Debriefing surgery: a systematic review

Emma Skegg¹, Canice McElroy¹, Mercedes Mudgway¹, James Hamill¹,²

Institution

1. Starship Children's Hospital, Park Road, Grafton, Auckland, New Zealand

2. Department of Paediatrics, Child and Youth Health, the University of Auckland, New Zealand.

Keywords

Debriefing, Interprofessional teamwork, Operating room

Declaration

Emma Skegg and Mercedes Mudgway were funded by a grant from the Starship Foundation (SF2142). The authors have no conflicts of interest to declare.
Abstract

Objectives: Debriefing has been pivotal in medical simulation training but its application to the real-world operating room environment has been challenging. We reviewed the literature on routine surgical debriefing with special reference to its implementation, barriers, and effectiveness.

Methods: Inclusion criteria were papers pertaining to debriefing in routine surgical practice. Excluded were papers reporting simulation training. We searched Google Scholar, CINAHL, Web of Science Core Collection, PsychINFO, Medline, Embase, and ProQuest Theses & Dissertations Global. The last search was performed in March 2022. Quality was assessed on a 21-point checklist adapted from a standard reporting guideline. Synthesis was descriptive.

Results: The search process resulted in 19 papers. Publication date ranged from 2007 – 2022. Methodology of studies included surveys, interviews, and analysis of administrative data. Five papers involved a specific intervention. Quality scores ranged from 12 – 19 out of 21. On synthesis we identified five topics: explanations of how debriefing had been implemented; the value of coaching and audit; the learning dimensions of debriefing, both team learning and quality improvement at the organisational level; the effect of debriefing on patient safety or the organisation’s culture; and barriers to debriefing.

Conclusion: Debriefing is valuable for team learning, efficiency, patient safety, and psychological safety. Successful implementation programs were characterised by strong commitment from management and support by frontline workers. Integration with administrative quality and safety processes, and information feedback to frontline workers are fundamental to successful debriefing programs.
Introduction

Errors in medicine have been recognised as a problem for over half a century. In 1964, Schimmel found that iatrogenic injuries occurred in 20% of patients and that 20% of these were serious or fatal [1]. In 1995, Donchin et al. found that, in their intensive care unit, only 0.95% of activities lead to an error but with 179 activities per patient per day there were on average 1.75 errors per patient per day [2]. ‘Active’ errors (the effects of which are felt straight away) can almost always be linked to a series of ‘latent’ errors (‘accidents waiting to happen’) [3]. Latent errors occur even during successful operations. Catchpole et al. showed that threats and errors in the operating room can come from organisational culture, processes, protocols, techniques, equipment, knowledge, skill or expertise, resources, anatomical variations or physiological problems with the patient, and problems with teamwork [4].

An important advance in surgical teamwork came with the WHO Surgical Safety Checklist (SSC) [5,6]. The SSC is a communication tool used at time points in the surgical process. These time points are the ‘sign-in’ before anaesthetising, the ‘time-out’ prior to the incision, and the ‘sign-out’ at the end of the case. Hayes et al. showed that the SSC significantly reduces morbidity and mortality in a variety of high, middle and low-income settings [7]. Other components of the SSC that were not formally investigated in the study published by Hayes et al. were the briefing, which occurs before operating list begins, and the debriefing at the end of a list.

Debriefing is a way to identify errors, improve performance, improve communication and promote teamwork [8]. Operating room teams can be described as ‘action teams’ [9]. Action teams undertake time-critical, high-stakes active procedures. Operating room teams comprise personnel from a variety of professions and are therefore multidisciplinary action teams. High-level functioning of multidisciplinary action teams is critical and challenging. From a review of 20 years’ literature, Salas et al. identified the key characteristics of an effective team: leadership, mutual performance monitoring, backup behaviour, adaptability, team orientation, shared mental models, mutual trust, and closed-loop communication [10].
To achieve these, team members must feel safe about sharing observations and opinions with the rest of the team [11]. Psychological safety is not only essential to team learning; it can help maintain mental health and prevent burnout [12]. Research shows that debriefing improves psychological safety in the operating room [13].

Given the central role that debriefing plays in teamwork, the experience in other industries and in medical simulation, and the importance of psychological safety, debriefing should be performed routinely in surgery. However, in our experience, debriefing is challenging to do well and is inconsistently performed. We were interested to learn how to best instigate a debriefing program. Therefore, the aim of this review was to synthesise the literature on routine surgical debriefing with specific reference to implementation, barriers, and the effectiveness of surgical debriefing, and to identify gaps in the literature that could indicate future research directions.

Methods

This review and its protocol are registered on the Open Science Framework (https://osf.io/r5zba/).

Eligibility criteria

Criteria for including a paper in this review were studies pertaining to debriefing in routine practice. Excluded were papers pertaining to medical simulation training. No study design or language limits were imposed. No date limit was applied.

