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Abstract: 

Objectives: Neuropsychiatric symptoms (NPS) are known to increase the risk of cognitive decline in 

aging. Several studies have investigated the brain substrates of these symptoms, reporting a broad 

involvement of the limbic regions. Participants: Using the Alzheimer’s Disease Neuroimaging 

Initiative database, we investigated 223 participants with normal cognition, 367 with mild cognitive 

impairment (MCI) and 175 with Alzheimer’s disease (AD). Measurements: Neuropsychiatric 

symptoms were assessed with the Neuropsychiatric Inventory and MRIs were processed with 

FreeSurfer. We used a general linear model (FreeSurfer) and multivariate analysis of covariance (IBM 

SPSS software) to establish the associations between the severity of neuropsychiatric symptoms and 

morphometry in cortical and subcortical structures in each clinical group. Results: The results outlined 

significant associations between cortical and subcortical structures and neuropsychiatric symptoms. In 

cognitively normal participants, only a positive association between nighttime behaviors and bilateral 

caudate nuclei volumes was found. In patients with MCI, agitation, depression, apathy and nighttime 

behaviors were respectively negatively associated with (i) left precentral and inferior frontal and 

inferior parietal volumes; (ii) left fusiform volume and area; (iii) right precentral thickness, left 

frontopolar area and bilateral ventral diencephalon volumes; (iv) right lingual thickness, whereas 

depression and nighttime behaviors were also respectively positively associated with right ventral 

diencephalon volume; and left temporal volume and area. In patients with Alzheimer’s disease, 

broader association were outlined between NPS severity and cortical structures notably agitation, 

apathy, irritability and nighttime behaviors outlined respectively positive associations with : (i) 

volumes in the right temporal regions and with surface area in the frontal region; (ii) the cortical 

thickness of the right pericalcarine region; (iii) volumes in the frontal, temporal and parietal regions; 

(iv) volume of the right cuneus region; whereas depression and apathy were also respectively 

negatively associated with the cortical thickness of the left parietal superior region; and cortical 

volume and area of the parietal regions. Conclusions: These results showed that NPS have broad 

association patterns with associative brain structures and few associations with limbic structures. 

These associations were also dependent on the clinical stage of cognitive impairment. 
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Introduction 

Neuropsychiatric symptoms (NPS), defined as non-cognitive behavioral or mood 

disturbances.1,2 NPS has been shown to precede the dementia stage related to Alzheimer’s Disease 

(AD) as well as the mild cognitive impairment stage (MCI).3–5 Usually, NPS are quantified with the 

Neuropsychiatric Inventory questionnaire, which measures 12 symptoms and the most common of 

them are: agitation, depression, anxiety, apathy, irritability, and nighttime behaviors disturbances.6–8 

Their presence was shown to increase the risk of cognitive decline.5,9 They have been associated with 

structural changes in the limbic system.10–12 Specifically, the orbitofrontal, cingulate, subcallosal, 

insula, temporal lateral and medial, amygdala and thalamus.13,14  

Overall, the limbic system is involved in emotions and motivation32, but region-based 

association with emotions is different. Some limbic structures appear to be involved in almost all NPS, 

e.g, cingulate gyrus10,15–21, insula10,18,22–25 and amygdala10,26–28. In the case of the cingulate structures 

(especially anterior), atrophies could be found in association with agitation10, depression15–17, anxiety18 

and apathy19–21, whereas hypertrophy was found in cognitively healthy individuals with nighttime 

behaviors disorders28. Data on the insula showed very similar results, with atrophy found in 

individuals with symptoms of agitation10,24,25, anxiety18, apathy18,22,23 and irritability23. If these two 

structures seem to be co-involved in similar symptoms, they would also underlie different affective 

systems: cingulate atrophy being involved in depression15–17 whereas insular atrophy seems to be 

involved in irritability23. Similarly, to both the cingulate and insular regions, atrophy of the amygdala 

has been found in agitation10, and hypertrophies in anxiety26, irritability27, and nighttime behaviors 

disorders28. While medial temporal structures such as the hippocampus and parahippocampal gyrus 

seem to be more specific for agitation10 and anxiety29 on the one hand and depression and anxiety on 

the other10. Finally, the medial temporal structures, the hippocampus and parahippocampal gyrus, are 

respectively involved in agitation5 and anxiety11 on the one hand, and depression and anxiety on the 

