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Abstract

The ongoing COVID-19 pandemic has been a major global health challenge since its emergence in 2019. Contrary to
early predictions that sub-Saharan Africa (SSA) would bear a disproportionate share of the burden of COVID-19 due
to the region’s vulnerability to other infectious diseases, weak healthcare systems, and socioeconomic conditions, the
pandemic’s effects in SSA have been very mild in comparison to other regions. Interestingly, the number of cases, hos-
pitalizations, and disease-induced deaths in SSA remain low, despite the loose implementation of non-pharmaceutical
interventions (NPIs) and the low availability and administration of vaccines. Possible explanations for this low burden
include epidemiological disparities, under-reporting (due to limited testing), climatic factors, population structure, and
government policy initiatives. In this study, we formulate a model framework consisting of a basic model (in which only
susceptible individuals are vaccinated), a vaccine-structured model, and a hybrid vaccine-age-structured model to re-
flect the dynamics of COVID-19 in West Africa (WA). The framework is trained with a portion of the confirmed daily
COVID-19 case data for 16 West African countries, validated with the remaining portion of the data, and used to (i) as-
sess the effect of age structure on the incidence of COVID-19 in WA, (ii) evaluate the impact of vaccination and vaccine
prioritization based on age brackets on the burden of COVID-19 in the sub-region, and (iii) explore plausible reasons
for the low burden of COVID-19 in WA compared to other parts of the world. Calibration of the model parameters and
global sensitivity analysis show that asymptomatic youths are the primary drivers of the pandemic in WA. Also, the basic
and control reproduction numbers of the hybrid vaccine-age-structured model are smaller than those of the other two
models indicating that the disease burden is overestimated in the models which do not account for age-structure. This
result is also confirmed through the vaccine-derived herd immunity thresholds. In particular, a comprehensive analysis
of the basic (vaccine-structured) model reveals that if 84% (73%) of the West African populace is fully immunized with
the vaccines authorized for use in WA, vaccine-derived herd immunity can be achieved. This herd immunity threshold
is lower (68%) for the hybrid model. Also, all three thresholds are lower (60% for the basic model, 51% for the vaccine-
structured model, and 48% for the hybrid model) if vaccines of higher efficacies (e.g., the Pfizer or Moderna vaccine) are
prioritized, and higher if vaccines of lower efficacy are prioritized. Simulations of the models show that controlling the
COVID-19 pandemic in WA (by reducing transmission) requires a proactive approach, including prioritizing vaccination
of more youths or vaccination of more youths and elderly simultaneously. Moreover, complementing vaccination with a
higher level of mask compliance will improve the prospects of containing the pandemic. Additionally, simulations of the
model predict another COVID-19 wave (with a smaller peak size compared to the Omicron wave) by mid-July 2022. Fur-
thermore, the emergence of a more transmissible variant or easing the existing measures that are effective in reducing
transmission will result in more devastating COVID-19 waves in the future. To conclude, accounting for age-structure
is important in understanding why the burden of COVID-19 has been low in WA and sustaining the current vaccination
level, complemented with the WHO recommended NPIs is critical in curbing the spread of the disease in WA.
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1. Introduction

Challenges associated with the 2019 coronavirus (COVID-19) pandemic have been enormous. The pandemic has im-
pacted every country and region of the world with over 543 million reported cases and 6.3 million deaths as of late June
2022 [1]. Although its impact on the African continent has not been as devastating as in other parts of the globe or as pre-
dicted earlier, over 11.7 million confirmed cases and 253,935 deaths had been recorded in Africa and 847,400 cases and
11,400 deaths in the West African sub-region as of June 22, 2022 [2]. In the West African sub-region, the pandemic has
been aggravated by an already weakened economy, healthcare system, and immunity among a large proportion of the
population due to the high prevalence of malnutrition, and other acute and chronic infectious diseases [3]. Specifically,
poor socio-economic conditions coupled with the overwhelming population density that depends largely on face-to-
face interactions for their basic livelihoods challenges the practicality of non-pharmaceutical interventions (NPIs) such
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as social distancing, self-isolation of confirmed cases, quarantining of suspected cases, and nationwide lockdown and
travel ban measures [4]. The secondary ramifications of imposing these measures with strict compliance can impact
the survival and livelihoods of these populations negatively, with a potential increase in morbidity and mortality arising
from hunger, financial difficulties and non-utilization of essential services such as primary health care [4–6].

Notwithstanding these challenges, sub-Saharan Africa (SSA) appears to be minimally impacted by the pandemic, with
fewer confirmed and reported COVID-19 cases and mortalities than elsewhere. The demographic distribution (a key
epidemiological indicator of disease transmission), low case detection rate due to insufficient testing capacity, epidemi-
ological disparities, and timely implementation of NPIs best explain the variations in the burden of COVID-19 observed
across different settings [7–10]. The young population age-structure in Africa with a median age of 19 years is significant
in limiting morbidity and mortality associated with the disease [7, 8]. Evidence from various studies have associated a
greater risk of disease severity and mortality with older and immunocompromised individuals [11–13]. Increased resis-
tance to infections can be acquired through enhanced immunity from vaccination or cross-protection from previous
infections [14]. The latter is more conceivable among younger individuals who are more likely to be exposed to other
coronaviruses and respiratory viruses [11, 12, 15]. Moreover, the younger population is more likely to experience milder
(asymptomatic or paucisymptomatic) disease conditions, which are rarely noticed or reported [11], though, they remain
transmissible. The high prevalence of subclinical infections among young people justifies the low number of reported
clinical cases, hospitalizations, and mortality in populations with significant proportions of younger individuals, as ob-
served in many low-income countries [13]. Younger people tend to have a broader network of social contacts than the
elderly and contribute substantially to the transmission of the pathogen. Due to their milder and subclinical disease
nature, most of them are usually unaware of their disease status [16]. On the contrary, elderly with fewer interaction
networks and more cautious nature bear the brunt of clinical disease, hospitalization, and death.

Considering the socio-economic structure and population demographics of most countries in West Africa (WA), ef-
fective pharmaceutical interventions (vaccines and anti-viral medications) stand out as the strategy of choice to reduce
transmission and/or curtail the burden of the pandemic [17]. Conventionally, the tenet of vaccination can be achieved
by directly vaccinating individuals at high risk of severe disease, hospitalization, and death and/or protecting these vul-
nerable groups by vaccinating those primarily responsible for transmitting the pathogen [18]. The WHO authorized
COVID-19 vaccines presently in use in Africa include AstraZeneca, Sinopharm, Sputnik V, BioNTech, Sinovac, Covaxin,
Sputnik Light,Pfizer, and Moderna [19]. These vaccines effectively meet the tenet of vaccination explained above, al-
though with varying efficacy ranging between 51% - 95% [20]. As of June 28, 2022, 72% of vaccines doses supplied in
Africa have been administered, with 18% of the population fully vaccinated since the commencement of the vaccina-
tion program in December 2020 [19]. The low vaccination intake can be attributed to vaccine hesitancy arising from
misinformation and risk perception of available vaccines [21, 22]. Despite efforts to address this challenge, there re-
main a gap in the quantity of vaccine supplied. The limited availability of COVID-19 vaccines in most low-income
countries, mainly obtained from the COVAX assistance program or donor supports [23], calls for the prioritization of
vaccine administration to achieve its maximum impact. Understanding the influence of the population age structure
on the transmission and incidence of COVID-19 in WA will ensure efficient utilization of resources for maximum impact.

Mathematical models have provided comprehensive insight into COVID-19 dynamics and informed various interven-
tions [9, 24–30]. These models have been instrumental in developing effective policies that have steered public health
directions and effected change in many settings. A study that deployed an age-structured model fitted to COVID-19 epi-
demic data from China, Italy, Japan, Singapore, Canada, and South Korea [11] showed a significant increase of 57–82%
in clinical infections among individuals 70 years and over. In a similar study in [23], the authors demonstrated that vac-
cinating not just those above 60 years but also those from 5 – 60 years reduced disease incidence substantially. Findings
from [31] using an age-structured epidemiological model proved that regardless of vaccine efficacy, control measures
and immunity dynamics, prioritizing vaccine administration among the elderly (> 60 years) had the highest relative re-
duction in deaths. Although prioritizing vaccination of the adult population will reduce severe disease and mortality,
focusing on younger people can reduce transmission and decrease the incidence of the disease [32, 33]. These studies
justify prioritizing the more aging population in high-income countries during the initial phase of vaccine allocation.

