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Synopsis 

This study evaluates the suitability and performance of normalization methods for 

wastewater SARS-CoV-2 biomarker in order to account for dilution effects. 

Abstract 

In the context of the COVID-19 pandemic, wastewater-based epidemiology (WBE) 

emerged as a useful tool to account for the prevalence of SARS-CoV-2 infections on a 

population scale. In this study we analyzed wastewater samples from three large (> 

300,000 people served) and four small (< 25,000 people served) communities throughout 

southern Germany from August to December 2021, capturing the fourth infection wave in 

Germany dominated by the Delta variant (B.1.617.2). As dilution can skew the SARS-CoV-

2 biomarker concentrations in wastewater, normalization to wastewater parameters can 
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improve the relationship between SARS-CoV-2 biomarker data and clinical prevalence 

data. In this study, we investigated the suitability and performance of various 

normalization parameters. Influent flow data showed strong relationships to 

precipitation data; accordingly, flow-normalization reacted distinctly to precipitation 

events. Normalization by surrogate viruses CrAssphage and Pepper Mild Mottle Virus 

showed varying performance for different sampling sites. The best normalization 

performance was achieved with a mixed fecal indicator calculated from both surrogate 

viruses. Analyzing the temporal and spatial variation of normalization parameters proved 

to be useful to explain normalization performance. Overall, our findings indicate that the 

performance of surrogate viruses, flow and hydro-chemical data is site-specific. We 

recommend to test the suitability of normalization parameters individually for specific 

sewage systems. 

TOC Art 

 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.07.22277349doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.07.22277349
http://creativecommons.org/licenses/by-nd/4.0/


 3 

1. Introduction 

Since late 2019, the COVID-19 pandemic caused by the spread of SARS-CoV-2 impacted 

public life in large parts of the world. Accounting as precisely as possible for SARS-CoV-2 

prevalence in the population has become essential for appropriate public health 

management. During previous disease outbreaks, wastewater-based epidemiology 

(WBE) proved to be a useful early warning and monitoring tool for norovirus and 

poliovirus 1,2. Therefore, shortly after the detection of SARS-CoV-2 biomarkers in anal 

swabs and stool of COVID-19 patients 3–5, first WBE studies confirmed the occurrence of 

SARS-CoV-2 biomarkers in wastewater 6–9.  

Subsequently, numerous case studies investigated the applicability of SARS-CoV-2 WBE 

as monitoring and early warning system: from small pilot studies sampling only for 

several days in the early stage of the pandemic 10,11, to long-term 12,13 and large-scale 14 

monitoring programs gathering comprehensive datasets. In the course of the pandemic, 

knowledge on sampling strategies, quantification methods, data processing, and 

comparison to epidemiological data increased substantially; yet, there is still intensive 

ongoing research on various aspects of SARS-CoV-2 WBE.  

As the goal of SARS-CoV-2 WBE is to derive valuable information on the infection 

dynamics in the human population from wastewater, the SARS-CoV-2 biomarker 

concentrations were frequently compared to epidemiological data. They were observed 

to strongly correlate with clinical prevalence data and to have lead times of 2 to 24 days 

ahead of the clinical data, depending on the location and the stage of the pandemic 7,8,13–

16, although there are also cases, for which the correlations were low 17–19. Furthermore, 

regression models to predict the viral incidence based on the SARS-CoV-2 biomarker 

concentrations in wastewater were suggested 14,16,17.  
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However, in order to serve as a suitable method to inform public health, the reliability of 

the SARS-CoV-2 biomarker concentrations from wastewater has to be assured, as 

precipitation, industrial and household dischargers, as well as groundwater infiltration 

do affect wastewater composition and measured SARS-CoV-2 concentrations 20–22. 

Besides data smoothing algorithms 23, the main approach to address these dynamic 

dilution effects in urban wastewater is adjusting SARS-CoV-2 biomarker data with a 

normalization parameter. For instance, multiplying the gene concentrations with the 

wastewater flow in order to obtain gene loads has been frequently applied, leading to 

mixed results 11,18,24–26. Furthermore, common wastewater parameters such as ammonia 

14,23, total nitrogen 27, and orthophosphate 28 have been used for normalization although 

they are susceptible to industrial discharge 29. Further promising candidates for SARS-

CoV-2 biomarker normalization are the pepper mild mottle virus (PMMoV), a plant virus 

that enters the human body through the diet, and the cross-assembly phage (CrAssphage), 

a bacteriophage found in the human gut, that are abundant in and closely linked to human 

feces 30–32. Both surrogate viruses have been tested for normalization purposes 10,12,15,17–

19,24,26,33. Investigations on the application and comparison of normalization approaches 

so far focused mainly on flow data, fecal markers CrAssphage and PMMoV, and ammonia 

14,18,19,24,26. In a further step, several studies assessed the suitability of these parameters 

for normalization, investigating their temporal and spatial variation 18,19, seasonal trends 

34, or correlation with flow data 24,26,35 and precipitation data 36.  

In this study we report SARS-CoV-2 biomarker data from a wastewater monitoring 

program of seven wastewater treatment plants (WWTPs) of varying size located in 

southern Germany. The reported 5-month sampling period captured the fourth wave of 

infections in Germany, dominated by the Delta variant (B.1.617.2). The aim of this study 

was to assess different approaches for normalization of SARS-CoV-2 biomarker data 
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(surrogate virus biomarker concentrations, flow data, and electrical conductivity data), 

combined with a comprehensive analysis (spatial and temporal variation, seasonal 

trends, relationship to precipitation) of the normalization parameters. We hypothesize 

that (i) normalization by these water parameters improves the relationship between 

SARS-CoV-2 wastewater data and clinical prevalence data and that (ii) the comprehensive 

analysis of the normalization parameters reveals characteristics of the flow situation at 

the particular sites that can explain the performance of the normalization parameters 

when applied to SARS-CoV-2 wastewater data.  

2. Materials and Methods 

2.1 Sampling Sites, Sample Collection and Transport 

Samples were taken from August 2021 to December 2021 at three wastewater treatment 

plants (WWTP) of large communities (Munich, Augsburg, Karlsruhe) and four WWTPs of 

smaller communities (Berchtesgaden, Freilassing, Piding, Teisendorf) in the county of 

Berchtesgadener Land (BGL); all located in southern Germany. The WWTP Berchtesgaden 

treats the wastewater of several communities, namely Berchtesgaden, Bischofswiesen, 

Ramsau, and Schönau. The same situation applies to the WWTP Piding treating the 

wastewater of the communities Anger and Piding. Sampling was performed twice a week 

except for the WWTP Augsburg from August to November 2021 when it was performed 

once a week. An overview of the sampling sites and their key characteristics is given in 

Table 1.  
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Table 1: Overview of sampling sites. 