other18. This distribution of structures involved in sometimes common NPS raises the question of 

identical processes underlying entire patterns of NPS. Agitation and anxiety could be linked to almost 

all the structures elicited. A major literature review by Chen et al. (2021) highlighted numerous limbic, 

cortical, and subcortical implications in key neuropsychiatric symptoms developed during the pre-
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dementia stages of AD (including MCI) such as agitation, depression, anxiety, and apathy, as well as 

other associations with cortical and subcortical associative regions.30 

Taken together, these data show that some structures appear to be involved in almost all NPS, 

such as the cingulate and insula, while other structures are more specific to certain symptoms, such as 

the hippocampus. Interestingly, most studies of NPS have studied participants with a pre-dementia 

cognitive state (MCI). Few have investigated the brain relationships of NPS in cognitively normal 

(CN) participants.21,28,29 This study proposes to determine cortical and subcortical similarities and 

divergences between NPS in several stages of cognitive decline (CN, MCI, AD). Also, it is expected 

that NPS are predominantly characterized by limbic structures. 

 

Materials and methods 

Participants 

Data used in the preparation of this article were obtained from the ADNI database 

(adni.loni.usc.edu). The ADNI, launched in 2003 and led by Principal Investigator Michael W. 

Weiner, MD. ADNI aims to combine imaging data (MRI, PET), biological markers, and clinical and 

neuropsychological assessments to measure the progression of MCI and early AD. ADNI includes 819 

adult participants, 55 to 90 years old, who meet entry criteria for a clinical diagnosis of amnestic MCI 

(n = 397), probable AD (n = 193), or normal cognition (n = 229). Participants received neurological, 

biological, and neuropsychological assessments at baseline and follow-up visits. (for reviews and more 

details, see Shaw and colleagues, Mueller and coauthors, and http://www.adni-info.org/)31–33. All 

patients with AD met National Institute of Neurological and Communication Disorders/Alzheimer’s 

Disease and Related Disorders Association criteria for probable AD with a Mini-Mental State 

Examination score between 20 and 26, a global Clinical Dementia Rating of 0.5 or 1, a sum-of-boxes 

Clinical Dementia Rating of 1.0 to 9.0, and, therefore, are only mildly impaired. Entry criteria for 

patients with amnestic MCI include a Mini-Mental State Examination score of 24 to 30 and a Memory 

Box score of at least 0.5, whereas other details on the ADNI cohort can be found online. 

Thus, 765 participants from the ADNI database were extracted (CN = 223, MCI = 367, AD = 

175).  
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Each participant benefited from neuropsychiatric assessment via the Neuropsychiatric 

Inventory. Six of NPS from the inventory were extracted and analyzed: (i) agitation/aggressiveness, 

(ii) depression, (iii) anxiety, (iv) apathy, (v) irritability, and (vi) nighttime behavior disorders. Our 

statistical model included 4 severity values for each of the 6 NPS: no-NPS (a score of zero in the NPI 

scale), mild NPS (producing little distress in the patient), moderate NPS ( more disturbing to the 

patient but can be redirected by the caregiver) and severe NPS (very disturbing to the patient and 

difficult to redirect). 

Excluding criteria were: (i) incomplete assessments, (ii) incomplete neuropsychiatric and 

neuropsychological assessments, (iii) presence of psychiatric history (major depression, schizophrenia, 

bipolar disorder, substance abuse, post-traumatic stress, obsessive-compulsive disorder), (iv) presence 

of neurological history (stroke, head injury, brain tumor, anoxia, epilepsy, alcohol dependence and 

Korsakoff, neurodevelopmental disorder), (v) prematurity, (vi) diagnostic criteria in favor of other 

neurodegenerative or neurological etiology (Parkinson's disease, frontotemporal degeneration, 

progressive supranuclear paralysis, corticobasal degeneration, Lewy body dementia, amyotrophic 

lateral sclerosis, multiple sclerosis, multi-system atrophy, vascular dementia), (vii) use of psychoactive 

medication  (e.g., antidepressants, neuroleptics, chronic anxiolytics, or sedative hypnotics) 

Data collection and sharing for this project was funded by the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD 

ADNI (Department of Defense award number W81XWH-12-2-0012). Ethics committee approval and 

individual patient consents were received by the corresponding registration sites according to ADNI 

rules (http://adni.loni.usc.edu/methods/documents/). All data are available on the ADNI websites upon 

demand (http://adni.loni.usc.edu/data-samples/access-data/). 