Here, we formulate and use a mathematical framework that accounts for vaccination and age-structure to assess the
contributions of youths and elderly to COVID-19 prevalence in WA. The framework is used to evaluate the impact of
vaccination and vaccine prioritization based on age brackets on the burden of COVID-19 in the sub-region and to ex-
plore possible reasons why the burden of the COVID-19 pandemic has been less severe in WA compared to other regions.
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2. Methods

Three compartmental models depicting the transmission dynamics of COVID-19 in the West African sub-region are
developed. The first model (referred to as Model 1 or the basic model) accounts for vaccine-derived immunity and the
waning effects of vaccinated and recovered individuals. The second model (referred to as Model 2)–an extension of the
first model, caters for the heterogeneity in vaccination status; it is structured based on whether individuals in each of
the classes are vaccinated or unvaccinated. The third model (referred to as Model 3) is an extension of the second model
that accounts for age structure, with individuals subdivided into two age groups determined by disease risk. In all three
models, vaccinated individuals are those who have been fully vaccinated (i.e., individuals who have received all required
vaccine doses, including booster doses).

2.1. Model 1: The basic model
The model, that is based on an extended Kermack-Mckenderick type framework [34] splits the entire human population
into nine distinct groups based on disease and vaccination status. The classes include unvaccinated susceptible (Su),
vaccinated susceptible (Sv ), latent (E), presymptomatic infectious (Ip ), symptomatic infectious (Ii ), asymptomatic in-
fectious (Ia), confirmed cases (Ic ), hospitalized (Ih), and recovered (R). Hence, the total population denoted by N is

N = Su +Sv +E + Ip + Ii + Ia + Ic + Ih +R.

The model (2.1), assumes no vertical transmission of COVID-19, hence, births from all the classes enter into the un-
vaccinated susceptible class (Su) at rate Λ. Natural deaths in each class occur at per capita rate µ. Vaccination of
susceptible individuals is at per capita rate ξ, while vaccine-derived immunity of vaccinated susceptible individuals
wanes at per capita rate ωsv , and natural immunity of recovered individuals wanes at per capita rate ωr . Unvacci-
nated (vaccinated) susceptible individuals become infected and progress to the latent class (E) at per capita rate λ =
(βp Ip +βa Ia +βi Ii +βc Ic +βh Ih)/N ((1−ε)λ), where β j , j ∈ {p, a, i ,c,h} is the effective contact rate for members of the
I j th class and 0 ≤ ε ≤ 1 is the efficacy of vaccines in preventing vaccinated individuals from contracting the virus. La-
tent individuals progress to the presymptomatic infectious class at per capita rate σe , while at the end of the incubation
period, presymptomatic infectious individuals join the symptomatic (asymptomatic) infectious class at per capita rate
rσp ((1− r )σp ), where 0 ≤ r ≤ 1 is the fraction of presymptomatic infectious individuals who develop clinical disease
symptoms. The confirmed class is populated by detected individuals (i.e., individuals who test positive) from the la-
tent, presymptomatic infectious, and asymptomatic infectious classes at per capita rate, τa , and detected individuals
from the symptomatic infectious class at per capita rate, τi . It should be mentioned that in WA, apart from travel and
administrative reasons, most of the people who are tested are the symptomatic infectious. Therefore, τi > τa . Con-
firmed (symptomatic infectious) individuals are hospitalized at per capita rate φc (φi ), while confirmed, symptomatic
infectious, asymptomatic infectious, and hospitalized individuals recover from infection at per capita rate, γc ,γi ,γa ,
and γh , respectively. COVID-19 related deaths occur in the confirmed, symptomatic infectious, and hospitalized classes
at per capita rate, δc ,δi , and δh , respectively. Descriptions of the variables and parameters of the basic model (2.1) are
summarized in Tables S1-S2 of the supplementary information (SI), while the model is depicted schematically in Fig. 1.
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Fig. 1: Schematic diagram of the basic model depicting the flow of individuals between classes based on the disease
and vaccination status. The classes are unvaccinated susceptible (Su), vaccinated susceptible (Sv ), latent (E), presymp-
tomatic infectious (Ip ), symptomatic infectious (Ii ), asymptomatic infectious (Ia), confirmed infectious (Ic ), hospital-
ized (Ih), and recovered (R). Descriptions of the model variables and parameters are provided in Table S1-S2 of the SI.
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Ṡu = Λ+ωr R +ωsv Sv −λSu − (ξ+µ)Su ,

Ṡv = ξSu −ωsv Sv − (1−ε)λSv −µSv ,

Ė = λ (Su + (1−ϵ)Sv )− (τa +σe +µ)E ,

İp = σe E − (τ+σp +µ) Ip ,

İi = r σp Ip − (τi +φi +γi +δi +µ) Ii , (2.1)
İa = (1− r )σp Ip − (τa +γa +µ) Ia ,

İc = τa (E + Ip + Ia)+τi Ii − (γc +φc +δc +µ) Ic ,

İh = φi Ii +φc Ic − (γh +δh +µ) Ih ,

Ṙ = γi Ii +γa Ia +γh Ih +γc Ic − (µ+ωr )R.

2.2. Model 2: The vaccine-structured model
The vaccine-structured model is derived by splitting the population into non-vaccinated and vaccinated groups (with
subscripts u and v , respectively). Hence, the total population (N ) is N = Nu +Nv , where Nu is the total non-vaccinated
population and Nv is the total vaccinated population. The total non-vaccinated population, is subdivided into non-
vaccinated susceptible (Su), latent (Eu), presymptomatic infectious (Ipu), symptomatic infectious (Ii u), asymptomatic
infectious (Iau), confirmed cases (Icu), hospitalized (Ihu), and recovered (Ru). The vaccinated population is subdivided
into similar classes with the subscript u replaced with v . Hence, the total unvaccinated and vaccinated populations are

Nu = Su +Eu + Ipu + Iau + Ii u + Icu + Ihu +Ru and Nv = Sv +Ev + Ipv + Iav + Ii v + Icv + Ihv +Rv .

A schematic depiction of the framework is given in Fig. 2, while the variables and parameters are further described in
Tables S3-S4 of the supplementary Information (SI).
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Fig. 2: Schematic diagram of the vaccine-structured model depicting the flow of individuals between compartmen-
talized classes (based on disease and vaccination status). The total population (N ) consist of unvaccinated (Nu) and
vaccinated (Nv ) groups. The unvaccinated population is made of susceptible (Su), latent (Eu), presymptomatic infec-
tious (Ipu), symptomatic infectious (Ii u), asymptomatic infectious (Icu), confirmed infectious (Icu), hospitalized (Ihu),
and recovered (Ru) classes. Also, the vaccinated population is made of similar classes with the subscript u replaced with
v . Descriptions of the model variables and parameters (rates) are provided in Tables S3-S4 of the SI.

In addition to the parameters described in Section 2.1, unvaccinated latent, presymptomatic infectious, asymptomatic
infectious, and recovered individuals are vaccinated at per capita rate ξ. As a result of therapeutic benefits of COVID-19
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vaccines in reducing severe infection, hospitalization, and mortality, the transmission rates, hospitalization, disease-
induced mortality, and recovery rates for the non-vaccinated and vaccinated populations are different and distinguished
through the use of the additional subscripts u and v , respectively. Additionally, natural (vaccine-derived) immunity
for unvaccinated (vaccinated) recovered individuals wanes at per capita rate ωr u (ωr v ). The brief description above,
together with the schematics (Fig. 2) and the variable and parameter descriptions in Tables S3-S4 of the SI lead to the
following system of ordinary differential equations for the population dynamics of non-vaccinated individuals:

Ṡu = Λ+ωr u Ru +ωsv Sv +ωr v Rv − (λuu +λvu)Su − (ξ+µ)Su ,

Ėu = (λuu +λvu)Su − (ξ+τa +σe +µ)Eu ,

İpu = σe Eu − (ξ+τa +σp +µ) Ipu ,

İi u = r σp Ipu − (τi +φi u +γi u +δi u +µ) Ii u , (2.2)
İau = (1− r )σp Ipu − (ξ+τa +γau +µ) Iau ,

İcu = τa (Eu + Ipu + Iau)+τi Ii u − (γc +φcu +δcu +µ) Icu ,

İhu = φi u Ii u +φcu Icu − (γhu +δhu +µ) Ihu ,

Ṙu = γi u Ii u +γau Iau +γhu Ihu +γcu Icu − (ξ+µ+ωr u)Ru ,

Also, using the brief description above, together with the schematics in Fig. 2 and the variable and parameter descrip-
tions in Tables S3-S4 of the SI, we obtain the following system of equations for the dynamics of vaccinated individuals:

Ṡv = ξSu − (λuv +λv v )Sv − (µ +ωsv )Sv ,

Ėv = ξEu + (λuv +λv v )Sv − (τa +σe +µ)Ev ,

İpv = ξIpu +σe Ev − (τa +σp +µ) Ipv ,

İi v = r σp Ipv − (τi +φi v +γi v +δi v +µ) Ii v , (2.3)
İav = ξIau + (1− r )σp Ipv − (τa +γav +µ) Iav ,

İcv = τa (Ev + Ipv + Iav )+τi Ii v − (γcv +φcv +δcv +µ) Icv ,

İhv = φi v Ii v +φcv Icv − (γhv +δhv +µ) Ihv ,

Ṙv = ξRu +γi v Ii v +γav Iav +γhv Ihv +γcv Icv − (µ+ωr v )Rv .