Sampling site 
Clinical prevalence 

data 
Precipitation data  

Population 
served 

Mean flow rate 
[𝒎𝟑 ⋅ 𝒅−𝟏] 

Sampling 
time 

Sampling 
days 

Munich 
Robert-Koch Institute 
(RKI)  CDC, station no. 3379 1,156,000 278,000 24h 41 

Augsburg 
Robert-Koch Institute 
(RKI) 

WWTP Augsburg, mean of 
11 rain gauges 343,000 144,000 24h 26 

Karlsruhe 
Robert-Koch Institute 
(RKI) CDC, station no. 4177 370,000 118,000 24h 43 

Berchtesgaden 
Health Department 
BGL 

CDC, mean of stations no. 
364, 515, 516, 6190, 6203 21,900 10,000 3.5h 40 

Freilassing 
Health Department 
BGL CDC, station no. 1459 20,000 4,000 4h 42 

Piding  
Health Department 
BGL 

CDC, mean of stations no. 
163, 7424 9,000 3,500 4h 43 

Teisendorf 
Health Department 
BGL CDC, station no. 5000 8,100 1,500 4h 43 

 

Composite samples were taken at the plant inflow or after the sand trap, using 

autosamplers with a sampling frequency of 10 minutes. For the large communities, we 

collected 24 h composite samples since they are less variable than samples of shorter 

sampling time 37. In contrast, for small communities, we collected 3.5-4 h composite 

samples from 7:00 to 11:00 (resp. 10:30) in order to capture the morning toilet stool peak 

leading to a temporary high fecal load in wastewater; findings of a recent study 

corroborate this approach 38. The samples were transported to the laboratory at 4 °C.  

2.2 Sample Processing  

Samples from Munich and Augsburg were processed at the Technical University of 

Munich, Chair of Urban Water Systems Engineering in Garching. Three SARS-CoV-2 

specific gene fragments were quantified: the nucleocapsid gene (N2), envelope gene (E), 

and a sequence from the open reading frame region (ORF). Samples from the WWTP 

Karlsruhe and the four small communities (Berchtesgaden, Freilassing, Piding, 

Teisendorf) were processed at the TZW: DVGW-Technologiezentrum Wasser, 
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Department of Water Microbiology in Karlsruhe, Germany. Here, three SARS-CoV-2 

specific sequences were quantified: E, ORF and a sequence from the polymerase region 

(RdRp). The concentrations of biomarkers of the fecal markers PMMoV and CrAssphage 

for samples from all sites were also determined in this lab according to the same dPCR 

protocol. See Supplemental Text 1 and Table S1 for further details on sample processing. 

2.3 Precipitation Data and Clinical Prevalence Data 

Precipitation data for the sampling sites Munich, Karlsruhe, Berchtesgaden, Piding, 

Teisendorf, and Freilassing was obtained from the Climate Data Center (CDC) of the 

German Meteorological Service 39. The weather stations corresponding to the sampling 

sites are indicated in Table 1. For the sampling site Augsburg, we used precipitation data 

that was calculated from 11 rain gauges operated by the WWTP Augsburg throughout 

their service area. 

The clinical prevalence data used for the large communities was the publicly available, 

official data of the 7-days-incidence provided by the Federal Robert-Koch Institute (RKI) 

in charge of public health surveillance in Germany 40. The 7-days-incidence, i.e., the sum 

of infections of the past seven days in a specific region (e.g., a community) normalized to 

100,000 inhabitants, is the prevailing metric used in Germany to measure the infection 

dynamic. Confirmed SARS-CoV-2 infections were reported daily by the health department 

of the county BGL for the small communities, attributed to the corresponding sampling 

sites, and transformed to 7-days-incidences.  

2.4 Normalization Parameters  

The surrogate viruses PMMoV and CrAssphage were available for all sampling sites since 

they were determined by PCR analysis. Additionally, a mixed fecal indicator (MFI), the 

mean of the normalized PMMoV and CrAssphage values, was calculated. As PMMoV and 
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CrAssphage abundances do not necessarily have the same order of magnitude, in order to 

compute MFI, PMMoV and CrAssphage data was normalized to values between 0 and 1 

using the maximum value measured for PMMoV and CrAssphage, respectively. 

The large WWTPs in Munich, Augsburg, and Karlsruhe provided total daily flows 

[𝑚3 ⋅ 𝑑−1] and daily mean values of the electrical conductivity [μS ⋅ c𝑚−1]. Total daily 

flows were also provided by the WWTP Berchtesgaden. In contrast, the other small 

WWTPs do not have a continuous flow measurement and could not provide this 

information. As a substitute, the mean of the flow [𝑚3 ⋅ 𝑠−1] at the beginning and the end 

of the sampling period was calculated where this flow data was provided (Teisendorf, 

Piding). The WWTPs in Teisendorf and Berchtesgaden additionally provided 

measurements of the electrical conductivity during the sampling period. Unfortunately, 

the WWTP in Freilassing could not provide any additional parameters.  

2.5 Data Analysis 

All data analysis was performed in Python (v3.8.8) using the modules Pandas (v1.4.1), 

NumPy (v1.20.3), SciPy (v1.7.3), Seaborn (v0.11.2), Matplotlib (v3.3.4), and Statsmodels 

(v0.12.2).  

For the comparison of the spatial variation of the PMMoV and CrAssphage biomarker 

concentrations, Kruskal-Wallis tests were performed (SciPy v1.7.3) (Fig. 1). The 

coefficients of variation (CV) for the assessment of the temporal variation of PMMoV, 

CrAssphage, total daily flows per capita, and electrical conductivity were calculated as the 

standard deviation divided by the mean (NumPy v1.20.3) (Fig. 1, S1). For details on the 

linear regression analysis with precipitation as explanatory variable, see Supplemental 

Text 1. 
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After filtering the SARS-CoV-2 biomarker concentrations from the PCR analysis by an 

automated workflow, the normalizations by the different water parameters were 

computed (see Supplemental Text 1 for details on automated workflow and application 

of normalization parameters). Coefficients of determination R2 were computed between 

the SARS-CoV-2 biomarker values and the 7-days-incidence with a linear regression 

model to assess the performance of the different normalization methods (Fig. 4). The 

changes in the coefficients of determination R2 were classified as “no change” (Δ𝑅2 ≤

± 0.05), moderate (0.05 < Δ𝑅2 ≤ 0.2), and considerable (Δ𝑅2 > 0.2). 