 

Data processing and statistical analysis 

 3T MRI scans were processed on ComputeCanada cluster Cedar with FreeSurfer 7.1.1 

software on Linux Centos 7 and managed with an in-house pipeline (github.com/alexhanganu/nimb) 

that allowed automated exclusion of post-processed data with errors as well as extraction of statistical 
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data, diminishing potential human error. The volumes of subcortical structures were corrected by 

division with the estimated Total Intracranial Volume.34 

To assess the effect of each NPS on brain morphology within each clinical group, we 

performed a whole-brain general linear model analysis with FreeSurfer mri_glmfit for each NPS, 

based on the Desikan cortical atlas, that includes 34 regions.35 Analysis were performed for three 

cortical measurements: volume, thickness and area. Results underwent a Monte-Carlo correction with 

a vertex-level threshold  of p<0.05. 

In a second step, a MANCOVA was performed with IBM SPSS statistics version 26 software 

to analyze the effect of NPS severity on volumes of subcortical nuclei, within each clinical group (CN, 

MCI, or AD). The nuclei included in the analysis were: caudate, putamen, pallidum, thalami, nucleus 

accumbens, ventral diencephalon, hippocampi, and amygdala.36–38 NPS severity was defined based on 

4 groups: no-NPS, mild NPS, moderate NPS and severe NPS and the comparison contrasts were made 

between these 4 groups. Post-hoc tests with statistical Tukey correction were performed in the groups 

for which comparisons were possible due to the size of the subgroups (N > 2), with a threshold of 

0.05. Some NPS subgroups could not be considered due to the absence of participants (CN: All-NPS-

severe and apathy-moderate; AD: depression-severe). Post-hoc contrasts were performed with a 

Bonferroni correction (dividing the threshold by the 6, two-by-two inter-group comparisons to be 

performed for the 4 types of NPS severity: no-NPS vs. mild; no-NPS vs. moderate; no-NPS vs. severe; 

mild vs. moderate; mild vs. severe; moderate vs. severe). For each post-hoc contrast, the delta value 

(Δ) indicates the direction of the difference between the groups: a positive value indicates a reduction 

due to NPS severity; a negative value indicates an increase due to NPS severity. 

 

Results 

Clinical groups consisted of CN participants (mean age: 75.88 ± 5.12), patients with MCI 

(mean age: 74.83 ± 7.45) and AD (mean age: 75.46 ± 7.47) (Table 1). Groups were similar according 

to age. The MCI group included more males (63.7%). The mean MMSE score was higher in the CN 

group compared to MCI and higher in MCI compared to the AD group. 
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Whole-brain General Linear Model analysis 

Monte-Carlo corrected results (Table 2, figure 1) showed that the agitation, depression, apathy 

and nocturnal behaviors severities were associated with brain structures in the MCI and AD groups. 

Irritability severity also showed associations but only in the AD group. No association was found in 

the CN group, nor about anxiety regardless of the group.  

In the MCI group, agitation severity was negatively associated with left frontal (precentral and 

pars opercularis) and parietal (inferior) volumes. Depression severity was negatively associated with 

left fusiform volume and area. Apathy severity was negatively associated with right precentral 

thickness and left frontopolar area. Finally, nighttime behaviors were positively associated with left 

inferior temporal volume and area, and negatively associated with right lingual thickness.  

In the AD group, agitation severity was positively associated with volume changes in the right 

temporal (middle and fusiform) region and with surface area changes in the frontal (middle) region. 

Regarding depression, a negative association was found between this NPS and the cortical thickness of 

the left parietal superior region. Apathy severity was negatively associated with cortical volume and 

area of the parietal regions (right postcentral and left inferior, respectively) and positively associated 

with the cortical thickness of the right pericalcarine region. Irritability severity was positively 

associated with volume changes in the frontal (bilateral middle, left superior and left pole regions), 

temporal (left fusiform and left superior) and parietal (supramarginal) regions. Some of these 

volumetric changes were possibly driven by changes in the surface area of the right frontal superior, 

temporal fusiform and left parietal inferior regions. Nighttime behavior severity was positively 

associated with volume change of the right cuneus region. 

Interestingly, agitation (in MCI and AD) and irritability (in AD) were both associated with 

temporal (fusiform) and frontal (middle, inferior) structures, whereas depression and apathy in AD 

were associated with parietal (superior and inferior respectively) structures. 

