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Abstract  

Background: Finding an early biomarker of Alzheimer’s disease (AD) is essential to develop 
and implement early treatments. Much research has focused on using hippocampal volume to 
measure neurodegeneration in aging and Alzheimer’s disease (AD). However, a new method to 
measure hippocampal change, known as hippocampal grading, has shown enhanced predictive 
power in older adults. It is unknown whether this method can capture hippocampal changes at 
each progressive stage of AD better than hippocampal volume. The goal of this study was to 
determine if hippocampal grading is more strongly associated with group differences between 
normal controls (NC), early MCI (eMCI), late (lMCI), and AD than hippocampal volume.  

Methods: Data from 1666 Alzheimer’s Disease Neuroimaging Initiative older adults with 
baseline MRI scans were included in the first set of analyses (513 normal controls NC, 269 
eMCI, 556 lMCI, and 328 AD). Sub-analyses were also completed using only those that were 
amyloid positive (N=834; 179 NC, 148 eMCI, 298 lMCI, and 209 AD). We compared seven 
different classification techniques to classify participants into their correct cohort using 10-fold 
cross-validation. The following classifiers were applied: support vector machines, decision trees, 
k-nearest neighbors, error-correcting output codes, binary Gaussian kernel, binary linear, and 
random forest. These multiple classifiers enable comparison to other research and examination of 
the most suitable classifier for Scoring by Nonlocal Image Patch Estimator (SNIPE) grading, 
SNIPE volume, and Freesurfer volume. This model was then validated in the Australian 
Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL).  

Results: SNIPE grading provided the highest classification accuracy over SNIPE volume and 
Freesurfer volume for all classifications in both the full sample and amyloid positive sample. 
When classifying NC from AD, SNIPE grading provided an accuracy of 89% for the full sample 
and 87% for the amyloid positive group. Much lower accuracies of 65% and 46% were obtained 
when using Freesurfer in the full sample and amyloid positive sample, respectively. Similar 
accuracies were obtained in the AIBL validation cohort for SNIPE grading (NC vs AD: 90% 
classification accuracy). 

Conclusion: These findings suggest that SNIPE grading offers increased prediction accuracy 
compared to both SNIPE volume and Freesurfer volume. SNIPE grading offers promise as a 
means to classify between people with and without AD. Future research is needed to determine 
the predictive power of grading at detecting conversion to MCI and AD in amyloid positive 
cognitively normal older adults (i.e., early in the AD continuum). 

 

Key points: 

• HC grading may better classify different disease cohorts than HC volume 
• Higher prediction accuracy was obtained for HC grading than HC volume 
• HC grading offers promise as a method to detect declines in aging and Alzheimer’s 
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1 Introduction 
 
Dementia is a term used to describe a range of disorders that are caused by abnormal brain 

changes in aging. These abnormal changes impair cognitive functions such as memory, 

language, and problem-solving that are severe enough to interfere with daily life and 

independence (Alzheimer’s Association, 2022). The most common form of dementia, 

Alzheimer’s disease (AD), accounts for 60-80% of dementia cases. AD is a progressive 

neurodegenerative disorder defined by its underlying pathologies of ß amyloid (Aß42) 

deposition, pathological tau, and neurodegeneration [AT(N)] (Jack, 2018). Unfortunately, these 

pathological changes can start years, even decades, before the onset of cognitive symptoms 

(Sperling et al., 2011). Researchers must thus develop diagnostic tools that can detect AD 

pathology before too much irreversible neurodegeneration occurs. 

