma 
mapping 

1436 Sz free  

14 F 16-21 18 
LTG, 
LCM, 
OXC, PPN 

70 0 0.00% 4 37 R FP/ R FP R FTPO 

No resection 
(RNS 
placement of 
R 
frontoparietal 
area)  

NA 
Stimulation 
(sensorimot
or) 

1900 
Sz 
reduction 
by 75% 

15 F 11-15 15 TPM, LTG 102 60 58.82% 4 4 
L TPO/ L 
TPO 

L FTPO L TPO 
FCD 2a, 
Gliosis 

Stimulation 
(sensorimot
or and 
language), 
gamma 
mapping 

6366 Sz free 

16 M 6-10 6 CLB, OXC 104 41 39.42% 11 2 L PO/ L PO L FTPO 
L 
parietooccipita
l resection 

Ulegyria, 
FCD 3d, 
gliosis 

Stimulation 
(sensorimot
or), gamma 
mapping 

14494 

Sz 
recurrence 
after 23 
days 

17 M 16-21 15 
LCM, 
BVC, FBM 

118 29 24.58% 12 5 
L TO/ L 
TO 

L FTPO 
L temporal 
lobectomy 
plus RNS 

Gliosis 

Stimulation 
(sensorimot
or and 
language), 
gamma 
mapping 

2700 
Sz 
recurrence 
after 4 days 

18 M 11-15 5 
CNZ, CLP, 
ECZ, LCM, 
LVT 

112 0 0.00% 4 100 L P/ L TP L FTPO 

No resection 
(RNS 
placement of 
L 
sensorimotor 
cortex) 

NA 
Stimulation 
(sensorimot
or) 

777 
Sz 
reduction 
by 75% 
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19 M 11-15 6 ECZ, CLB 128 0 0.00% 14 8 L T/ L TP LFTPO 

No resection 
(RNS 
placement of 
L temporal, 
parietal, and 
occipital area) 

NA 

Stimulation 
(sensorimot
or and 
language), 
gamma 
mapping 

2602 
Sz 
reduction 
by 80% 

M: Male; F: Female; FRs: Fast ripples; NA: Not applicable; RNS: Responsive nerve stimulator; FCD: Focal cortical dysplasia; SOZ: Seizure onset zone; Sz: Seizure. 
  

L: Left; R: Right; F: Frontal; P: Parietal; T: Temporal; O: Occipital. 
         

CLB: Clobazam; LVT: Levetiracetam; LCM: Lacosamide; CNZ: Clonazepam; RFD: Rufinamide; PPN: Perampanel; LTG: Lamotrigine; OXC: Oxcarbazepine; PB: Phenobarbital:  

TPM: Topiramate; BVC: Brivaracetam; FBM: Felbamate; CLP: Clorazepate; ECZ: Eslicarbazepine. 
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