 

Univariate subcortical ROI analysis 
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We also implemented MANCOVA models to investigate the relationships between NPS 

severity and the volume of subcortical nuclei (Table 3). Post-hoc comparisons showed that nighttime 

behaviors had an association only in the MCI group whereas depression and apathy severity had an 

association only in the MCI group. No association in the AD group was found. Finally, agitation, 

anxiety, and irritability had no significant association in any group. 

In CN participants, only the associations between severity of nighttime behaviors and bilateral 

caudate nuclei were confirmed by post hoc contrasts, showing that participants with mild nocturnal 

behavioral disturbances had larger caudate nuclei than those without behavioral disturbances. 

In participants with MCI, depression severity was associated with the right ventral 

diencephalon: participants with mild depression showing a larger structure than those without 

depression. Conversely, apathy severity was also associated with bilateral ventral diencephalon, but 

participants with mild apathy showed smaller volumes than those without apathy.  

 

Discussion 

NPS are increasingly known to be involved in age-related cognitive decline. They can 

anticipate decline and accelerate it.5,7,9 Although many studies have looked at their neural correlates, 

the data diverge and NPS seem to have common and different underlying structures. The objective of 

this study was to characterize the brain differences associated with NPS severity in groups of different 

severity of cognitive decline. The most prevalent NPS were studied. 

Our results show that: (1) in CN, more severe nighttime behaviors were associated with larger 

bilateral caudate volumes. No cortical association were found; (2) in MCI, more severe agitation was 

associated with smaller frontal and parietal volumes; more severe depression was associated with 

smaller left fusiform volume and area and larger right ventral diencephalon volume; more severe 

apathy was associated with smaller left frontopolar area, right precentral thickness and ventral bilateral 

diencephalic volume; more severe nighttime behaviors were associated with smaller left temporal 

volume and area and greater right lingual thickness; (2a) furthermore, in MCI our results show distinct 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 30, 2022. ; https://doi.org/10.1101/2022.06.29.22277055doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.29.22277055
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 
  Word count: 4268 

9 Keywords: Neuropsychiatric 
symptoms, MRI, Alzheimer’s 
Disease, Mild Cognitive Impairment. 

patterns between depression and nighttime behaviors, respectively negatively and positively associated 

with the fusiform and inferior left temporal regions; (3) in the AD group, more severe agitation was 

associated with greater right temporal volume and middle frontal area; more severe depression was 

associated with smaller right parietal thickness; more severe apathy was associated with smaller right 

parietal volume and left parietal area, and greater right occipital thickness; more severe irritability was 

associated with larger frontal, parietal, temporal volumes and areas and cingulate volume; more severe 

nighttime behaviors were associated with greater right cuneus volume. No subcortical association 

were found; (3a) finally, in the AD group, we found similarities between depression and apathy, 

negatively associated with the left parietal region, an opposition with irritability where this region is 

positively associated, and similarities between agitation and irritability, positively associated with the 

bilateral temporal and right rostral frontal regions. 

These results seem to show a distinct pattern in comparison to previous studies that showed 

mainly associations with limbic structures.30  

 

Agitation 

It was expected that the agitation would be characterized by atrophies in the cingulate, inferior 

frontal and orbital, insular, amygdala, and hippocampus regions.10,30,39 For all the NPS studied, the 

impacts on brain structures differed from one clinical group to another. Agitation was mainly 

characterized in CN participants by cortical thinning of the lateral temporal regions and right medial 

subcallosal and orbitofrontal thickening, whereas in MCI patients, agitation was more related to 

bilateral insular thinning and an increase in the volume of the left central amygdala. In AD patients, 

agitation was subtended by insular, temporo-polar, left anterior thalamic and right thalamic thinning. 

The GLM analysis showed the effect of agitation only in the AD group by thickening the right 

superior and middle rostral frontal gyri. Overall, these data are consistent with the previous literature 

concerning the amygdala, orbitofrontal regions, insular and cingulate regions.10,24,25 Indeed, the 

literature showed multiple implications in agitation such as atrophies of anterior structures like 

cingular, frontal, insular, amygdala and hippocampal atrophies and posterior structures like medial and 
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posterior parietal, cingular and frontal cortices in MCI and AD populations.10,24,25 But no one showed 

relations with temporal or thalamic structures. 