Many recent studies have attempted to improve AD classification accuracy using various 

biomarkers such as cognitive testing, positron emission tomography (PET), cerebrospinal fluid 

(CSF) assays of Aß42, tau, or magnetic resonance imaging (MRI) changes. For example, using 

episodic memory test such as the California Verbal Learning Test (CVLT) or Rey Auditory 

Verbal Learning Test (RAVLT) yield accuracies of over 80% when predicting conversion from 

mild cognitive impairment (MCI) to AD (Eckerström et al., 2013; Rabin et al., 2009). However, 

predicting future progression or diagnosis from NC (or even MCI and dementia) is difficult due 

to clinician subjectivity and individual patient variability. The implementation of machine 

learning techniques to analyze AD-related biomarkers may help improve early detection models 

and increase classification accuracy. Furthermore, the use of imaging techniques as opposed to 

cognitive tests may improve accuracies because they are not influenced by clinician subjectivity 

and less influenced by patient day-to-day variability.  
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Using MRI, researchers can measure neurodegeneration by analyzing volumetric changes 

in older adults’ brains. When studying changes due to aging, MCI, and AD, the most commonly 

studied area is the hippocampus because this region experiences atrophy early in the disease 

course (Fjell et al., 2014). The hippocampus has also been identified as one of the most useful 

biomarkers when examining progression from MCI to AD (Risacher et al., 2009). Another 

method of measuring hippocampal differences between groups is hippocampal grading, 

measured by the Scoring by Nonlocal Image Patch Estimator (SNIPE) (Coupe et al., 2015; 

Coupé, Eskildsen, Manjón, Fonov, & Collins, 2012; Coupé, Eskildsen, Manjón, Fonov, 

Pruessner, et al., 2012). This method has proven to be associated with cognitive changes in 

cognitive healthy older adults and people with early MCI (Morrison et al., 2022). Furthermore, 

this method has proven to classify between cognitively healthy older adults and people with AD 

with an accuracy of 93% when using both the hippocampus and entorhinal cortex (Coupé, 

Eskildsen, Manjón, Fonov, & Collins, 2012). However, these SNIPE results come from limit 

samples and need to be further examined to determine their usefulness in classifying different 

disease cohorts.  

 To better understand the potential of SNIPE to correctly classify aging and cognitive 

impairment groups more research is needed on 1) larger samples and in people with MCI, 2) 

people who are amyloid positive and are thus on the AD trajectory, and 3) comparing SNIPE to 

established methods such as Freesurfer. A larger sample is needed in these machine learning 

studies to reduce the chance of overfitting and to improve generalizability to other samples. 

Coupé and colleagues’ papers examining SNIPE used the Alzheimer’s Disease Neuroimaging 

Initiative diagnosis label ‘AD’ to differentiate groups (2012, 2015). The problem with the ADNI 

AD diagnosis is that it is based solely on clinical scores and does not include amyloid positivity. 
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Based on the National Institute on Aging – Alzheimer’s Association biomarker AD profiles, an 

older adult with abnormal amyloid levels (amyloid positive) is placed in the Alzheimer’s 

continuum, whereas someone without amyloid positivity is either experiencing non-AD 

pathologic change or has normal-level AD biomarkers (Jack, 2018). Thus, in order to correctly 

classify people as AD or as NC on the disease continuum it is important to examine only those 

who are amyloid positive. Specifically examining people on the AD continuum is also necessary 

because they are often selected for clinical trials and their accurate classification has the potential 

to further improve clinical trial patient selection. Finally, while the current research on SNIPE 

has offered promising results, the findings have yet to be compared to the traditional methods 

used to measure hippocampal volume (i.e., Freesurfer).  

The goal of this study was to determine whether classification accuracy is higher for 

SNIPE hippocampal grading, compared to SNIPE hippocampal volume, and Freesurfer volume. 

A recent review has also shown that few studies compute classifications between MCI vs AD, 

with most studies focusing on classifying NC from AD (Tanveer et al., 2020). While the former 

is a bit late for early intervention, the latter is not really of clinical interest. Therefore, we 

designed this study to examine classification accuracy between healthy older adults, people early 

mild cognitive impairment (eMCI) and late MCI (lMCI), and people with AD. Several 

commonly used classifiers were applied to determine which technique (i.e., SNIPE Grading, 

SNIPE volume or FreeSurfer volume) is best at classifying participants into their correct 

diagnostic cohort. Including multiple techniques improves the generalizability of our results and 

comparison to past research.  