The vaccine-structured model is described by Eqs. (2.2)-(2.3), with the forces of infection λmn ,m,n ∈ {u, v} (depicting
transmission from a j m, j ∈ {p, a, i ,c,h} infectious class to an n susceptible class) are given by

λmn = βpmn Ipm +βamn Iam +βi mn Ii m +βcmn Icm +βhmn Ihm

N
. (2.4)

2.3. Model 3: Integrated (hybrid) vaccine-structured and age-structured model
The vaccine-structured model described by Eqs. (2.2)-(2.3) is now extended to account for age-structure. Here, only two
age-groups based on COVID-19 risk are considered. Group 1 denoted by the additional subscript 1 consists of individuals
below 65 years old (youths), while Group 2 denoted by the additional subscript 2, consists of individuals aged 65 and
above (elderly). It should be mentioned that in addition to being at high risk (due to underlying health conditions and
weakened immune systems) individuals aged 65 and above, have significantly different contact and mixing behaviors
compared to individuals below 65 [13, 31, 35]. Other studies on COVID-19 have also broken the population into two-age
groups [11, 23, 32, 33]. It should be noted that although, we have considered only two age groups here, more than two
age groups defined based on disease risk, possibility of mixing, severity of disease, etc., can be accounted for. Based on
our two age-group assumption, we have four coupled systems of equations that characterize the population dynamics
of 1) unvaccinated individuals in age Group 1 (Eqs. (2.5)), 2) vaccinated individuals in age Group 1 (Eqs. (2.7)), 3)
unvaccinated individuals in age Group 2 (Eqs. (2.7)), and 4) vaccinated individuals in age Group 2 (Eqs. (2.8)). Group
1 individuals progress to Group 2 at per capita rate, ρ. The total unvaccinated Group 1 population (Nu1), vaccinated
Group 1 population (Nv1), unvaccinated Group 2 population (Nu2), and vaccinated Group 2 population (Nv2) are:

Nu1 = Su1 +Eu1 + Ipu1 + Iau1 + Ii u1 + Icu1 + Ihu1 +Ru1, Nv1 = Sv1 +Ev1 + Ipv1 + Iav1 + Ii v1 + Icv1 + Ihv1 +Rv1,

Nu2 = Su2 +Eu2 + Ipu2 + Iau2 + Ii u2 + Icu2 + Ihu2 +Ru2, Nv2 = Sv2 +Ev2 + Ipv2 + Iav2 + Ii v2 + Icv2 + Ihv2 +Rv2.

Schematics of the integrated or hybrid vaccine-structured and age-structured model are depicted in Fig. 3, the model
equations are given in Eqs. (2.5)-(2.8) and the forces of infection are given by Eq. (2.9).
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Fig. 3: Schematics of the integrated vaccine-structured and age-structured model depicting the flow of individuals be-
tween compartmentalized classes (based on age, vaccination, and disease status). The total population (N ) is divided
into age group 1 (denoted by the subscript 1) and age group 2 (denoted by the subscript 2). Each age group is fur-
ther split into the subgroups of unvaccinated (denoted by the subscripts u) and vaccinated (denoted by the subscript
v), so that unvaccinated individuals in Group 1 (Group 2) carry the subscript, u1 (u2), and vaccinated individuals in
Group 1 (Group 2) carry the subscript, v1 (v2). Furthermore, individuals in each of these subgroups are partitioned
into susceptible (Smk ), latent (Emk ), presymptomatic infectious (Ipmk ), symptomatic infectious (Ii mk ), asymptomatic
infectious (Iamk ), confirmed infectious (Icmk ), hospitalized (Ihmk ), and recovered (Rmk ), where m ∈ u, v and k ∈ {1,2}
classes. Group 1 individuals progress to Group 2 at per capita rate, ρ. Descriptions of the model variables and the other
parameters (rates) are provided in Tables S5-S6 of the SI.
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The population dynamics of unvaccinated individuals in age Group 1 are described by the system of equations:

Ṡu1 = Λ+ωr u1 Ru1 +ωsv1 Sv1 +ωr v1 Rv1 − (λu11 +λv11 +λu21 +λv21)Su1 − (ξ1 +µ1 +ρ)Su1,

Ėu1 = (λu11 +λv11 +λu21 +λv21)Su1 − (ξ1 +τa +σe +µ1 +ρ)Eu1,

İpu1 = σe Eu1 − (ξ1 +τa +σp +µ1 +ρ)Ipu1,

İi u1 = r1σp Ipu1 − (τi 1 +φi u1 +γi u1 +δi u1 +µ1 +ρ)Ii u1, (2.5)
İau1 = (1− r1)σp Ipu1 − (ξ1 +τa +γau1 +µ1 +ρ)Iau1,

İcu1 = τa(Eu1 + Ipu1 + Iau1)+τi 1Ii u1 − (γcu1 +φcu1 +δcu1 +µ1 +ρ)Icu1,

İhu1 = φi u1Ii u1 +φcu1Icu1 − (γhu1 +δhu1 +µ1 +ρ)Ihu1,

Ṙu1 = γi u1Ii u1 +γau1Iau1 +γhu1Ihu1 +γcu1Icu1 − (ξ1 +µ1 +ωr u1 +ρ)Ru1,

while the population dynamics of vaccinated individuals in age Group 1 are described by the system of equations:

Ṡv1 = ξ1Su1 − (1−ε)(λu11 +λv11 +λu21 +λv21)Sv1 − (µ1 +ωsv1 +ρ)Sv1,

Ėv1 = ξ1Eu1 + (1−ε)(λu11 +λv11 +λu21 +λv21)Sv1 − (τa +σe +µ1 +ρ)Ev1,

İpv1 = ξ1Ipu1 +σe Ev1 − (τa +σp +µ1 +ρ)Ipv1,

İi v1 = r1σp Ipv1 − (τi 1 +φi v1 +γi v1 +δi v1 +µ1 +ρ)Ii v1, (2.6)
İav1 = ξ1Iau1 + (1− r1)σp Ipv1 − (τa +γav1 +µ1 +ρ)Iav1,

İcv1 = τa(Ev1 + Ipv1 + Iav1)+τi 1Ii v1 − (γcv1 +φcv1 +δcv1 +µ1 +ρ)Icv1,

İhv1 = φi v1Ii v1 +φcv1Icv1 − (γhv1 +δhv1 +µ1 +ρ)Ihv1,

Ṙv1 = ξ1Ru1 +γi v1Ii v1 +γav1Iav1 +γhv1Ihv1 +γcv1Icv1 − (µ1 +ωr v1 +ρ)Rv1.

The population dynamics of unvaccinated individuals in age Group 2 are governed by the system of equations:

Ṡu2 = ρSu1 +ωr u2Ru2 +ωsv2 Sv2 +ωr v2Rv2 − (λu22 +λv22 +λu12 +λv12)Su2 − (ξ2 +µ2)Su2,

Ėu2 = ρEu1 + (λu22 +λv22 +λu12 +λv12)Su2 − (ξ2 +τa +σe +µ2)Eu2,

İpu2 = ρIpu1 +σe Eu2 − (ξ2 +τa +σp +µ2)Ipu2,

İi u2 = ρIi u1 + r2σp Ipu2 − (τi 2 +φi u2 +γi u2 +δi u2 +µ2)Ii u2, (2.7)
İau2 = ρIau1 + (1− r2)σp Ipu2 − (ξ2 +τa +γau2 +µ2)Iau2,

İcu2 = ρIc u1+τa(Eu2 + Ipu2 + Iau2)+τi 2Ii u2 − (γcu2 +φcu2 +δcu2 +µ2)Icu2,

İhu2 = ρIhu1 +φi u2Ii u2 +φcu2Icu2 − (γhu2 +δhu2 +µ2)Ihu2,

Ṙu2 = ρRu1 +γi u2Ii u2 +γau2Iau2 +γhu2Ihu2 +γcu2Icu2 − (ξ2 +µ2 +ωr u2)Ru2,

while the population dynamics of vaccinated individuals in age Group 2 are governed by the system of equations:

Ṡv2 = ρSv1 +ξ2Su2 − (1−ε)(λu22 +λv22 +λu12 +λv21)Sv2 − (µ2 +ωs v2)Sv2,

Ėv2 = ρEv1 +ξ2Eu2 + (1−ε)(λu22 +λv22 +λu12 +λv12)Sv2 − (τa +σe +µ2)Ev2,

İpv2 = ρIpv1 +ξ2Ipu2 +σe Ev2 − (τa +σp +µ2)Ipv2,

İi v2 = ρIi v1 + r2σp Ipv2 − (τi 2 +φi v2 +γi v2 +δi v2 +µ2)Ii v2, (2.8)
İav2 = ρIav1 +ξ2Iau2 + (1− r2)σp Ipv2 − (τa +γav2 +µ2)Iav2,

İcv2 = ρIcv1 +τa(Ev2 + Ipv2 + Iav2)+τi 2Ii v2 − (γcv2 +φcv2 +δcv2 +µ2)Icv2,

İhv2 = ρIhv1 +φi v2Ii v2 +φcv2Icv2 − (γhv2 +δhv2 +µ2)Ihv2,

Ṙv2 = ρRv1 +ξ2Ru2 +γi v2Ii v2 +γav2Iav2 +γhv2Ihv2 +γcv2Icv2 − (µ2 +ωr v2)Rv2.

The full vaccine-age-structured model (Model 3) is described by Eqs. (2.5)-(2.8) with the forces of infection:

λmkl = βpmk Ipmk +βapmk Iapmk +βi pmk Ii pmk +βcpmk Icpmk +βhpmk Ihpmk

N
,m ∈ {u, v},k, l ∈ {1,2}. (2.9)
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3. Results

3.1. Analytical results for the basic model
First, we demonstrate that the basic model is well-posed from a mathematical and epidemiological stand point. Con-
sider the model (2.1) for positive time (i.e., t > 0) with the initial condition

(Su(0),SV (0),E(0), Ip (0), Ii (0), Ia(0), Ic (0), Ih(0),R(0)) = (Su0,SV 0,E0, Ip0, Ii 0, Ia0, Ic0, Ih0,R0),

and the epidemiologically feasible region

Ω=
{

(Su ,SV ,E , Ip , Ii , Ia , Ic , Ih ,R) ∈R9
+ : N ≤ Λ

µ

}
.

The dynamics of the total population (N ) is described by the equation

Ṅ = Λ−µN − (δi Ii +δc Ic +δa Ia +δh Ih) ≤Λ−µN .

This leads to N (t ) ≤ N0e−µt +Λ(
1−e−µt

)
/µ, where N (0) = N0 is the initial total population size. Hence, N (t ) → Λ/µ

as t → ∞. Accordingly, all solutions of the basic model (2.1) that originate from Ω remain trapped in Ω. That is, Ω is
positively-invariant and attracting for the model (2.1).

The disease-free equilibrium of Eqs. (2.1) is

(S∗
u ,S∗

v ,E∗, I∗p , I∗i , I∗a , I∗c , I∗h ,R∗) =
(
Λ(µ+ωsv )

µ(µ+ωsv +ξ)
,

Λξ

µ(µ+ωsv +ξ)
,0,0,0,0,0,0,0

)
.

Through the next generation matrix method [36, 37], we obtain the following basic reproduction number for Model 1
(Eqs. (2.1)) in the absence of vaccination or any control measure (see Section 2.1 of the SI for details of the calculations):

R0 = Rp +Ra +Ri +Rc +Rh , (3.1)

where

Rp = βpσe Aa Ac Ah Ai

Aa Ac Ae Ah Ai Ap
, Ra = βa(1− r )σeσp Ac Ah Ai

Aa Ac Ae Ah Ai Ap
, Ri =

βi rσeσp Aa Ac Ah

Aa Ac Ae Ah Ai Ap

Rc =
βc Ah

{[
rτi Aa + (1− r )τ0 Ai

]
σeσp +τ0 Aa Ai (σe + Ap )

}
Aa Ac Ae Ah Ai Ap

,

Rh =
βh

{[
r Aa(φi Ac +φcτi )+ (1− r )φcτ0 Ai

]
σeσp +φcτ0 Aa Ai (σe + Ap )

}
Aa Ac Ae Ah Ai Ap

,

Aa = τ0 +γa +µ, Ac = γc +φc +δc +µ, Ae = τ0 +σe +µ, Ah = γh +δh +µ, and Ai = τi +φi +γi +δi +µ , Ap = τ0 +σp +µ.
In the presence of vaccination and/or other control and mitigation measures, the control reproduction number is

Rc = R0
S∗

u + (1−ε)S∗
v

S∗
u +S∗

v
, (3.2)

where Λ(µ+ωsv )/[µ(µ+ωsv + ξ)] and Λξ/[µ(µ+ωsv + ξ)]. Let fv be the proportion of the susceptible population to
be vaccinated to attain vaccine-derived herd immunity, then from the equation Rc = 1, we obtain the herd-immunity
threshold

f c
v = 1

ε

(
1− 1

R0

)
. (3.3)

This, together with the methodology for calculating the reproduction number leads to the following result on the local
stability of the disease-free equilibrium:

Theorem 3.1. Achieving vaccine-derived herd immunity (and hence eliminating COVID-19) in WA using an imperfect
anti-COVID-19 vaccine is possible if fv > f c

v (i.e., if Rc < 1) and impossible if fv < f c
v (i.e., if Rc > 1).

This analysis can be extended to Models 2 and 3 with slight modifications (see Section 3 of the SI).
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3.2. Model fitting and parameter estimation
Some of the parameters for Models 1-3 (i.e., Eqs. (2.1), (2.2)-(2.3), and (2.7)-(2.8)) are available in the literature, while
others are unknown. In this section, the unknown parameters for each of the three models are estimated by fitting the
corresponding model to daily confirmed COVID-19 case data for the sixteen West African countries (Benin, Burkina Faso,
Cape Verde, Côte D’Ivoire, Gambia, Ghana, Guinea, Guinea-Bissau, Liberia, Mali, Mauritania, Niger, Nigeria, Senegal,
Sierra Leone, and Togo) [9, 38]. To incorporate the entire COVID-19 data from the onset of the pandemic in WA (i.e., from
February 28, 2020) to May 24, 2022, a simplified version of the basic model (2.1) with no vaccination is fitted to data for
the pre-vaccination period (i.e., the period from February 28, 2020 to May 30, 2021), while each of the three models (i.e.,
Eqs. (2.1), (2.2)-(2.3), and (2.7)-(2.8)) is fitted to the data for the vaccination period. Since data for WA is reported by
country and not for the entire region, the data used for fitting the models is obtained by aggregating the daily country-
wise confirmed COVID-19 case data. Using raw (daily case) data to fit the models is important in avoiding common
errors that might arise with cumulative case data [39]. The model fitting and parameter estimation was performed
using a nonlinear least-squares algorithm implemented in MATLAB (version R2021a) that minimizes the sum of the
squared differences between the number of daily confirmed cases from the data (for the period from February 28, 2020
to May 24, 2022 and the number of daily confirmed cases from each of the models for the same period. Furthermore,
a bootstrapping approach [40] with 1,000 replicates was used to compute the 95% confidence intervals for the fitted
parameters, while the rest of the confirmed daily case data from March 15, to May 24, 2022, and cumulative case data
for the entire period from February 28, 2020 to May 24, 2022 were used for validation purposes. The fits for Models 1-3
(i.e., Eqs. (2.1), (2.2)-(2.3), and (2.7)-(2.8)) are illustrated in Fig. 4 (a)-(c), respectively, while an illustration of how well
each of the models matches the confirmed case data is illustrated in Fig. 4 (d)-(f). In each of the figures for the confirmed
new daily cases, the green curve depicts the model validation using the portion of the data that was not used for fitting.
The estimated parameters and their 95% confidence intervals, together with the corresponding baseline values of the
control reproduction numbers of the models are tabulated in the online supplementary information (Tables S7-S11).
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Fig. 4: (a)-(c): Time series plots depicting the fitting of Models 1-3 (i.e., Eqs. (2.1), (2.2)-(2.3), and (2.7)-(2.8)) to con-
firmed daily case data for WA from February 28, 2020 to May 24, 2022. (d)-(f): Simulations of Models 1-3 using the
estimated model parameters showing how well the cumulative number of confirmed COVID-19 cases from the model
matches those from the West African data. The green curve, i.e., the portion of the curve from March 15, 2022 to May 24,
2022 demonstrates the performance of the models in predicting daily and cumulative COVID-19 cases in WA. The fixed
and fitted parameter values are given in Tables S7-S11 of the (SI).