 

Depression 

According to the literature, numerous studies have shown the diversity of the regions impacted 

during the presence of depression linked to ageing and in particular AD, more particularly atrophies 

and volume reductions which can affect the whole brain.40 More recently, from the literature review by 

Chen et al. (2021), depression is associated with extensive lesions, suggesting the involvement of 

extensive networks. These lesions involve frontal (superior, medial, dorsolateral), cingulate (anterior 

and posterior), parietal (inferior, supramarginal, precuneus), temporal (superior and inferior, 

entorhinal, fusiform, hippocampus), and subcortical (caudate) regions. These data suggest damage to 

the fronto-limbic network.30 Our results go against these data. Indeed, according to the present 

analyses, Depression severity was only negatively associated with superior frontal gyrus thickness in 

CN subjects by the general linear model. No relationship was found in the other groups. This lack of 

difference contrasts with most of the results reported in the previous literature. Depression is probably 

the NPS the more studied in AD and cognitive decline. Also, many studies demonstrated a lot of 

structures with greater atrophy in association with depression in MCI and AD. These structures 

concerned medial temporal lobe, temporopolar, entorhinal, parahippocampal, cingular and middle 

frontal cortices.6,9,10,34,36 Association between depression and apathy and their impacts on the atrophy 

pathways of MCI participants was studied by Zahodne et al.16 Their results showed that the 

associations were not significant. Thus, depression was estimated as a better marker of cortical 

atrophy.16 However, the results from the current study showed only impact of depression in the CN 

group with the GLM analysis and only in CN and MCI groups by the ANOVA. So, it matches with the 

explanation from Lee et al. who suggested that cerebral and cognitive changes associated with AD 

may obscure changes associated with subsyndromal depression.41 These changes associated with 

neuropsychiatric depression could also be obscured by the impact of the physiopathological process of 

AD. 
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Anxiety 

Anxiety would be characterized by hippocampal, insular, parahippocampal, and cingulate 

limbic atrophies, as well as amygdala hypertrophy.18,26,29,42 Also, anxiety was mainly associated with 

entorhinal, parietal, temporal, frontal, and putamen lesions.30 Amygdala hypertrophy is indeed found 

in CN participants, particularly on the left in the anterior amygdaloid area. The GLM analysis found 

others increase of cortical areas for left posterior cingulate and precuneus. Cingular thinning was 

found in MCI patients, particularly on the left in the posterior ventral region. In AD patients, the 

implications are more extensive and concern right parahippocampal, subcallosal and temporal cortical 

thinning, as well as reductions in right, lateral medial and medial thalamic volumes. The literature 

showed more posterior and subcortical atrophies essentially in amnesic MCI and AD. These atrophies 

concerned temporal medial regions, insula, cingulate posterior and putamen.18,42 Moreover, it was also 

demonstrated to increase volumes of amygdala and caudate nucleus volume.26 Thus, these data 

confirm the previous literature. However, if the structures involved are related to this literature, they 

remain very diverse according to the clinical stages in the sense that the clinical severity is 

characterized by a greater number of structures involved, which runs counter to certain studies which 

have demonstrated the impact of anxiety in CN participants but not in MCI or AD patients. 

 

Apathy 

Based on the literature review by Chen et al. (2021), apathy is associated with predominantly 

left lesions of: anterior cingulate, medial prefrontal orbitofrontal, superior frontal, parietal, and caudate 

nuclei and putamen.30 Also, apathy would rather concern the posterior cingulate gyrus (MCI and AD), 

the inferior frontal and medial, insular, and inferior temporal (CN) regions.18–20,22,23,39 In CN 

participants, only the insular thinning (left) is found. Similarly, in MCI patients, only bilateral anterior 

thalamic thinning is found. Left insular thinning is also found in AD patients, as well as a thickening 

of the callosomarginal sulcus. The GLM analysis highlighted association between the severity of 

apathy and left parahippocampal thickening and postcentral gyrus thinning in MCI group, whereas 

there were associations with decrease of left inferior parietal area and right pericalcarine sulcus 

thickening. According to the data in the literature, apathy is involved in many structures, which the 
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current study does not corroborate. Furthermore, it is necessary to specify that there are different types 

of apathy, being involved by atrophies of various subcortical-frontal loops.43 Most studies do not 

specify the type of apathy being studied, particularly because the assessment scales are not always 

designed to distinguish between them. Furthermore, the evaluation of apathy does not always allow for 

verification of the process that causes it (cognitive, affective, or motivational). Some studies have 

shown a relationship with inferior temporal regions or previous thalamic radiation with apathy.44,45 

One could suppose that these regions, respectively involved in language and memory processes, would 

induce the loss of associated functions when affected by neurodegeneration processes, and would 

make individuals less able to communicate, leading to isolation, withdrawal and may be interpreted as 

apathy by relatives. The fact that there is so much different data in the literature on the cerebral 

substrates of apathy shows the complexity of this notion and the processes that underlie it. 