 

3. Results and Discussion 

3.1 Assessment of Normalization Parameters 

3.1.1 Analysis of Spatial Variation  

When considering the spatial variation of the surrogate viruses among the different 

sampling sites, we observed that in general, the biomarker concentrations are in a 

common range from 103 to 106 gene copies/ml (Fig. 1). 
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Figure 1: Spatial and temporal variation of PMMoV (a) and CrAssphage (b) for different sampling sites. 

 

More specifically, we observed that the surrogate biomarker concentrations for the large 

communities Munich, Augsburg and Karlsruhe have similar distributions that are slightly 

higher than for the small communities Freilassing, Piding, and Teisendorf. Kruskal-Wallis 

tests confirmed that CrAssphage biomarker distributions for the large communities 

Munich, Augsburg, and Karlsruhe (𝐻 =  2.030, 𝑝 =  0.362) and the PMMoV biomarker 

distributions for Augsburg and Karlsruhe (𝐻 =  0.053, 𝑝 =  0.818) are not significantly 

different. Kruskal-Wallis tests additionally showed no significant differences between 

CrAssphage biomarker distributions for Piding and Teisendorf (𝐻 =  0.565, 𝑝 =  0.452) 

and PMMoV biomarker distributions for Piding and Freilassing (𝐻 =  0.002, 𝑝 =  0.964). 
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Interestingly, the PMMoV and CrAssphage biomarker concentrations for Berchtesgaden 

were considerably lower than for the other sampling sites.  

In previous studies, PMMoV and CrAssphage biomarker concentrations in raw sewage 

were reported in a similar range to our study 24,26,34. The trend of higher biomarker values 

in large communities we observed was also confirmed by two studies 10,41. In contrast, 

Wilder et al. 35 observed an association between larger CrAssphage concentrations and 

smaller communities. The data of most previous studies, however, did not show notable 

differences in surrogate virus concentrations of small and large communities 19,24,26. We 

suppose that the particularly low biomarker concentrations for the sampling site 

Berchtesgaden are a consequence of the relative high groundwater infiltration of up to 

54% of the influent flow in this service area located in an alpine region.  

As for the total daily flows per capita, values observed for Berchtesgaden and Augsburg 

were higher than for Munich and Karlsruhe (Fig. S1). This mirrors the ratio of flow and 

population of the WWTPs’ capacities (Table 1). The elevated values for Augsburg and 

Berchtesgaden can be explained by a high industrial wastewater intake of approximately 

25% and a high groundwater infiltration of up to 54%, respectively. Concerning electrical 

conductivity, a low spatial variation between sampling sites was generally observed with 

the exception of Teisendorf, where larger values were stated (Fig. S1). An explanation for 

these elevated values is that up to 40% of the WWTP’s inflow originates from a local 

brewery. In literature, brewery wastewater was reported to exhibit high levels of 

electrical conductivity between 2,440 and 4,710 μ𝑆/𝑐𝑚 42, substantially higher than in 

urban wastewater. 

3.1.2 Analysis of General Temporal Variation and Seasonal Trends 
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As for the general temporal variation of normalization parameters, we observed that the 

CV for all parameters examined was lower than 1 except for the CrAssphage data at the 

sampling site Freilassing (𝐶𝑉 =  1.04) (Fig. 1, S1). The CV values for PMMoV and 

CrAssphage are in the same range as the results reported by Greenwald et al. 19. 

Comparing the two surrogate viruses, CrAssphage abundances showed generally higher 

CV values than PMMoV abundances (Fig. 1). In contrast to these results, Ahmed et al. 37 

observed a larger temporal variation for PMMoV concentrations than for CrAssphage, 

whereas Greenwald et al. 19 did not observe a clear trend with both PMMoV and 

CrAssphage showing large and small CV values, depending on the sampling site. 

Furthermore, for CrAssphage, PMMoV and electrical conductivity, the small communities 

overall exhibited a considerably larger CV value than the large communities. This is 

corroborated by the findings of Holm et al. 41 who reported a higher variability of 

biomarker abundances in small communities. We suppose that in our study, this 

difference can be explained by the sampling strategy as we performed 24 h composite 

sampling for large communities and 3.5-4 h composite sampling for small communities in 

order to cover the morning toilet stool peak but also the size of the sewershed as smaller 

communities in general show higher variability in quality 37,43. 

The second aspect of temporal variation investigated was the seasonal trend of the 

parameters. In our data, for PMMoV and CrAssphage, there were no distinct seasonal 

fluctuations observable, which is in accordance with observations reported in literature 

31,44. In contrast, daily flow showed a moderate decrease over the monitoring period for 

the three sampling sites Augsburg, Munich, and Berchtesgaden, as can be observed best 

when considering the daily flow values on dry days (Fig. 2, S2). This trend can be 

explained by the decrease of groundwater levels during a fall season with generally low-

precipitation pattern following a summer with high rainfall as it was the case in 2021 in 
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southern Bavaria. Interestingly, this trend was not observed for the sampling site 

Karlsruhe, where daily flow showed a moderate increase in the same time period (Fig. 

S2), probably reflecting the disparity between the regional climates of southern Bavaria 

and the Upper Rhine Plain.  

 

 

Figure 2: Timeline of daily flow data and precipitation data at sampling site Augsburg. 

 

Additionally, an increase of daily flow values during precipitation events was observed 

(Fig. 2 and S2), indicating a strong relationship between the two parameters. Linear 

regression analysis confirmed these findings (Fig. S4). This strong relationship can be 

explained by the fact that the sewersheds of the sampling sites studied are primarily 

characterized by combined sewer systems and precipitation events therefore have a 

major effect on flow volumes. These findings suggest that flow data mirrors precipitation 

data and thus should be a good normalization parameter to account for dilution effects.  

Electrical conductivity showed globally steady levels for all sampling sites except 

Karlsruhe until the end of November 2021 with lower concentrations during precipitation 
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events (Fig. S3). This reduction during and after precipitation events was considerably 

more pronounced for the sampling site Karlsruhe (Fig. S3). For Augsburg, Munich, and 

Berchtesgaden, large variations of the electrical conductivity, including the increase 

during precipitation periods, were observed in December. These are possibly a 

consequence of the use of de-icing salt in the snow period that is washed to the sewer 

system by precipitation or snowmelt. Therefore, the use of electrical conductivity as a 

normalization parameter should be evaluated carefully because of its possible large 

variations during the de-icing period. Interestingly, an increase of electrical conductivity 

in December was not observed for the sampling site Karlsruhe, possibly reflecting the 

milder regional climate at this sampling site (no snowfall in December 2021) that made 

the use of de-icing salt unnecessary in this period (Fig. S3). 