3.3. Global sensitivity analysis
Since uncertainty or variability in some model parameters can lead to substantial uncertainty or variability in some
model outputs (response functions), it is instructive to carry out an uncertainty and sensitivity analysis to identify model
parameters that significantly influence the model response functions. Here, the Latin Hypercube sampling (LHS) and
Partial Rank Correlation Coefficient (PRCC) methodology, as well as the associated MATLAB code provided by [41] are
used to perform a global uncertainty and sensitivity analysis. Assuming a uniform distribution between the minimum
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and maximum values of the parameters, the range of each parameter is split into 5,000 equal sub-intervals. A Latin-
Hypercube Sampling matrix, which is used to solve each model system, is generated by sampling at random without
replacement from each parameter distribution. The simulation results are used to compute PRCCs corresponding to
the response function (the peak number of confirmed daily COVID-19 cases in WA). The results of this analysis, de-
picted in Fig. 5, show that uncertainty or variability in the community transmission rate of asymptomatic infectious
individuals (βa for Model 1, βau for Model 2, and βau1 for Model 3), the recovery rates of asymptomatic infectious indi-
viduals (γh ,γau , and γau1), and the detection rates of symptomatic infectious individuals (τ,τi u , and τi u1), will generate
the greatest uncertainty or variability in the peak number of COVID-19 cases in WA. Also, changes in the transmission
rates of presymptomatic infectious individuals (βp ,βpu , and βpu1), the recovery rates of symptomatic infectious indi-
viduals (γi ,γi u , and γi u1), the proportion of pre-symptomatic infectious individuals who develop COVID-19 symptoms
at the end of the incubation period (r for Models 1 and 2 and r1 for Model 3) and the hospitalization rates of symp-
tomatic infectious individuals (φi ,φi u , and φi u1), are amongst the most influential parameters with significant impact
on the response function. This analysis shows that asymptomatic infectious individuals, especially those in from age
Group 1 (youths) are among the leading drivers of the pandemic in WA and that reducing disease transmission among
asymptomatic infectious individuals (mostly the youths) will go a long way in curtailing the burden of the pandemic.

Fig. 5: Partial Rank Correlation Coefficients (PRCCs) depicting the influence of selected model parameters on the peak
number of new daily COVID-19 cases during the first Omicron wave (i.e., the overall 4th wave) of the COVID-19 pandemic
in WA for (a) Model 1, (b) Model 2, and (c) Model 3. Only parameters for which the magnitude of the PRCCs are greater
than or equal to 0.3 are displayed. The baseline parameters values used for this simulation are given in Tables S7-S11.

3.4. Numerical simulation results
In this section, Models 1-3 (i.e., the models given by Eq. (2.1), Eqs. (2.2)-(2.3), and Eqs. (2.5)-(2.8)) are simulated to as-
sess the impact of vaccination, control measures that result in a reduction in disease transmission, relaxation of control
measures, and the impact of more transmissible new COVID-19 variants on the burden of the COVID-19 pandemic in
WA. Unless otherwise specified, by vaccinated individuals, we are referring to fully vaccinated individuals (i.e., individ-
uals who have received all required vaccine, including booster doses). Also, unless otherwise specified, the fixed and
estimated baseline parameters in Tables S7-S11 of the SI are used for the simulations.

3.4.1. Investigating the impact of vaccine efficacy and vaccine coverage on the burden of COVID-19 in WA
Contour plots of control reproduction number (Rc ) of each of the three models (i.e., Eqs. (2.1), Eqs. (2.2)-(2.3), and
Eqs. (2.5)-(2.8)) plotted as functions of the efficacy of vaccines (ε) and the proportion of vaccinated individuals ( fv )
are presented in Fig. 6. It should be mentioned that while Model 3 offers a chance for vaccine prioritization between
age-groups, Models 1-2 do not. The results of Model 1 show that to reduce the control reproduction number below
unity (i.e., to contain the pandemic) in WA using only the widely available vaccines in the region (e.g., the AstraZeneka,
Sinopharm, sputnik light, Covaxin, Sputnik V, Johnson and Johnson, Sinovac, etc., vaccines with an average efficacy of
ε ≈ 0.67), at least 84% of the West African population (i.e., ≈ 357 million people) must be vaccinated (Fig.6 (a)). Lower
vaccine coverages are required for Models 2-3. Specifically, with Model 2, at least 73% of the population of WA (i.e.,
≈ 306 million people) must be vaccinated (Fig.6 (b)), while using Model 3, at least 68% of the West African populace
(i.e., ≈ 289 million people) must be vaccinated (Fig.6 (c)) in order to reduce the control reproduction number below
one. Hence, the vaccine-derived herd immunity thresholds for Models 1-3 are 84%, 73%, and 68%, respectively. If the
West African populace adopts a vaccination policy that relies on the use of highly effective vaccines such as the Pfizer
or Moderna vaccines with efficacies of ≈ 95% [42, 43], these thresholds reduce to 60% for Model 1, 51% for Model 2, and
48% for Model 3. If on the other hand, vaccines with lower efficacies are adopted, then containing the pandemic in WA
will become more difficult. In particular, if only the vaccine with the lowest efficacy of ≈ 51% is used in the sub-region,
Model 1 indicates that reducing the control reproduction number before one will be impossible even if the entire West
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African population is vaccinated (Fig.6 (a)). With Model 2, at least 95% of the population must be vaccinated to reduce
the control reproduction number below one (Fig.6 (b)), while with Model 3, at least 90% vaccine coverage is required
to contain the disease (Fig.6 (c)). Additional coverage thresholds for corresponding vaccine efficacies are given in Table
S14 of SI. To summarize, prioritizing highly effective vaccines is important in curtailing the burden of the COVID-19
pandemic in WA. Also, not accounting for age-structure overestimates the effort required to contain COVID-19 in WA.
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Fig. 6: Contour plots of the control reproduction number (Rc ) of (a) Model 1 (Eq. (2.1)), (b) Model 2 (Eqs. (2.2)-(2.3)),
and (c) Model 3 (Eqs. (2.5)-(2.8)) as functions of vaccine coverage ( fv ) and the protective vaccine efficacy against SARS-
CoV-2 (ε). The other parameter values used for the simulations are provided in Tables S7-S11 of the SI.

3.4.2. Investigating the impact of vaccinating youths versus the elderly on the burden of COVID-19 in WA
Figure 7 depicts contour plots of the control reproduction number (Rc ) of Model 3 as functions of the vaccination rate
of the youths (ξ1) and the vaccination rate of the elderly (ξ2) to assess the combined impact of vaccine prioritization
by age-group and additional mask-use compliance. The results show that reducing the control reproduction number
below one by vaccinating only youths or the elderly is unattainable, even when the vaccination policy is complemented
with up to a 20% increase in mask-use compliance, unless when a very high number of West Africans are vaccinated
daily. However, the disease can be contained if both youths and the elderly are vaccinated at specific target rates. In
particular, for the case with no additional transmission reducing measure from baseline, ξc

1 = ξc
2 = 2.9×10−3 is identified

as a threshold vaccination rate for reducing the control reproduction number below one (Fig.7 (a)). This corresponds
to vaccinating 1.1 million youths and 0.2 million elderly daily. To reduce the control reproduction number below one,
the vaccination rate of the elderly must be greater than that for youths when ξ1 < ξc

1, and the vaccination rate of the el-
derly must be less than that for youths when ξ1 > ξc

1. This threshold vaccinating rate will be used as a point of reference
to assess the impact of relative changes in the vaccination rates of youths and the elderly. Specifically, if the threshold
number of youths vaccinated is reduced by 10% (i.e., if the vaccination rate of youths is reduced from ξ1 = 2.9×10−3 to
ξ1 = 2.6×10−3), then at least 24% more elderly individuals must be vaccinated (i.e., the vaccination rate of the elderly
must increase from ξ2 = 2.9×10−3 to ξ2 = 3.6×10−3) to reduce the reproduction number below one. Additionally, if the
threshold number of youths vaccinated is increased by 10% (i.e., if the vaccination rate of youths is now ξ1 = 3.2×10−3),
then 14% less elderly people are required to be vaccinated (i.e., ξ2 = 2.5×10−3) to reduce the reproduction number below
one. On the other hand, if the threshold number of the elderly people vaccinated is reduced by 10% (i.e., if ξ2 = 2.6×10−3),
then at least 7% more youths must be vaccinated (i.e., ξ1 = 3.1×10−3) to reduce Rc below one. Furthermore, if the thresh-
old number of the elderly vaccinated is increased by 10% (i.e., if ξ2 = 3.2×10−3), then 3% less elderly are required to be
vaccinated (i.e., ξ1 = 2.8×10−3) to reduce Rc below one.