 

Irritability 

Irritability, probably one of the least studied NPS, would be linked to bilateral insular 

atrophies, notably anterior, but also posterior right insular atrophy in the patients, decreased white 

matter integrity in the anterior cingulate cortex, as well as amygdala preservation in AD 

participants.23,27,46 The available data on the cerebral substrates of irritability are poor in the literature. 

The same was true of its impact on cognition. So, our results complement the available data and 

showed that irritability is characterized by a left temporo-polar thinning and a right inferior temporal 

thickening. In MCI patients, irritability is related to a left anterior insular thinning, whereas in AD 

patients, irritability is characterized by an increase in volume of the left central amygdala, which 

agrees with some of the data in the literature. From the literature, only reduced volume of right insula 

and preserve volume of amygdala in AD was showed.23,27 

 

Nighttime behaviors 

Finally, nighttime behaviors would be characterized by increases in brain volume in the 

frontal limbic, temporal and amygdala regions, and by atrophies in participants in similar regions 

according to the progress of the clinical stages.28,47,48 These data are particularly derived from work on 
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the cerebral impacts of obstructive sleep apnea, generating up to hundreds of micro-awakenings per 

night, disrupting the paradoxical and general sleep of hypoxia.28,47 The results of the study confirm 

previous data, in particular: in the CN group, in which nighttime behaviors are characterized by 

inferior temporal and left orbital-frontal cortical thickenings, as well as increases in amygdala volumes 

involving the left cortico-amygdaloid and bilateral paralaminar nuclei. Lower temporal thickening was 

found in MCI patients with right insular and orbital-frontal thinning. Finally, interestingly, the 

presence of these disorders in AD patients showed insular cortical, parahippocampal, left temporal-

polar, bilateral orbitofrontal thinning and increases in the subcortical volumes of the right basal, 

central, medial and paralaminar amygdala nuclei, the right global amygdala, and the right lateral 

medial and right global thalamus nucleus. In the case of these sleep disorders, studies including sleep 

apnea have shown both increases and decreases in the size of cortical and subcortical structures.20,21 

These increases and decreases are related to inflammatory processes, according to the authors. These 

processes increase cell size initially, resulting in an increase in cortical thickness, until cell death and 

therefore degeneration, resulting in reductions in cortical thickness and subcortical volumes in a 

second stage.28,47 This may explain the ANOVA results showing increases in volumes and thicknesses 

in CN participants, thickening and thinning in MCI patients and cortical thinning and increases in 

subcortical volumes in AD patients. 

 

NPS and brain morphology 

Some limbic structures appear to be involved in almost all NPS, e.g, cingulate gyrus10,15–21, 

insula10,18,22–25 and amygdala10,26–28.  This could suggest the existence of a common network for some 

NPS. However, our results also highlighted associations with associative cortical structures (fusiform 

and middle temporal, inferior parietal, prefrontal regions). These raise the question of the relationship 

between NPS and cognitive processes underpinned by prefrontal, temporal and parietal regions such as 

executive, language and communicative functions. Also, it cannot be excluded that some NPS, 

particularly in participants with MCI or AD, are consecutive to cognitive disorders (apathy due to 

executive difficulties, irritability due to memory difficulties) and to the reduction of functional 
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abilities. Furthermore, the associations with ventral diencephalic regions and caudate nuclei suggest 

the involvement of social-cognitive rather than emotional processes in NPS. 

Analysis of the NPS most frequently found in the samples studied shows both diverse and 

partially similar neuroanatomical characteristics. Indeed, some NPS present similar cortical and/or 

subcortical characteristics. This neuroanatomical overlap between some NPS could underlie the 

identification of NPS clusters.49 These characteristics vary according to the clinical and control groups. 