3.2 Application of Normalization Parameters 

3.2.1 Analysis of Response of Flow-normalized SARS-CoV-2 Biomarker data to 

Precipitation Events 

From the preliminary assessment of normalization parameters, flow values emerged as a 

suitable parameter to account for precipitation-driven dilution effects. Examining the late 

summer and early fall at the sampling site Augsburg, we observed that flow-normalization 

reacted distinctly to major precipitation events (Fig. 3). In detail, we observed that for 

abundant and long precipitation periods, e.g. in Augsburg at the end of August 2021, 

normalizing by flow corrects the low, presumably heavily diluted SARS-CoV-2 biomarker 

value on 2021-08-30. This flow-normalization is crucial to properly identify an increase 

in the SARS-CoV-2 biomarker values indicating an acceleration of the infection activity 

that was confirmed slightly later by the clinical data. In contrast, SARS-CoV-2 biomarker 

values during dry or low-precipitation periods, e.g. the value in Augsburg on 2021-09-20, 
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are barely changed, just as one would expect. Similar results can be observed for the 

sampling sites Munich and Karlsruhe (Fig. S5). 

 

 

Figure 3: Timeline of precipitation data, SARS-CoV-2 biomarker data (unnormalized and flow-normalized) 

and 7-days-incidence for sampling site Augsburg in late summer and early fall of 2021. 

 

As total daily flows were not available for the small sampling sites Teisendorf and Piding, 

a normalization by the mean of the flow at the beginning and the end of the sampling 

period was applied. For these flow-normalizations, we also observed a reaction to 

precipitation events although not as strong as for normalizations to total daily flow data 

(Fig.  S5). These results suggest that, in the absence of total daily flow data, normalizing 

by mean values of the flow during the sampling period can help accounting for 

precipitation-driven dilution effects.  

 

3.2.2 Analysis of Performance of Different Normalization Methods 

In order to compare the performance of all normalization parameters at all sites, linear 

regression models expressing the relationship between clinical data and the SARS-CoV-2 
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biomarker concentrations with different normalizations were constructed and the R2 

values determined (Fig. 4). We observed that generally, R2 values are already high (𝑅2 ≥

0.7) or moderate (𝑅2 ≥ 0.4) for most sampling sites without the application of a 

normalization parameter. Although flow data showed a strong relationship with 

precipitation data (Fig. 2 and S4) and flow-normalized SARS-CoV-2 biomarker 

concentrations reacted to precipitation events (Fig. 3), the coefficients of determination 

for flow-normalized data do not differ substantially from the ones for unnormalized data. 

R2 values are slightly increased for some sites and slightly decreased for others (Δ𝑅2 ≤

± 0.05). This is in agreement with recent publications, where correlation coefficients 

were slightly increased or decreased by flow-normalization compared to unnormalized 

data, depending on the sampling site (Difference in Spearman’s ρ: ±0.08 24; Difference in 

Pearson’s r: ±0.11 26). A similar behavior was observed for normalization by electrical 

conductivity with the exception of the sampling site Karlsruhe where it led to a 

considerable increase (𝑅2  =  0.75). This site-specific performance of the parameter 

electrical conductivity can possibly be explained by the above-mentioned high sensitivity 

to dilution and by the stable seasonal trend, indicating no distortion by the use of de-icing 

salt (Fig. S3). 
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Figure 4: R2 of linear regression for clinical prevalence data and SARS-CoV-2 biomarker data for various 

normalization parameters and sampling sites. 

 

When compared to normalization by surrogate viruses, flow-normalization overall leads 

to weaker relationships between clinical prevalence data and SARS-CoV-2 biomarker data 

(Fig. 4). Similar results were obtained in literature, where PMMoV-normalization was 

observed to lead to stronger correlations with clinical case data than flow-normalization 

(Difference in Pearson’s r: 0.03 − 0.11 26) or normalization by mass flux through a WWTP 

(Difference in Pearson’s r: 0.11 −  0.91 18). In contrast, Feng et al. 24 reported lower 

correlation coefficients for PMMoV-normalized data compared to flow-normalized data 

(Difference in Spearman’s ρ: 0.01 − 0.36). This higher overall normalization performance 

of surrogate viruses compared to flow can be explained by surrogate viruses not only 

accounting for stormwater dilution but also for the dynamic variations of fecal load in the 

wastewater.  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.07.22277349doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.07.22277349
http://creativecommons.org/licenses/by-nd/4.0/


 18 

The application of surrogate viruses as normalization parameters generally either did not 

change the R2 value (Δ𝑅2 ≤ ± 0.05) or increased it moderately (0.05 < Δ𝑅2 ≤ 0.2), with 

the exception of a low performance of CrAssphage for the sampling sites Munich and 

Augsburg and a low performance of PMMoV for Piding (Fig. 4). In the case of the sampling 

site Berchtesgaden, we observed a considerable increase (Δ𝑅2 > 0.2) of the R2 value.  

Furthermore, we found that a normalization by PMMoV overall leads to higher R2 values 

than a normalization by CrAssphage. 

Our findings indicate that the performance of surrogate viruses as normalization 

parameters in general and the difference between the performance of PMMoV and 

CrAssphage in particular are site-specific. This is in agreement with previous studies: 

Whereas Graham et al. 33 stated no substantial improvement when normalizing by 

surrogate viruses and Ai et al. 17 and Xie et al. 34 observed  a deterioration of correlation 

with clinical data, Wilder et al. 35 found considerable positive correlations only when 

normalizing by CrAssphage. Further studies, comparing different sampling sites, reported 

improvements of the correlation for some locations but deteriorations for others 18,24,45.  

As for the comparison of the performance of PMMoV and CrAssphage, Nagarkar et al. 26 

observed that PMMoV-normalization overall led to higher R2 values, whereas Greenwald 

et al. 19 reported the opposite. So far, the reasons behind the site-specific performance of 

surrogate viruses remain unclear 18,26. 

For our results, a possible explanation for the overall good performance of PMMoV and 

CrAssphage is the low spatial and temporal variation of the surrogate virus biomarkers 

stated above (Fig. 1), as this indicates their suitability as normalization parameters 19. As 

for the lower performance of CrAssphage compared to PMMoV: this can be explained by 

the larger CV values observed for CrAssphage (Fig. 1), as a larger temporal variation of 

the normalization parameter blurs the dynamic of the SARS-CoV-2 biomarkers. This is 
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further supported by the finding that for the only sampling site where CrAssphage had a 

lower CV value than PMMoV, Piding, normalization by CrAssphage led to a higher R2 value 

than by PMMoV. The considerable site-specific performance of surrogate viruses at the 

sampling site Berchtesgaden will be discussed in detail in the next section. 