For the case in which additional transmission rate reducing controls are implemented, the numbers of youths and el-
derly required to be vaccinated to bring the control reproduction number below one are reduced. In particular, if the
vaccination rate of youths is ξ1 = 2.9×10−3 per day and the current level of transmission reducing control measures is
increased by 10%, then the vaccination rate of the elderly must be ξ2 = 1.1×10−3 per day (Fig.7 (b)), while if the current
level of transmission reducing control measures is increased by 20%, then the vaccination rate of the elderly must be
ξ2 = 0.4×10−3 to reduce the reproduction number below one (Fig.7 (c)). However, if the vaccination rate of the elderly
is ξ1 = 2.9×10−3 per day and the current level of transmission reducing control measures is increased by 10%, then the
vaccination rate of youths must be ξ2 = 1.5×10−3 per day (Fig.7 (b)), while if the current level of transmission reducing
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control measures is increased by 20%, then the vaccination rate of youths must be ξ2 = 0.7×10−3 to reduce the repro-
duction number below one (Fig.7 (c)). It should be noted that for the 10% transmission rate reducing scenario, a 34.5%
reduction in the vaccination threshold is attained (i.e., ξ1 = ξ2 = 1.9×10−3.), while for the 20% transmission rate reducing
scenario, there is a 58.6% reduction in the threshold vaccination rate (i.e., ξ1 = ξ2 = 1.2×10−3). To summarize, vaccinat-
ing more youths than the elderly is a good strategy for containing the COVID-19 pandemic in WA, while vaccinating
more youths and the elderly simultaneously is a better strategy. Under any of these scenarios, prospects of containing
the pandemic are improved if the mask-use compliance level is raised.
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Fig. 7: Contour plots of the control reproduction number (Rc ) of Model 3 (Eqs. (2.5)-(2.8)) as functions of the vaccination
rates of youths (ξ1) and the elderly (ξ2) for different levels of additional mask-use compliance (cm): (a) no additional
mask-use compliance, (b) +10% mask compliance, and (c) +20% mask compliance. The other parameter values used
for the simulations are provided in Tables S7 & S11 of the SI.

3.4.3. Investigating the impact of vaccination on the dynamics of COVID-19 in WA.
The three models given by Eqs. (2.1), Eqs. (2.2)-(2.3), and Eqs. (2.5)-(2.8) are simulated to assess the impact of vaccina-
tion on the number of confirmed daily COVID-19 cases in WA. The results obtained (Fig. 8), show that vaccination has
a significant impact in reducing the peak number of confirmed daily cases in WA. Specifically, if the vaccination rate in
Model 1 is maintained at its baseline value of 1.174×10−5 (i.e., only ≈ 5,000 West Africans are vaccinated daily), there
is a possibility of multiple pandemic waves, with the next wave peaking by mid November, 2022 and milder than the
Omicron wave. If the vaccination rate is increased from baseline to 2.9×10−3 per day (i.e., ≈ 1.2 million West Africans are
vaccinated daily), a 14% reduction in the baseline peak number of daily confirmed cases will be recorded using Model
1 (comparing the major blue and the magenta peaks in Fig. 8 (a)), while a 21% reduction in the baseline peak size will
be recorded using Model 2 (comparing the blue and magenta curves in Fig. 8 (b)). In this case, elimination is possible
by April 18, 2022 using Model 2, while another minor pandemic wave that will peak by mid February 2023 is possible for
Model 1. For the same vaccination rate, an additional 7% reduction in the peak number of confirmed cases is recorded
with Model 2 compared to Model 1 (comparing the difference between the major blue and magenta peaks in Fig. 8 (a)
and the difference between the major blue and magenta peaks in Fig. 8 (b)). Furthermore, if the vaccination rate in is
increased from its baseline value to 1.2×10−2 per day (i.e., if ≈ 2.3 million West Africans are vaccinated daily) then more
significant reductions in the peak number of confirmed daily cases are recorded for both Models 1 and 2. Specifically,
a 26% reduction is recorded using Model 1 (comparing the blue and green curves in Fig. 8 (a)), while a 41% reduction
is recorded using Model 2 (comparing the blue and magenta curves in Fig. 8 (b)). It should be noted that an additional
reduction of 25% in the peak number of confirmed cases is recorded if Model 2 is used instead of Model 1 (comparing
the difference between the blue and green curves in Fig. 8 (a) and the difference between the blue and green curve in Fig.
8 (b)). Thus, Model 1 overestimates diseased burden and the required effort to contain the disease compared to Model 2.

In the case of Model 3, if the vaccination rates of youths (ξ1) and elderly (ξ2) increase from their respective baseline
values to 2.9×10−3 (i.e., if ξ1 = ξ2 per day, or 1.05 million youths and 185 thousands elderly are vaccinated daily), there
is a 10% decrease in the peak number of daily confirmed cases (comparing the blue and magenta curves in Fig. 8 (c)).
A further increase in the vaccination rates of youths and the elderly will lead to a more significant decrease in the peak
number of daily confirmed cases. In particular, if ξ1 = ξ2 = 1.2× 10−2, a 36% reduction in the pandemic peak size is
recorded (comparing the blue and green curves in Fig. 8 (c)). On the other hand, if the vaccination rate of the elderly is
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maintained at its baseline value of ξ2 = 9.4×10−6, while that of youths is increased to ξ1 = 2.9×10−3 (i.e., ≈ 1.05 million
youths are vaccinated daily), there is a 8% decrease in the peak number of daily confirmed cases (comparing the blue
and the light green curves in Fig. S1 of the SI). But if the vaccination rate of youths is maintained at its baseline value
of ξ1 = 2.3×10−6, while that of the elderly is increased to ξ2 = 2.9×10−3, there is a 2% decrease in the peak number of
confirmed daily cases (comparing the blue and magenta curves in Fig. S1 of the SI). If ξ1 = 1.2×10−2 and ξ2 = 2.9×10−3,
a 34% reduction in the peak size is recorded (comparing the blue and yellow curves in Fig. S1 of the SI), if ξ2 = 1.2×10−2

and ξ1 = 2.9×10−3, a 13% reduction in the peak size is recorded (comparing the blue and grey curves in Fig. S1 of the
SI). Hence, increasing vaccination rate among youth leads to more reduction in the peak size (comparing the yellow
and grey curves in Fig. S1 of the SI). To summarize, vaccinating more youths than the elderly or vaccinating both more
youths and more elderly is critical in controlling the COVID-19 pandemic in West Africa.

11
/2

0/
21

02
/2

0/
22

05
/2

3/
22

08
/2

3/
22

11
/2

3/
22

02
/2

3/
23

05
/2

6/
23

0.00

2.06

4.12

6.18

8.24

11
/2

0/
21

02
/2

0/
22

05
/2

3/
22

08
/2

3/
22

11
/2

3/
22

02
/2

3/
23

05
/2

6/
23

11
/2

0/
21

02
/2

0/
22

05
/2

3/
22

08
/2

3/
22

11
/2

3/
22

02
/2

3/
23

(b) (c)(a)

Fig. 8: Simulations of (a) Model 1, (b) Model 2, and (c) Model 3 illustrating the number of new daily COVID-19 cases
in West Africa for different vaccination rates (ξ for Models 1-2 and ξ1 and ξ2, where ξ = ξ1 = ξ2 for Model 3). The other
parameter values used in the simulations are provided in Tables S7-S11 of the SI.