Interestingly, cerebral differences can even be found in CN participants, which raises the question of 

the fragility of certain regions and processes related to NPS. These fragilizations could be a privileged 

route of entry into MCI. As shown by longitudinal studies, some NPS may be present several years 

before a clinical state of MCI for CN participants, or a state of dementia for MCI patients, 

emerges.3,4,9,16 Therefore, even if the prevalence of NPS is lower in CN participants, they constitute a 

population of choice for understanding the emergence of neuronal disorders and fragility. 

Similarly, to functional connectivity methods, whole-brain studies have several advantages, 

but such analyses must use stringent statistical corrections to account for multiple comparison issues 

given the large voxel number. Thus, the statistical threshold at which these studies report their results 

can have a huge impact on the replicability of the findings. In addition, connectivity results reported at 

different levels (whole brain and a priori ROIs) can not only help conceptualizing the findings better 

but also in improving the replicability of findings. Thus, future studies should take the aforementioned 

factors into account to improve the reliability and replicability of connectivity studies.50 

 

Limitations 

Several limitations are to be considered in this study, starting with the transversal aspect of the 

experimental protocol, which does not allow for a causal relationship between NPS and their cognitive 

and cerebral characteristics. Moreover, the NPS presents strong comorbidities between them, most of 

the patients presented several NPS in their neuropsychiatric profile. It would therefore be interesting to 

study the impact of combinations between NPS rather than NPS in isolation. Also, the study of the 

severity of NPS induces an increase in intergroup heterogeneity, both in terms of sample sizes (some 

subgroups may be too small for post-hoc analyses), and in terms of brain characteristics. Thus, some 
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of the differences highlighted could be explained more by the characteristics of the individual rather 

than by the presence of a particular NPS. 

 

Conclusion 

In conclusion, in a large cohort of the ADNI database, we showed that NPS were related to 

changes in cortical and subcortical structures mainly to the prefrontal and medial temporal structures 

on the one hand, as well as extensively in the limbic system on the other hand. The impact of NPS was 

found in all clinical groups, even in CN participants. However, these impacts differed between groups 

and between NPS. Notably, changes were due to anxiety in the CN participants, irritability and 

nighttime behaviors in all groups, agitation and apathy in the groups characterized by cognitive 

impairment (MCI and AD). These data suggest that some NPS may occur earlier than others while 

impacting brain structures. Further studies, especially longitudinal ones, should investigate the 

cognitive trajectories of CN and MCI participants according to the NPS/brain structure relationships 

they present.  
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Tables 

Table 1: Demographic characteristics according to diagnostic group 

 CN MCI AD F/Chi² p-value 

N 223 367 175   

Age 75,83 ± 5,08 74,83 ± 7,39 75,46 ± 7,47 1.566 0.210 

Sex (% male) 51.6 63.7 51.4 12.259 0.002 

Education (years) 16,03 ± 2,85 15,65 ± 2,95 14,71 ± 3,08 10.251 < 0.001 

MMSE 29.09 ± 1.00 27.09 ± 1.77 23.45 ± 2.03 578.745 < 0.001 

Legend: Data are presented as mean ± SD unless indicated otherwise. Differences between groups were assessed using ANOVA 

with post hoc Bonferroni tests (age, education), and Chi² (sex).  
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Table 2 General linear model analysis of NPS severity impacts on brain structures 