The best overall normalization performance was achieved with MFI: R2 values are 

generally either slightly or moderately increased, in the case of Berchtesgaden even 

considerably (Δ𝑅2 = 0.49). The only decrease of R2 could be observed for Munich and is 

linked to the notable decrease of the R2 value for CrAssphage for the same sampling site. 

Purely mathematically speaking, the MFI therefore emerged as the best normalization 

parameter in our analysis. However, as both PMMoV and CrAssphage have to be 

determined by a PCR analysis in order to apply MFI, using this parameter is linked to 

higher expenses and does not lead to substantially better results than a normalization by 

CrAssphage or PMMoV alone. For datasets that comprise already data of several fecal 

indicators (not only CrAssphage and PMMoV, but also Bacteroides HF183 16S rRNA and 

human 18S rRNA, etc.), we nevertheless recommend testing the normalization by a mixed 

fecal indicator. 

In recent publications, other normalization parameters than the ones considered here 

(PMMoV, CrAssphage, electrical conductivity, flow) were investigated. Informed by 

previous WBE studies 46, ammonia 14,23,28 and total nitrogen 27 were applied for 

normalization, but not compared to other parameters. Comparing the correlation 

between normalized SARS-CoV-2 wastewater data and clinical prevalence data, Xie et al. 

34 found lower correlations for ammonia than for  Acesulfame K; however,  Pearson’s r in 

this study was generally moderate (max. 0.61). In two studies, Bacteroides HF183 16S 

rRNA and human 18S rRNA were found to have higher temporal and spatial variation than 

PMMoV and CrAssphage and were discarded from further analysis 18,19. The performance 
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of HF183 16S rRNA as a normalization parameter, just as with PMMoV and CrAssphage 

mentioned above, seems to be site-specific as it improved the correlations to clinical 

prevalence data for some sites, but deteriorated them for others 24,26. 

3.2.3 Dealing with a Complex Flow Situation: Sampling Site Berchtesgaden 

The sampling site Berchtesgaden is a particular case that merits a detailed discussion. 

Compared to the other sampling sites, the coefficient of determination for the 

unnormalized data is particularly low (Fig. 4). The weak relationship between 

unnormalized SARS-CoV-2 data and clinical prevalence data can be explained by the 

particular flow situation in the service area of the WWTP Berchtesgaden. The high 

groundwater infiltration of up to 54% depends on the local groundwater level and thus, 

in a delayed and non-linear way, on the extent of previous precipitation events. 

Infiltrating groundwater then leads to a dynamic dilution of the wastewater that distorts 

the SARS-CoV-2 biomarker concentration in wastewater.  
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Figure 5: Timeline of 7-days-incidence and SARS-CoV-2 biomarker data with various normalizations for 

sampling site Berchtesgaden; without time shift of 7-days-incidence (a) and with time shift of 5 days (b). 

 

The coefficients of determination for flow-normalized SARS-CoV-2 biomarker data for all 

sampling sites did not differ notably from the unnormalized data (Δ𝑅2 ≤ ± 0.06). For 

instance, at the sampling site Teisendorf, a linear regression between clinical data and 

unnormalized data leads to 𝑅2 = 0.70, for flow-normalized data to 𝑅2 = 0.74 (Fig. 4). This 

is similar for the sampling site Berchtesgaden: the particularly low coefficient of 

determination for unnormalized data (𝑅2 = 0.24) is marginally altered to 𝑅2 = 0.22 for 

flow-normalized data (Fig. 4 and 5). An explanation for this could be that normalizing by 

flow, a parameter that shows a strong relationship with precipitation data (Fig. S4), is an 
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adjustment of the data enabling to account for stormwater dilutions when unnormalized 

SARS-CoV-2 biomarker data already has a strong relationship with clinical prevalence 

data. In contrast, in the particular case of a weak relationship between SARS-CoV-2 

biomarker data and clinical prevalence data at the sampling site Berchtesgaden, flow-

normalization cannot considerably improve the coefficient of determination. A similar 

observation can be made for normalization by electrical conductivity (Fig. 4). 

In difference to this, normalizing by surrogate viruses shows promising results for the 

sampling site Berchtesgaden, improving the coefficient of determination considerably 

(Fig. 4 and 5). This can be explained by the particular nature of surrogate viruses as fecal 

markers: As PMMoV and CrAssphage biomarker concentrations are closely linked to 

human fecal shedding 30,32, they strongly depend on the fecal load in wastewater. For 

instance, it has been shown that PMMoV biomarker concentration increases with an 

increase of fecal contamination 31.  Therefore, all parameters affecting the fecal load in 

wastewater, e.g. human shedding, stormwater dilution, but also dynamic groundwater 

infiltration, are accounted for by surrogate viruses because they directly mirror changes 

in fecal concentration. This detailed analysis suggests that surrogate-virus-normalization 

is especially interesting for sampling sites with high groundwater infiltration and possibly 

also for other particular flow situations, e.g. substantial and fluctuating industrial 

wastewater dischargers. 

In previous investigations, lead times of the SARS-CoV-2 biomarker data ahead of the 

clinical data were stated 7,13,16. When accounting for this lead time for the sampling site 

Berchtesgaden, we observed a substantial improvement of the coefficients of 

determination for all normalizations for a time shift of 2 to 8 days with an optimum at 5 

days (Fig. S6). Although improving the absolute R2 values for all normalizations, this time 

shift does not alter the relative differences: normalization by surrogate viruses continued 
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to achieve considerably higher R2 values than unnormalized or flow-normalized data (Fig. 

5 and S6). Accounting for the lead time of wastewater data ahead of clinical data was not 

the focus of the present study; however, our results indicate that this time-adjustment can 

further improve the relationship between normalized SARS-CoV-2 biomarker data and 

clinical prevalence data. 

4. Conclusions 

 Our analysis of the spatial variation of normalization parameters suggests that 

differences between sampling sites reflected characteristics of flow situation at a 

particular site, e.g., industrial wastewater dischargers or degree of groundwater 

infiltration. Knowing these characteristics helps to judge the suitability of the 

normalization parameter for a specific site.  

 Surrogate viruses PMMoV and CrAssphage exhibited a low temporal variation and 

no noticeable seasonal trend, indicating their suitability as normalization 

parameters. CrAssphage showed generally higher temporal variation than 

PMMoV. Electrical conductivity and total daily flow followed seasonal trends, most 

likely because of the seasonal use of de-icing salt and the prevalent precipitation 

regime, respectively. 