Information sources

We searched the databases Google Scholar, CINAHL, Web of Science Core Collection, PsychINFO, Medline, Embase, and ProQuest Theses & Dissertations Global. We performed snowballing and citation tracking by scanned the reference lists of included papers.
Search strategy

We used the following search teams in the database searches: debrief*, operating room*, operating theat*, surgical procedures and/or operative and/or operating rooms. For some searches, we added a title/abstract term: simulat*. To be indexed, papers needed to mention at least one term related to each key variable: debrief and operating. The last date of searching was 14 March 2022.

Study records

Literature search results were exported from each electronic database then imported into Rayyan [14]. MM removed duplicates. Two reviewers (MM and ES) independently screened titles and abstracts and removed any papers clearly not meeting inclusion criteria. Blinding was then turned off to deal with discrepancies which were resolved at a meeting with a third reviewer (JH). When the list of potentially included results was agreed, reviewers obtained the full-text reports. The same two reviewers independently reviewed the full texts for inclusion and resolved discrepancies at a meeting involving the same third reviewer.

Data items

Data were extracted on methodology, how debriefing was implemented, the description of when and how debriefing was performed, any interventions, and outcomes. JH extracted data and MM checked data for accuracy.

Quality assessment methods

Quality assessment was by use of a customised checklist adapted from the Standards for Reporting Qualitative Research guidelines [15]. Papers were scored on 21 items including the quality of their title, abstract, problem formulation, purpose, research paradigm, reflexivity of the researchers, context/setting, sampling, ethics, data collection methods, data collection instruments, units of study, data processing, data analysis, techniques to enhance trustworthiness, interpretation, links to empirical data, integration with
prior work, discussion of limitations, and declarations of conflict of interest and funding. Items were scored as 1 or 0 for adequate or inadequate respectively.

Results

Description of studies

The search process resulted in 19 papers [13,16–33] as shown in the PRISMA flow diagram, Fig. 1. The characteristics of each included paper are presented in Table 1. Publication dates ranged from 2003 – 2022 with the majority (15 of 19) published in the last 10 years.

Most papers (n = 15) referred to debriefing as a form of ‘sign-out’ checklist rather than a dedicated team discussion at the end of an operating session. One study involved the orthopaedic departments of two hospitals in which one unit debriefed after every case and the other unit debriefed at the end of the operating list [30]. Seven papers involved an intervention: implementation of a debriefing (and briefing) process in five [9,13,18,26,28] and a coaching intervention to improve the quality of debriefs in three [23,29,31].

Assessment of quality

The mean quality score was 15/21 (standard deviation 2.1, range 12 – 19). All papers met criteria for title (100%), abstract (100%), problem formulation (100%), purpose or research question (100%), context (100%), data collection methods (100%), data collection instruments and technologies (100%), synthesis and interpretation (100%), and integration with prior work, implications, transferability, and contribution(s) to the field (100%). Few reported the qualitative approach or research paradigm (37%), ethical issues pertaining to human subjects (47%), or the process by which themes were developed (32%). No paper reported researcher characteristics/reflexivity or techniques to enhance trustworthiness. Quality assessments for each paper are presented in the supplementary table (Online Resource 1).
Synthesis

For descriptive analysis we grouped papers into five broad categories: 1) explanations of how debriefing had been implemented including how coaching had helped to improve the quantity and quality of debriefing; 2) the role of coaching and audit; 3) the learning dimensions of debriefing, both team learning and quality improvement at the organisational level; 4) the effect of debriefing on patient safety or the organisation’s culture; and 5) the barriers to debriefing. Detailed description of each of these is presented in supplementary results (Online Resource 2).

1. Implementation of debriefing

Seven papers reported on the implementation of debriefing in five different hospitals [17,19–21,27,28,30]. Successful implementation was characterised by management taking active leadership in developing meaningful links to quality improvement processes and involving surgical and nursing staff as described by Rose and Rose [28] and further explored by Brindle et al. [27]. This involved developing a culture of safety, levelling the playing field, empowering nurses, open communication, and providing caregivers with early and meaningful feedback on the issues they had raised. Unsuccessful implementation was characterised by lack of managerial leadership, an ‘arms-length’ approach, not dealing with issues raised, and loss of communication and feedback to frontline staff [27]. Debriefing initiatives that were not characterised by multidisciplinary, multilevel leadership suffered from lack of buy-in from senior clinicians [20], no link to quality improvement, and lack of communication and feedback to debriefers [19,30]. Together, these papers show that successful implementation requires debriefing to be resourced, integrated at all levels from grassroots to executive, and integrated with quality processes.