3.4.4. Investigating the impact of additional masking on the dynamics of COVID-19 in WA.
To investigate the impact of additional control measures that result in a reduction in the effective transmission rate
in each of the three models on the daily and cumulative COVID-19 cases in WA, the models are simulated using the
following three (arbitrary) values of the transmission reduction-related parameters: 1) low additional reduction (cm =
0.15), 2) moderate additional reduction (cm = 0.30), and (c) high additional reduction (cm = 0.45). The results obtained
and displayed in Fig. 9 show the possibility of another wave with a lower peak size for the baseline, low, and moderate
additional reduction in transmission scenarios if Model 1 is used. For example, under the low and moderate additional
reduction in transmission rate scenarios, 21%, and 50% reductions in the minor peak sizes are recorded (comparing
the minor blue peak with the minor magenta and yellow peaks in Fig. 9 (a)). In what follows, we focus on the major
wave (i.e., the wave with the larger peak size). Figure 9 shows that significant reductions in the burden of COVID-19 in
West Africa will be achieved with additional reduction in transmission, especially for the cases of Models 1 and 2. In
particular, using Model 1 with the low additional mask compliance level, a 31% reduction in the baseline peak number
of daily cases is recorded (comparing the major blue and magenta peaks in Fig. 9 (a)). For this same low additional mask
compliance level, a 32% reduction in the baseline peak number of daily cases is recorded (comparing the major blue and
magenta peaks in Fig. 9 (b)), while with Model 3, a 17% reduction in the baseline peak number of daily cases is recorded
(comparing the major blue and magenta peaks in Fig. 9 (c)). Under the moderate additional reduction in transmission
rate scenario, a 60% reduction from the baseline peak number of daily cases is recorded with Model 1 (comparing the
major blue and yellow peaks in Fig. 9 (a)), a 66% reduction from the baseline peak numbers of daily cases is recorded
with Model 2 (comparing the major blue and yellow peaks in Fig. 9 (b)), while a 36% reduction from the baseline peak
numbers of daily cases is recorded with Model 3 (comparing the major blue and yellow peaks in Fig. 9 (c)). Even more
significant reductions are obtained under the high additional reduction in transmission rate scenario. Specifically, an
88% reduction in the peak numbers of daily cases is obtained with Model 1 (comparing the major blue and green peaks
in Fig. 9 (a)), a 94% reduction is obtained with Model 2 (comparing the major blue and green peaks in Fig. 9 (b)), and a
56% reduction is obtained with Model 3 (comparing the major blue and green peaks in Fig. 9 (c)). For each of the three
reductions in transmission rate scenarios, the reduction in the peak size for Model 2 is lower than that for Model 1, while
the reductions for Models 1 and 2 are lower than those for Model 3 (comparing the same curve colors in Fig. 9 (a)-(c)).
Similar reductions are obtained for the cumulative number of confirmed cases (Fig. 9 (d)-(f)).
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Fig. 9: Simulations of Model 1 ((a) and (d)), Model 2 ((b) and (e)), and Model 3 ((c) and (f)) showing the daily number
of confirmed cases ((a)-(c)) and the cumulative number of cases ((d)-(f)) for various additional reductions (cm) in the
transmission rate. The values of the other parameters used for the simulations are given in Tables S7-S11 of the SI.

3.4.5. Investigating the combined impact of vaccination and additional masking on the dynamics of COVID-19 in WA
The three models described by Eq. (2.1), Eqs. (2.2)-(2.3), and Eqs. (2.5)-(2.8) are simulated to explore the combined
impact of vaccination and additional reduction in disease transmission (resulting from additional mask-use compli-
ance) on the number of daily cases of COVID-19 in West Africa. Here, only the arbitrarily selected low and moderate
levels, corresponding to +15% and 30% additional reductions in transmission rates are considered. The results of the
simulations presented in Fig. 10 show drastic reductions in the peak number of daily cases when additional reduction
in transmission is combined with increased vaccination. In particular, for a 15% additional reduction in transmission,
if the vaccination rate is ξ= ξ1 = ξ2 = 2.9×10−3, a 42% reduction in the peak number of daily cases will be registered for
Model 1 (comparing the major blue and magenta peaks in Fig. 10 (a)), a 55% reduction in the peak number of daily cases
will be registered for Model 2 (comparing the major blue and magenta peaks in Fig. 10 (b)), and a 27% reduction in the
peak number of daily cases will be registered for Model 3 (comparing the major blue and magenta peaks in Fig. 10 (c)).
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Fig. 10: Simulations of Model 1 ((a) and (d)), Model 2 ((b) and (e)), and Model 3 ((c) and (f)) to assess the impact of a 15%
additional reduction in COVID-19 transmission ((a) and (c)) and a 30% additional reduction in COVID-19 transmission
((d) and (f)) for different vaccination rates (ξ= ξ1 = ξ2) on the number of new daily COVID-19 cases in WA. The values
of the other parameters used for the simulation are as given in Tables S7-S11 of the SI.

On the other hand, for a 15% additional reduction in transmission, if the vaccination rate is ξ= ξ1 = ξ2 = 1.2×10−2, a 73%
reduction in the peak number of daily cases will be registered for Model 1 (comparing the major blue and green peaks
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in Fig. 10 (a)), a 91% reduction in the peak number of daily cases will be registered for Model 2 (comparing the major
blue and green peaks in Fig. 10 (b)), and a 54% reduction in the peak number of daily cases will be registered for Model
3 (comparing the major blue and green peaks in Fig. 10 (c)). The reductions are even more drastic for the moderate
reduction in transmission case, i.e., when cm = 0.30 (Fig. 10 (d)-(f)).

3.5. Assessing the impact of relaxing transmission reduction measures or more transmissible new variants of COVID-19
At the time of this writing, the number of new daily cases of COVID-19 in WA was very low (≈ 100 cases per day). This
could be attributed to limited testing, under-reporting, or the lack of reporting from some countries. The low case num-
bers have led to the relaxation of most of the control measures. In this section, Models 1-3 are simulated to assess the
impact of reinforcing or relaxing existing transmission control strategies, as well as the emergence of new more trans-
missible variants of SARS-CoV-2 in WA. The results obtained (Fig. 11) show that reinforcing existing transmission control
strategies can prevent subsequent waves of the pandemic from occurring, while relaxing the existing control measures
can lead to additional waves in West Africa. If control measures are maintained at their current level, another wave of the
pandemic with a peak size 74% less than that of the Omicron wave for Model 1 will be possible (Fig. 11 (a)). If additional
measures that can result in a 50% reduction in COVID-19 transmission in WA are implemented, then the disease can be
contained for each of the three models with no subsequent waves (magenta curves in Fig. 11 (a)-(c)). However, if the
existing control measures are relaxed to a level that triggers a 50% increase in the effective transmission rate increases
or if is a new variant that is 1.5 times more transmissible emerges, then containing the pandemic in the WA will be more
difficult since this will lead to subsequent waves with peak sizes lower than those of the Omicron wave for Models 1 and
2 (black curves in Fig. 11 (a)-(b)). In this case, the size of the new wave will be 90% that of the Omicron wave for Model
1 and 69% that of the Omicron wave for Model 2. Further relaxing of the control measures will lead to more devastating
subsequent waves (yellow curves in Fig. 11 (a)-(c)).
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Fig. 11: Simulations of (a) Model 1, (b) Model 2, and (c) Model 3 showing the effects of reinforcing or relaxing control
measures that result in a change in the effective transmission rate or the emergence of new more transmissible variants
of SARS-CoV-2 in WA. The values of the other parameters are given in Tables S7-S11.

4. Discussion, limitations, and conclusion

4.1. Discussion and limitations
A significant impact of COVID-19 has been felt in almost every nation throughout the world. Although NPIs and the
design and deployment of several safe and effective vaccines for use within a very short time helped significantly in
limiting the spread of the virus, COVID-19 is becoming increasingly difficult to combat due to the emergence of VOC
against which existing vaccines provide only some degree of cross-protection. Additionally, limited supply of these vac-
cines to some regions, e.g., WA calls for prioritization of vaccine administration to certain target groups. In this study,
three mathematical models that account for vaccination strategies are formulated and used to explain and predict the
burden of COVID-19 in WA. In the first model, only susceptible individuals are vaccinated, while in the second model,
exposed, presymptomatic, and asymptomatic individuals are also vaccinated since we are not aware of their disease sta-
tus unless when they are tested. In this extended model, we track two different groups of individuals (namely, vaccinated
and unvaccinated individuals) in each of the classes. The third model extends the second through the introduction of
a dichotomous age structure of the population. Accounting for age structure in the dynamics of COVID-19 in WA is
critical for vaccine prioritization since the risk of COVID-19 is associated with age and underlying medical conditions
and since there is a wide gap between the youthful and elderly populations in WA [44, 45]. The importance of account-
ing for age structure in models aimed at explaining the spread and control of COVID-19 have been highlighted in [31, 46].
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Standard techniques from nonlinear dynamical systems and infectious disease modeling are used to acquire rigorous
insights into the dynamics of the models. These include computing the basic and control reproduction numbers and
using them to establish the existence and stability of disease-free equilibria and for computing vaccine-derived herd
immunity thresholds (i.e., the proportion of the population to vaccinate in order to contain the disease) of the models.