 Our findings indicate that the performance of surrogate viruses as well as flow and 

hydro-chemical data are site-specific. It is recommended to test the suitability of 

normalization parameters individually for specific sewage systems. 

 Our results suggest that normalization by flow data reacts distinctly to 

precipitation events and adjusts SARS-CoV-2 biomarker concentrations 

accordingly so that relevant changes in the infection pattern can be observed also 

during precipitation periods. However, coefficients of determination between 
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flow-normalized SARS-CoV-2 biomarker data and clinical prevalence data are 

generally lower than for surrogate-virus-normalized data.  

 The data from the sampling at the WWTP Berchtesgaden, a site suffering from 

severe groundwater infiltration, suggests that weak relationships between 

unnormalized SARS-CoV-2 biomarker data and clinical prevalence data can be 

considerably improved by normalization with surrogate viruses, but not with flow 

or electrical conductivity data. Adjusting for the lead time of wastewater data 

ahead of clinical prevalence data further improved this relationship. 

 Normalization using PMMoV led generally to higher R2 than CrAssphage-

normalization, most likely due to the lower temporal variation observed in our 

data. The best overall normalization performance was achieved with the mixed 

fecal indicator based on PMMoV and CrAssphage; nevertheless, the improvements 

of the R2 values are not notably higher than with PMMoV or CrAssphage alone. For 

further studies, we recommend to evaluate temporal and financial expenditures 

for measuring both surrogate viruses. 

 

Conflicts of Interest 

The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper. 

 

Acknowledgements 

This study was financially supported by the German Federal Ministry of Education and 

Research as part of the funding program Sustainable Water Management (NaWaM-

RiSKWa) (Biomarker, grant number 02WRS1557). We thank the staff of the WWTPs 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.07.22277349doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.07.22277349
http://creativecommons.org/licenses/by-nd/4.0/


 25 

Augsburg, Berchtesgaden, Freilassing, Karlsruhe, München, Piding, and Teisendorf as 

well as the health department of the county of Berchtesgadener Land for their support. 

We also thank Marion Woermann, Heidrun Mayrhofer, Lucia Maciossek, Meenakshi 

Prasad, and Mohammad Sheryaar Khan from TUM as well as Rabea Suhrborg, Carmen 

Kraffert, and Marie Weihnacht from TZW for their assistance with laboratory work. 

 

Supporting Information 

Details of materials and methods (Supplemental Text 1); One-Step-RT-PCR program 

(Table S1); spatial and temporal variation of daily flow per capita and electrical 

conductivity (Figure S1); timeline of daily flow data, conductivity data, and precipitation 

data (Figures S2 and S3); coefficients of determination of linear regression models for 

precipitation data and normalization parameters (Figure S4); timeline of precipitation 

data, SARS-CoV-2 biomarker data, and 7-days-incidence (Figure S5); coefficients of 

determination of linear regression models for clinical prevalence data and SARS-CoV-2 

biomarker data with different time shifts (Figure S6) (DOC) 

 

References 
(1) Kopel, E.; Kaliner, E.; Grotto, I. Lessons from a public health emergency—importation of wild 

poliovirus to Israel. New England Journal of Medicine 2014, 371 (11), 981–983. 

(2) Hellmér, M.; Paxéus, N.; Magnius, L.; Enache, L.; Arnholm, B.; Johansson, A.; Bergström, T.; 

Norder, H. Detection of pathogenic viruses in sewage provided early warnings of hepatitis A virus and 

norovirus outbreaks. Applied and environmental microbiology 2014, 80 (21), 6771–6781. 

(3) Wölfel, R.; Corman, V. M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M. A.; Niemeyer, D.; 

Jones, T. C.; Vollmar, P.; Rothe, C. Virological assessment of hospitalized patients with COVID-2019. 

Nature 2020, 581 (7809), 465–469. 

(4) Zhang, W.; Du, R.-H.; Li, B.; Zheng, X.-S.; Yang, X.-L.; Hu, B.; Wang, Y.-Y.; Xiao, G.-F.; Yan, B.; Shi, 

Z.-L. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple 

shedding routes. Emerging microbes & infections 2020, 9 (1), 386–389. 

(5) Holshue, M. L.; DeBolt, C.; Lindquist, S.; Lofy, K. H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; 

Wilkerson, S.; Tural, A. First case of 2019 novel coronavirus in the United States. New England Journal 

of Medicine 2020. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.07.22277349doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.07.22277349
http://creativecommons.org/licenses/by-nd/4.0/


 26 

(6) Ahmed, W.; Angel, N.; Edson, J.; Bibby, K.; Bivins, A.; O'Brien, J. W.; Choi, P. M.; Kitajima, M.; 

Simpson, S. L.; Li, J. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: a 

proof of concept for the wastewater surveillance of COVID-19 in the community. Science of The Total 

Environment 2020, 728, 138764. 

(7) Medema, G.; Heijnen, L.; Elsinga, G.; Italiaander, R.; Brouwer, A. Presence of SARS-Coronavirus-2 

RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic 

in the Netherlands. Environmental Science & Technology Letters 2020, 7 (7), 511–516. 

(8) Nemudryi, A.; Nemudraia, A.; Wiegand, T.; Surya, K.; Buyukyoruk, M.; Cicha, C.; Vanderwood, K. 

K.; Wilkinson, R.; Wiedenheft, B. Temporal detection and phylogenetic assessment of SARS-CoV-2 in 

municipal wastewater. Cell Reports Medicine 2020, 1 (6), 100098. 

(9) Wu, F.; Zhang, J.; Xiao, A.; Gu, X.; Lee, W. L.; Armas, F.; Kauffman, K.; Hanage, W.; Matus, M.; 

Ghaeli, N. SARS-CoV-2 titers in wastewater are higher than expected from clinically confirmed cases. 

Msystems 2020, 5 (4), e00614-20. 

(10) Green, H.; Wilder, M.; Collins, M.; Fenty, A.; Gentile, K.; Kmush, B. L.; Zeng, T.; Middleton, F. A.; 

Larsen, D. A. Quantification of SARS-CoV-2 and cross-assembly phage (crAssphage) from wastewater 

to monitor coronavirus transmission within communities. MedRxiv 2020. 

(11) Westhaus, S.; Weber, F.-A.; Schiwy, S.; Linnemann, V.; Brinkmann, M.; Widera, M.; Greve, C.; 

Janke, A.; Hollert, H.; Wintgens, T. Detection of SARS-CoV-2 in raw and treated wastewater in 

Germany–suitability for COVID-19 surveillance and potential transmission risks. Science of The Total 

Environment 2021, 751, 141750. 