2. Coaching and audit

Three papers described how debriefing improved with coaching [23,29,31]. Coaching and feedback increased the number of debriefs performed and their quality and completeness. Finch et al. emphasised auditing debriefs as an important way to maintain compliance and completeness [29]. Learning from others
in the form of an education course [18] and using the experience of an outside organisation [16] were also seen as valuable. Together, these papers show that debriefing benefits from guidance and that debriefing programs should include ongoing coaching and support.

3. Team and institutional learning

Vashdi et al. comprehensively discussed learning theory as they relate to operating team debriefing [16]. These included single-loop learning, direct double-loop learning and indirect double-loop learning. Several papers addressed the potential for debriefing to facilitate institutional learning through quality improvement processes [16,16,21,27,28]. Most problems identified in debriefs are of an institutional nature [28]. Surgical teams would be powerless to influence these without tight coordination in order to bring about systems change when needed [9]. Together, these papers emphasise the importance of communicating back to the team the actions that had been undertaken as a result of their debriefs.

4. The effects of debriefing on culture, safety, and efficiency

Six papers reported on the effects of debriefing on culture, quality and safety [13,22,26,28,32,33]. Rose and Rose showed a significant reduction in postoperative mortality after the implementation of a debriefing program [28]. In two papers, debriefing improved efficiency as measured by a reduction in delay to theatre, increased utilisation, more accurate scheduling of operations [22], and reduced staff working hours per case [28]. Debriefing was shown to improve the ability of team members to speak up [33] and increase psychological safety [13,26,28,32]. Together, these papers show that debriefing improved safety for patients and staff.

Barriers to debriefing

Surgical debriefing is challenging to undertake. Power dynamics may raise a barrier with many surgeons not seeing safety as a shared responsibility of the operating team [33]. Finding time to debrief is challenging because of the need to focus on anaesthesia and surgery during the operation and the problem of getting
people together again after the operation [20,24,30,32]. Another barrier is when repeated, unresolved problems and thwarted efforts to improve processes undermine the credibility of debriefing[28]. Lack of buy-in, perceiving little benefit, thinking everything went well so there is nothing to debrief on, and not seeing debriefing as a priority were other barriers identified [32]. Together, these papers show that team orientation and support at all levels facilitates debriefing while hierarchy, time pressure, lack of buy-in and inaction on issues represent barriers.

Discussion

This review shows that the literature on surgical debriefing is relatively sparse and not generally of high quality; nevertheless, the literature offers guidance on how to implement a debriefing program, the value of coaching in implementation and maintenance, insights into team learning, lessons on the need to take a systems-wide view of quality and improvement, and data on the effect of debriefing on teams and on patient outcomes.

Collaboration between clinicians, management and quality services is a prerequisite for a successful debriefing program. The most successful programs had strong leadership from the hospital administration, good governance and took time and commitment. It was interesting to contrast the examples of successful implementation with the unsuccessful in which evidence of collaboration was lacking. The success of coaching in supporting debriefing programs was further evidence of the need for commitment by leadership.

The translation of a military briefing/debriefing practice into an operating room setting provided interesting insights into how much potential there is for team learning to improve in surgery, but also the challenges in the medical setting. Many of these challenges are deeply cultural in nature, such as the culture of hierarchy. Addressing barriers in order to bring about debriefing and through the use of debriefing would enhance patient care as well as work satisfaction.
Teams that learn well perform well. This is especially important in surgery where teams must adapt quickly in critical situations. The operating room environment provides a rich source of experience, but experience alone is not enough for effective learning [34]. Learning involves a cycle of concrete experience, reflective observation, abstract hypotheses, and active testing [35]. Learning occurs within learning spaces, not necessarily just physical spaces but also constructs in the social environment [35]. Given the potential for operating room teams to continually learn and improve it is surprising that team learning processes such as debriefing are not routine.

Briefing and debriefing were often addressed together in the papers in this review. Briefing is a team meeting that occurs at the beginning of an operation or operating list, while debriefing is a team discussion that occurs after the operation or operating list. From a learning perspective, both discussions go hand-in-hand; however, debriefing appears to be more difficult to enact than briefing. Barriers to debriefing included time pressures, not being able to get the whole team together after a case, and difficulties with buy-in from some staff. The timing problem may explain why some papers in this review located the debrief at the sign-out [24,25]. The sign-out is the third of the Surgical Safety Checklists and occurs during the completion of a case, usually after the count (which ensures all instruments and swabs are accounted for). The synonymous use of the terms ‘debriefing’ and ‘sign-out’ could cause confusion. In the present review, we hope to emphasise the value of a comprehensive team discussion, that is, debriefing, over and above the previously established value of the sign-out checklist [7].