Group NPS Characteristics Structure Maxa TalX TalY TalZ p 

CN - - - - - - - - 

MCI 

Agitation 

Volume 

Frontal precentral left 

-

2.3044 

-23.8 -13.7 61.2 

< .005 

Frontal parsopercularis left 

-

3.8202 

-35.8 17.3 20.3 

< .0005 

Parietal inferior left 

-

1.9071 

-31.6 -51.1 34.6 

< .05 

Depression 

Volume 
Temporal fusiform left 

-

2.7278 -33.8 -40.3 -16.7 < .005 

Area 
Temporal fusiform left 

-

3.1769 -29.3 -40.6 -15.9 < .001 

Apathy 

Area 

Frontal pole left 

-

1.5378 -11.1 61.0 -8.4 < .05 

Thickness 
Frontal precentral right 

-

2.6943 31.7 -11.2 58.0 < .005 

Nighttime 

behaviors 

Volume Temporal inferior left 2.8264 -51.7 -27.6 -17.1 < .005 

Area Temporal middle left 2.7463 -57.0 -18.7 -12.9 < .005 

Thickness 
Occipital lingual right 

-

3.1304 14.3 -56.6 -0.1 < .001 

AD 

Agitation 

Volume Temporal middle right 2.9560 54.6 -27.7 -8.8 < .005 

Temporal fusiform right 2.5036 39.5 -23.5 -18.5 < .005 

Area Frontal rostral middle 

right 

3.1567 26.6 41.1 25.8 

< .001 

Depression 

Thickness 

Parietal superior left 

-

2.5621 

-24.9 -43.0 56.6 

< .005 

Apathy 

Volume Parietal postcentral right -

2.9686 31.6 -31.7 51.5 < .005 

Area Parietal inferior left -

2.7370 

-40.9 -64.3 13.8 

< .005 

Thickness Occipital pericalcarine 2.3459 21.5 -66.4 11.2 < .005 
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right 

Irritability 

Volume Frontal rostral middle left 2.9556 -22.6 57.6 8.3 < .005 

Frontal rostral middle left 3.2855 -29.7 54.5 -10.4 < .001 

Frontal  rostral middle 

right 2.5963 44.2 26.7 28.0 < .005 

Frontal caudal middle left 4.0832 -39.7 1.6 34.7 < .0001 

Frontal pole right 2.7631 14.1 56.0 -16.6 < .005 

Frontal superior right 4.5400 10.9 12.8 39.9 < .0001 

Parietal inferior left 4.3627 -27.7 -60.8 31.4 < .0001 

Parietal supramarginal 

right 4.2861 40.3 -34.2 15.7 < .0001 

Temporal superior left 3.2094 -55.4 -30.1 1.1 < .001 

Temporal fusiform left 4.9837 -29.8 -63.0 -7.8 < .0001 

Temporal fusiform right 6.5503 36.0 -49.9 -12.3 < .0001 

Cingulate isthmus right 4.2268 20.1 -48.0 4.7 < .0001 

Area Frontal superior right 4.6306 9.6 17.0 39.1 < .0001 

Parietal inferior left 4.3074 -27.6 -60.6 32.1 < .0001 

Temporal fusiform right 4.2213 39.0 -46.4 -14.8 < .0001 

Nighttime 

behaviors Volume Occipital cuneus right 2.6022 5.9 -83.9 17.3 < .005 

Legend: aMax = GLM coefficient indicating the direction of the relationship (positive: the more severe the NPS, the greater the 

structure; negative: the more severe the SNP, the smaller the structure). TalX = coordinates of the x axis of the Talairach atlas 

(posterior-anterior). TalY = coordinates of the y axis of the Talairach atlas (left-right). TalZ = coordinates of the z axis of the 

Talairach atlas (ventral-dorsal).  
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Table 3 Post-hoc contrasts on the effect of NPS on subcortical brain volumes 

NPS Group Structures F p-value Contrasts Δ p-value 

Agitation 

CN Left Pallidum 3.129 0.046 NS - - 

Left Amygdala 3.050 0.050 NS -  

MCI Left Caudate 3.147 0.045 NS - - 

AD NS - - - - - 

Depression 

CN NS - - - -  

MCI Right Thalamus 3.026 0.050 NS - - 

Right Ventral 

Diencephal 

4.160 0.017 
None vs Mild 

-0.136 0.022 

AD NS - - - - - 

Anxiety 

CN NS - - - - - 

MCI NS - - - - - 

AD NS - - - - - 

Apathy 

CN NS - - - - - 

MCI Ventral 

Diencephal 

3.680 0.013 
None vs Mild 

0.166 0.007 

Right Ventral 

Diencephal 

3.278 0.021 
None vs Mild 

0.167 0.008 

AD Left Pallidum 2.898 0.040 NS - - 

Irritability 

CN Left Pallidum 3.533 0.031 NS - - 

MCI Right 

Accumbens 

3.100 0.027 
NS - - 

AD NS - - - - - 

Nightime 

behavior 

CN Left Caudate 5.016 0.026 None vs Mild -0.387 ≤ 0.001 

Right Caudate 4.166 0.043 None vs Mild -0.341 0.002 

MCI NS - - - - - 

AD Right Amygdala 5.356 0.006 NS - - 

Legend: NS = Non-Significant. Contrasts are subject to Bonferroni correction; thus the main effect of NPS can be significant 

while 2-by-2 contrasts can be non-significant. 
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Figure 1:  Cortical changes in relation to NPS severity 
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