(12) Heijnen, L.; Elsinga, G.; Graaf, M. de; Molenkamp, R.; Koopmans, M. P. G.; Medema, G. Droplet 

digital RT-PCR to detect SARS-CoV-2 signature mutations of variants of concern in wastewater. 

Science of The Total Environment 2021, 799, 149456. 

(13) Ho, J.; Stange, C.; Suhrborg, R.; Wurzbacher, C.; Drewes, J. E.; Tiehm, A. SARS-CoV-2 wastewater 

surveillance in Germany: Long-term RT-digital droplet PCR monitoring, suitability of primer/probe 

combinations and biomarker stability. Water research 2022, 210, 117977. 

(14) Aberi, P.; Arabzadeh, R.; Insam, H.; Markt, R.; Mayr, M.; Kreuzinger, N.; Rauch, W. Quest for 

optimal regression models in SARS-CoV-2 wastewater based epidemiology. International journal of 

environmental research and public health 2021, 18 (20), 10778. 

(15) Sangsanont, J.; Rattanakul, S.; Kongprajug, A.; Chyerochana, N.; Sresung, M.; Sriporatana, N.; 

Wanlapakorn, N.; Poovorawan, Y.; Mongkolsuk, S.; Sirikanchana, K. SARS-CoV-2 RNA surveillance in 

large to small centralized wastewater treatment plants preceding the third COVID-19 resurgence in 

Bangkok, Thailand. Science of The Total Environment 2022, 809, 151169. 

(16) Wu, F.; Xiao, A.; Zhang, J.; Moniz, K.; Endo, N.; Armas, F.; Bonneau, R.; Brown, M. A.; Bushman, 

M.; Chai, P. R. SARS-CoV-2 RNA concentrations in wastewater foreshadow dynamics and clinical 

presentation of new COVID-19 cases. Science of The Total Environment 2022, 805, 150121. 

(17) Ai, Y.; Davis, A.; Jones, D.; Lemeshow, S.; Tu, H.; He, F.; Ru, P.; Pan, X.; Bohrerova, Z.; Lee, J. 

Wastewater SARS-CoV-2 monitoring as a community-level COVID-19 trend tracker and variants in 

Ohio, United States. Science of The Total Environment 2021, 801, 149757. 

(18) D'Aoust, P. M.; Mercier, E.; Montpetit, D.; Jia, J.-J.; Alexandrov, I.; Neault, N.; Baig, A. T.; Mayne, 

J.; Zhang, X.; Alain, T. Quantitative analysis of SARS-CoV-2 RNA from wastewater solids in 

communities with low COVID-19 incidence and prevalence. Water research 2021, 188, 116560. 

(19) Greenwald, H. D.; Kennedy, L. C.; Hinkle, A.; Whitney, O. N.; Fan, V. B.; Crits-Christoph, A.; 

Harris-Lovett, S.; Flamholz, A. I.; Al-Shayeb, B.; Liao, L. D. Tools for interpretation of wastewater 

SARS-CoV-2 temporal and spatial trends demonstrated with data collected in the San Francisco Bay 

Area. Water research X 2021, 12, 100111. 

(20) Kitajima, M.; Ahmed, W.; Bibby, K.; Carducci, A.; Gerba, C. P.; Hamilton, K. A.; Haramoto, E.; 

Rose, J. B. SARS-CoV-2 in wastewater: State of the knowledge and research needs. Science of The 

Total Environment 2020, 739, 139076. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.07.22277349doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.07.22277349
http://creativecommons.org/licenses/by-nd/4.0/


 27 

(21) Medema, G.; Been, F.; Heijnen, L.; Petterson, S. Implementation of environmental surveillance 

for SARS-CoV-2 virus to support public health decisions: Opportunities and challenges. Current 

Opinion in Environmental Science & Health 2020, 17, 49–71. 

(22) Polo, D.; Quintela-Baluja, M.; Corbishley, A.; Jones, D. L.; Singer, A. C.; Graham, D. W.; Romalde, 

J. L. Making waves: Wastewater-based epidemiology for COVID-19–approaches and challenges for 

surveillance and prediction. Water research 2020, 186, 116404. 

(23) Arabzadeh, R.; Grünbacher, D. M.; Insam, H.; Kreuzinger, N.; Markt, R.; Rauch, W. Data filtering 

methods for SARS-CoV-2 wastewater surveillance. Water Science and Technology 2021, 84 (6), 1324–

1339. 

(24) Feng, S.; Roguet, A.; McClary-Gutierrez, J. S.; Newton, R. J.; Kloczko, N.; Meiman, J. G.; McLellan, 

S. L. Evaluation of sampling, analysis, and normalization methods for SARS-CoV-2 concentrations in 

wastewater to assess COVID-19 burdens in Wisconsin communities. Acs Es&T Water 2021, 1 (8), 

1955–1965. 

(25) Weidhaas, J.; Aanderud, Z. T.; Roper, D. K.; VanDerslice, J.; Gaddis, E. B.; Ostermiller, J.; 

Hoffman, K.; Jamal, R.; Heck, P.; Zhang, Y. Correlation of SARS-CoV-2 RNA in wastewater with COVID-

19 disease burden in sewersheds. Science of The Total Environment 2021, 775, 145790. 

(26) Nagarkar, M.; Keely, S. P.; Jahne, M.; Wheaton, E.; Hart, C.; Smith, B.; Garland, J.; Varughese, E. 

A.; Braam, A.; Wiechman, B. SARS-CoV-2 monitoring at three sewersheds of different scales and 

complexity demonstrates distinctive relationships between wastewater measurements and COVID-

19 case data. Science of The Total Environment 2022, 816, 151534. 

(27) Radu, E.; Masseron, A.; Amman, F.; Schedl, A.; Agerer, B.; Endler, L.; Penz, T.; Bock, C.; 

Bergthaler, A.; Vierheilig, J. Emergence of SARS-CoV-2 Alpha lineage and its correlation with 

quantitative wastewater-based epidemiology data. Water research 2022, 118257. 

(28) Sweetapple, C.; Melville-Shreeve, P.; Chen, A. S.; Grimsley, J. M. S.; Bunce, J. T.; Gaze, W.; 

Fielding, S.; Wade, M. J. Building knowledge of university campus population dynamics to enhance 

near-to-source sewage surveillance for SARS-CoV-2 detection. Science of The Total Environment 

2022, 806, 150406. 