Although some parameters of each of the three models are known and available in the literature, others are unknown.
To estimate the unknown parameters, each of the models is fitted to confirmed new daily COVID-19 case data from West
Africa. The segment of data from February 28, 2020 to March 24, 2022 is used for fitting, while the remaining segment for
the period from March 25, 2022 to May 24, 2022 is used for validation. Additionally, cumulative case data for the entire
region is used for validation of the model. In both cases, there is a good match between the number of confirmed cases
from the data and the number of confirmed cases from the model. The estimated parameters show that the transmission
rates of asymptomatic infectious individuals are greater than those for symptomatic infectious individuals. For exam-
ple, during the Omicron wave, asymptomatic infectious youths were three times more infectious than symptomatic
youths, whereas for the elderly, there was no significant difference in the transmission rates of the symptomatic and
asymptomatic infectious. Also, disease transmission between the elderly population is lower than between the younger
population, while transmission from youths to the elderly is higher than transmission from the elderly to the youths.
This is consistent with results from a study by Richard et al. [31], which show a relatively low contact rate among indi-
viduals aged 60 years and older in Burkina-Faso. Our study points to the fact that infectious individuals who exhibit very
mild or no disease symptoms, particularly those younger than 65 years old are the main drivers of the COVID-19 pan-
demic in WA. This is reasonable since most of the population of WA is young and younger people have wider networks of
contacts and interactions. Also, because most infected youths experience only mild or no disease symptoms at all, they
are not aware that they are infected with SARS-CoV-2. These results are consistent with those in [26, 47, 48]. Curtailing
SARS-CoV-2 spread by asymptomatic infectious individuals (e.g., through mass testing of youths and education on safe
practices) can have a significant impact in reducing the burden of the pandemic in the West African sub-region.

The numerical values of the herd immunity thresholds computed using the known and estimated values of the pa-
rameters of the three models are 84% for Model 1, 73% for Model 2, and 68% for Model 3, which are in the range of herd
immunity thresholds reported in [49, 50]. Also, the African Centers for Disease Control’s COVID-19 vaccine program
recommends that 70% of the population be fully vaccinated (with 30% of this target by the African Vaccine Acquisition
Trust (AVAT) program and the remaining 40% by the COVID-19 Vaccines Global Access (COVAX) in Africa [2]). Despite
this recommendation, a very wide gap between the required and available number of vaccine doses still exists. Specif-
ically, only 6.7% of the 843.2 million vaccine dose target by AVAT and only about 52.2% of the required vaccine doses
from the COVAX program had been received by late June 2022 [2]. To compound matters, even with this failure in vac-
cine delivery, not all the delivered doses have been administered as a result of factors such as vaccine hesitancy. At the
current baseline vaccination rates, it will take 5.7 years to attain herd immunity with Model 1, 5 years to attain herd
immunity with model 2, and 4.6 years to attain herd immunity with Model 3. However, with the availability of more
vaccine doses, if the current vaccination rates for youths and the elderly in Model 3 are tripled, then herd immunity
will be attainable in WA by the end of 2023. This result aligns with studies in [51] calling for a substantial ramp up in
COVID-19 vaccination in WA to achieve herd immunity. Another issue with the vaccination program in WA is that many
of the vaccines used in the area are of lower efficacy. Our study shows that higher proportions of the population are
required to be vaccinated to achieve vaccine-derived herd immunity if the efficacies of the vaccines used in WA are low.
For example, if only the vaccine with the lowest efficacy (i.e., the Sinovac-CoronaVac vaccine with an efficacy of ≈ 51%)
is used, then vaccine-derived herd immunity threshold for Model 2 (Model 3) is 95% (90%). But if the region prioritizes
the use of highly efficacious vaccines such as the Pfizer-BioNTech or Moderna vaccine, the vaccine-derived herd im-
munity thresholds are lower (51% for Model 2 and 48% for Model 3. Computations of the reproduction numbers of the
three models show that the reproduction number of Model 1 is bigger than that of Model 2, which in turn is bigger than
the reproduction number of Model 3. In particular, the computed reproduction number for Model 3 (i.e., Rc ≈ 1.3) is
in the range of the average computed reproduction numbers for WA for the same period [52]. Hence, the reproduction
numbers and herd immunity thresholds of the models show that disease burden and the required control efforts are
overestimated in models in which age-structure is not accounted for. Thus, accounting for age-structure is critical in
explaining the control and transmission dynamics of COVID-19. This is consistent with results presented in [31, 46].

A global sensitivity analysis identifies model parameters that are associated with asymptomatic infectious individuals
among the parameters with the most significant impact on the peak size of the number of confirmed COVID-19 cases for
each of the three models. This, again, confirms the fact that asymptomatic infectious individuals, especially those within
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the youthful group are at the center of COVID-19 transmission of in WA. When most individuals within this age group
become infected, they either do not exhibit any clinical symptoms of COVID-19 or they exhibit only mild symptoms.
Because they constitute the greater proportion of the population and have larger contact networks, they easily spread
the virus unknowingly. Therefore, preventing COVID-19 spread by asymptomatic infectious individuals (e.g., through
mass testing and isolation of detected infectious youths and extensive education on safe COVID-19 practices) can have
a significant impact in reducing the burden of the pandemic.

Simulations of the models show that vaccination is important in reducing the spread of COVID-19, especially if vac-
cines of higher efficacy than most of those currently used in WA are prioritized. Also, vaccinating a high proportion of
the population below 65 years compared to that 65 and above is critical for containing the pandemic, while vaccinating
more youths and the elderly simultaneously is even a better control strategy. This suggests a different vaccination pol-
icy compared to that implemented in high-income countries such as the U.S., where the elderly and most vulnerable
(i.e., those with pre-existing medical conditions) were first vaccinated during the initial phase of vaccine allocation and
booster vaccine dose administration [53, 54]. This strategy will be unsuccessful in sub-Saharan Africa and WA in par-
ticular with a very young population. However, it should be mentioned that while prioritizing vaccination of the elderly
population is critical in reducing severe illness, hospitalization, and mortality [31], directing more vaccine administra-
tion towards the youths is essential in reducing the spread of COVID-19 [32, 33]. Additional simulations of the model
show that reinforcing current control and mitigating measures, especially those measures that translate to a direct re-
duction in the spread of COVID-19 has a significant impact in curtailing the burden of the pandemic, especially when
such measures are combined with vaccination policies. On the other hand, relaxing the current measures, or the emer-
gence of new more transmissible variants of SARS-CoV-2 can trigger more devastating waves of the pandemic.

The accuracy of our estimates is limited by the use of incidence data in building our models, which is less precise com-
pared to wastewater data or data on severe and hospitalized cases. These additional data sources were not readily avail-
able at the time this research was carried out. Additionally, under reporting of cases and low testing capacity within the
sub-region could have affected our findings. The gap in the literature regarding the extent of social contacts among vari-
ous age groups in WA inspired our use of a dichotomous age structure instead of deploying a contact matrix in assessing
the impact of age structure on the transmission dynamics of COVID-19 in the sub-region. The proposed framework
can be extended to account for multiple dose vaccines explicitly. The models assume that vaccine-derived natural im-
munity wanes completely so that individuals from the vaccinated susceptible and recovered classes progress directly to
the susceptible class. However, even with waning some of vaccinated susceptible and recovered individuals might still
have some level of protection compared to unvaccinated susceptible individuals. Individuals with pre-existing medical
conditions (who can be from both age groups) are not accounted for explicitly. Furthermore, we did not account for
specific variants of the virus and the reduced efficacy of vaccines against these variants.

4.2. Conclusion
A compartmental model framework for COVID-19 transmission dynamics with different vaccination strategies includ-
ing vaccination allocation based on two age groups (high or low risk of transmission, severe disease, hospitalization, and
death from COVID-19) is developed, parameterized, analyzed rigorously, and used to assess the influence of age struc-
ture and vaccine prioritization based on age brackets on the burden of COVID-19 in WA. The results of the study indicate
that individuals below 65 years old are the major drivers of the COVID-19 pandemic in WA. This provides one reason for
which the reported number of COVID-19 cases in WA is low in comparison to other regions. Therefore, incorporating
age-structure in COVID-19 models is important in understanding why the burden of COVID-19 has been low in WA.
This result calls for COVID-19 control measures which target individuals below 65 years old as opposed to the elderly
as was the case in many high-income countries when the availability of vaccines was limited or during the initial stages
of booster vaccine dose administration. Furthermore, the study shows that prioritizing vaccines with higher efficacies
will enhance prospects of containing the disease and that the pandemic can be contained in West Africa if 68% of the
population is fully vaccinated. However, a drastic change in the current vaccination rate is required for the sub-region
to achieve the vaccine-derived herd immunity threshold of 68%. Additionally, the study shows that the emergence of a
new more transmissible variant of concern, or easing current control measures in WA could lead to a more devastating
wave depending on the easing level. Hence, to curtail the spread of the disease in WA, it is imperative to improve on
existing measures (e.g., the vaccination level in conjunction with the WHO recommended NPIs).
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