This review has several limitations. We used an adaptation of a reporting guideline for qualitative research assessing the quality of the papers included [15]. The methodology of included studies varied and although some included quantitative as well as qualitative data, outcomes were so variable that the application of standard quality assessment tools for systematic reviews was not feasible. We included papers that reported debriefing but, on review, were using the term ‘debrief’ as a synonym for the sign-out phase of the Surgical Safety Checklist; thus, we may have overestimated the number of relevant papers available. Many papers reported debriefing on a case-basis (i.e., after every operative case) and they were clearly on
the spectrum as to how much of the debrief was a team discussion versus a checklist. Meta-analysis was not possible given the lack of data and variability of outcomes, limiting this to a descriptive review.

In conclusion, debriefing appears to be valuable for team learning, efficiency, patient safety and psychological safety. Surgical debriefing is challenging to implement and maintain. Successful programs are characterised by strong commitment from management in addition to support by frontline workers. Integration with administrative quality and safety processes and feedback to frontline workers are fundamental to a successful debriefing program. Overall, literature is lacking on surgical debriefing and more research on implementation, maintenance, and outcomes are required.
Figure 1. Prisma flow diagram.

Records identified from:
- CINAHL n = 325
- Embase n = 280
- Medline n = 144
- ProQuest n = 4
- PsychInfo n = 5
- Scholar n = 199
- WOSCC n = 362

Records removed before screening:
- Duplicate records removed n = 657
- Records marked as ineligible by automated tools n = 369

Records screened n = 293

Records excluded n = 262

Records sought for retrieval and assessed for eligibility n = 31

Records excluded for:
- Not surgical debriefing
- Education, not delivery
- Not a research paper n = 12

Studies included in review n = 19
Table 1. Papers included in the review.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Country</th>
<th>Case- or list</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vashdi, et al.</td>
<td>2007</td>
<td>Israel</td>
<td>Unclear</td>
<td>Observational</td>
</tr>
<tr>
<td>Berenholtz, et al.</td>
<td>2009</td>
<td>USA</td>
<td>Case</td>
<td>Survey, interviews</td>
</tr>
<tr>
<td>Paull, et al.</td>
<td>2009</td>
<td>USA</td>
<td>Case</td>
<td>Intervention (teaching)</td>
</tr>
<tr>
<td>Papaspyros, et al.</td>
<td>2010</td>
<td>UK</td>
<td>Case</td>
<td>Interviews</td>
</tr>
<tr>
<td>Bethune, R. et al.</td>
<td>2011</td>
<td>UK</td>
<td>List</td>
<td>Survey, admin data</td>
</tr>
<tr>
<td>Bandari, et al.</td>
<td>2012</td>
<td>USA</td>
<td>Case</td>
<td>Survey</td>
</tr>
<tr>
<td>Porta, et al.</td>
<td>2013</td>
<td>USA</td>
<td>Case</td>
<td>Administration data</td>
</tr>
<tr>
<td>Kleiner, et al.</td>
<td>2014</td>
<td>USA</td>
<td>Case</td>
<td>Intervention (coaching)</td>
</tr>
<tr>
<td>Dharmapal, et al.</td>
<td>2016</td>
<td>Canada</td>
<td>Case</td>
<td>Interviews</td>
</tr>
<tr>
<td>Bartz-Kurycki, et al.</td>
<td>2017</td>
<td>USA</td>
<td>Case</td>
<td>Observational</td>
</tr>
<tr>
<td>Leong, et al.</td>
<td>2017</td>
<td>Netherlands</td>
<td>List</td>
<td>Survey, questionnaire (TCI)</td>
</tr>
<tr>
<td>Magill, et al.</td>
<td>2017</td>
<td>USA</td>
<td>Case</td>
<td>Questionnaire (SAQ)</td>
</tr>
<tr>
<td>Brindle, et al.</td>
<td>2018</td>
<td>USA</td>
<td>Case</td>
<td>Interviews</td>
</tr>
<tr>
<td>Rose & Rose</td>
<td>2018</td>
<td>USA</td>
<td>Case</td>
<td>Questionnaire (SAQ), admin data</td>
</tr>
<tr>
<td>Finch, et al.</td>
<td>2019</td>
<td>USA</td>
<td>Case</td>
<td>Intervention (coaching)</td>
</tr>
<tr>
<td>Mundt, et al.</td>
<td>2020</td>
<td>Denmark</td>
<td>Both</td>
<td>Observational</td>
</tr>
<tr>
<td>Bui, et al.</td>
<td>2021</td>
<td>USA</td>
<td>Case</td>
<td>Intervention (coaching)</td>
</tr>
<tr>
<td>Schaap, et al.</td>
<td>2021</td>
<td>Netherlands</td>
<td>List</td>
<td>Questionnaire (TCI)</td>
</tr>
<tr>
<td>Leonard, et al.</td>
<td>2022</td>
<td>USA</td>
<td>Case</td>
<td>Survey</td>
</tr>
</tbody>
</table>

TCI, Team Climate Inventory. SAT, Safety Attitudes Questionnaire.
References