(29) Tscharke, B. J.; O’Brien, J. W.; Ort, C.; Grant, S.; Gerber, C.; Bade, R.; Thai, P. K.; Thomas, K. V.; 

Mueller, J. F. Harnessing the power of the census: characterizing wastewater treatment plant 

catchment populations for wastewater-based epidemiology. Environmental science & technology 

2019, 53 (17), 10303–10311. 

(30) Rosario, K.; Symonds, E. M.; Sinigalliano, C.; Stewart, J.; Breitbart, M. Pepper mild mottle virus 

as an indicator of fecal pollution. Applied and environmental microbiology 2009, 75 (22), 7261–7267. 

(31) Kitajima, M.; Sassi, H. P.; Torrey, J. R. Pepper mild mottle virus as a water quality indicator. NPJ 

Clean Water 2018, 1 (1), 1–9. 

(32) Stachler, E.; Kelty, C.; Sivaganesan, M.; Li, X.; Bibby, K.; Shanks, O. C. Quantitative CrAssphage 

PCR assays for human fecal pollution measurement. Environmental science & technology 2017, 51 

(16), 9146–9154. 

(33) Graham, K. E.; Loeb, S. K.; Wolfe, M. K.; Catoe, D.; Sinnott-Armstrong, N.; Kim, S.; Yamahara, K. 

M.; Sassoubre, L. M.; Mendoza Grijalva, L. M.; Roldan-Hernandez, L.; Langenfeld, K.; Wigginton, K. R.; 

Boehm, A. B. SARS-CoV-2 RNA in wastewater settled solids is associated with COVID-19 cases in a 

large urban sewershed. Environmental science & technology 2021, 55 (1), 488–498. DOI: 

10.1021/acs.est.0c06191. 

(34) Xie, Y.; Challis, J. K.; Oloye, F. F.; Asadi, M.; Cantin, J.; Brinkmann, M.; McPhedran, K. N.; Hogan, 

N.; Sadowski, M.; Jones, P. D. RNA in municipal wastewater reveals magnitudes of COVID-19 

outbreaks across four waves driven by SARS-CoV-2 variants of concern. Acs Es&T Water 2022. 

(35) Wilder, M. L.; Middleton, F.; Larsen, D. A.; Du, Q.; Fenty, A.; Zeng, T.; Insaf, T.; Kilaru, P.; Collins, 

M.; Kmush, B. Co-quantification of crAssphage increases confidence in wastewater-based 

epidemiology for SARS-CoV-2 in low prevalence areas. Water research X 2021, 11, 100100. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.07.22277349doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.07.22277349
http://creativecommons.org/licenses/by-nd/4.0/


 28 

(36) Lazuka, A.; Arnal, C.; Soyeux, E.; Sampson, M.; Lepeuple, A.-S.; Deleuze, Y.; Pouradier Duteil, S.; 

Lacroix, S. COVID-19 wastewater based epidemiology: long-term monitoring of 10 WWTP in France 

reveals the importance of the sampling context. Water Science and Technology 2021, 84 (8), 1997–

2013. 

(37) Ahmed, W.; Bivins, A.; Bertsch, P. M.; Bibby, K.; Gyawali, P.; Sherchan, S. P.; Simpson, S. L.; 

Thomas, K. V.; Verhagen, R.; Kitajima, M. Intraday variability of indicator and pathogenic viruses in 1-

h and 24-h composite wastewater samples: implications for wastewater-based epidemiology. 

Environmental Research 2021, 193, 110531. 

(38) Bivins, A.; North, D.; Wu, Z.; Shaffer, M.; Ahmed, W.; Bibby, K. Within-and between-day 

variability of SARS-CoV-2 RNA in municipal wastewater during periods of varying COVID-19 

prevalence and positivity. Acs Es&T Water 2021, 1 (9), 2097–2108. 

(39) Deutscher Wetterdienst. Climate Data Center. https://cdc.dwd.de/portal/ (accessed 2022-04-

28). 

(40) Robert Koch Institute. 7-Tage-Inzidenzen nach Bundesländern und Kreisen. https://www.rki.de/

DE/Content/InfAZ/N/Neuartiges_Coronavirus/Daten/Fallzahlen_Inzidenz_aktualisiert.html (accessed 

2022-04-28). 

(41) Holm, R. H.; Mukherjee, A.; Rai, J. P.; Yeager, R. A.; Talley, D.; Rai, S. N.; Bhatnagar, A.; Smith, T. 

SARS-CoV-2 RNA abundance in wastewater as a function of distinct urban sewershed size. 

Environmental Science: Water Research & Technology 2022, 8 (4), 807–819. 

(42) Simate, G. S.; Iyuke, S. E.; Ndlovu, S.; Heydenrych, M. The heterogeneous coagulation and 

flocculation of brewery wastewater using carbon nanotubes. Water research 2012, 46 (4), 1185–

1197. 

(43) Teerlink, J.; Hering, A. S.; Higgins, C. P.; Drewes, J. E. Variability of trace organic chemical 

concentrations in raw wastewater at three distinct sewershed scales. Water research 2012, 46 (10), 

3261–3271. 

(44) Tandukar, S.; Sherchan, S. P.; Haramoto, E. Applicability of crAssphage, pepper mild mottle 

virus, and tobacco mosaic virus as indicators of reduction of enteric viruses during wastewater 

treatment. Scientific Reports 2020, 10 (1), 1–8. 

(45) Zhan, Q.; Babler, K. M.; Sharkey, M. E.; Amirali, A.; Beaver, C. C.; Boone, M. M.; Comerford, S.; 

Cooper, D.; Cortizas, E. M.; Currall, B. B.; Foox, J.; Grills, G. S.; Kobetz, E.; Kumar, N.; Laine, J.; Lamar, 

W. E.; Mantero, A. M.; Mason, C. E.; Reding, B. D.; Robertson, M.; Roca, M. A.; Ryon, K.; Schürer, S. 

C.; Shukla, B. S.; Solle, N. S.; Stevenson, M.; Tallon Jr, J. J.; Thomas, C.; Thomas, T.; Vidović, D.; 

Williams, S. L.; Yin, X.; Solo-Gabriele, H. M. Relationships between SARS-CoV-2 in wastewater and 

COVID-19 clinical cases and hospitalizations, with and without normalization against indicators of 

human waste. Acs Es&T Water 2022. DOI: 10.1021/acsestwater.2c00045. 

(46) Been, F.; Rossi, L.; Ort, C.; Rudaz, S.; Delémont, O.; Esseiva, P. Population normalization with 

ammonium in wastewater-based epidemiology: Application to illicit drug monitoring. Environmental 

science & technology 2014, 48 (14), 8162–8169. 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.07.22277349doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.07.22277349
http://creativecommons.org/licenses/by-nd/4.0/