 
2 Methods 
2.1 Alzheimer’s Disease Neuroimaging Initiative 
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Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 

as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The 

primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 

positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild cognitive 

impairment (MCI) and early Alzheimer’s disease (AD). Participants were selected from ADNI-1, 

ADNI-2, and the ADNI-GO cohorts. The study received ethical approval from the review boards 

of all participating institutions. Written informed consent was obtained from participants or their 

study partner. 

All ADNI participants were imaged using a 3T scanner with T1-weighted imaging 

parameters (see http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/ for the detailed MRI 

acquisition protocol). Baseline scans were downloaded from the ADNI public website.  

 

 

2.2 Participants from ADNI cohort 

Participant inclusion and exclusion criteria are available at www.adni-info.org. All participants 

were between the ages of 55 and 90 at the time of recruitment, exhibiting no evidence of 

depression. Healthy normal controls had no evidence of memory decline, as measured by the 

Wechsler Memory Scale and no evidence of impaired global cognition as measured by the Mini 

Mental Status Examination (MMSE) or Clinical Dementia Rating (CDR). Both eMCI and lMCI 

had scores between 24 and 30 on the MMSE, 0.5 on the CDR, and abnormal scores on the 

Wechsler Memory Scale. AD was defined as participants who had abnormal memory function on 
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the Wechsler Memory Scale, an MMSE score between 20 and 26, a CDR of 0.5 or 1.0 and 

probable AD according to the NINCDS/ADRDA criteria.  

 Figure 1 summarizes the methodology used to select participants from the ADNI studies. 

A total of 1666 participants were selected from ADNI-1 (n= 799), ADNI-2 (n=776), ADNI-GO 

(n=91) who had baseline MRI scans that passed quality control, for which hippocampal grading 

and volume could be extracted (513 NC, 269 eMCI, 556 lMCI, 328 AD).  

Amyloid status was derived from PET or CSF measures. ADNI PET data was acquired 

on multiple PET instruments with different acquisition sequences following various platform-

specific acquisition protocols. All PET data underwent quality control and standard image pre-

processing correct steps to improve data uniformity across collection sites. More detail can be 

downloaded from the ADNI procedures manual. The AV-45 PET scans were collected 

approximately 50 minutes post injection (Landau and Jagust 2015). The PiB-PET scans were 

collected after 50-70 minutes post injection of approximately 15 mCi (Jagust et al., 2010). To 

obtain cerebrospinal fluid (CSF) samples, lumbar punctions were performed as described in the 

ADNI procedures manual. CSF Aß42 were measured using the multiplex xMAP Luminex 

platform (Luminex Corp, Austin, TX, USA) with the INNO-BIA AlzBio3 kit (Innogenetics) 

(Olsson et al., 2005; Shaw et al., 2009).  

The current definition of dementia in ADNI is solely based on clinical assessments and 

does not include amyloid positivity. For this reason, we also wanted to repeat the same analysis 

in a subset of amyloid positive participants to ensure we are testing on people who are 

experiencing Alzheimer’s related pathological changes. To determine amyloid positivity, both 

CSF and PET values were used as not all participants had both measurements available. 

Participants were identified as amyloid positive if they had any of the following at baseline: 1) a 
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standardized update value ratio (SUVR) of  > 1.11 on AV45 PET (Landau et al., 2013), 2) a 

SUVR of >1.2 using Pittsburgh compound-B PET (Villeneuve et al., 2015), or 3) a cerebrospinal 

fluid Aß1-42 ≤ 980 pg/ml as per ADNI recommendations. Of the 1666 participants selected, 

1328 had baseline amyloid levels available to determine amyloid positivity (427 NC, 263 eMCI, 

400 lMCI, 238 AD) and of those 834 were amyloid positive (179 NC, 148 eMCI, 298 lMCI, 209 

AD).   

<Insert Figure 1 about here> 

<Insert Table 1 about here> 

 

2.3 Participants from AIBL cohort 

Participant inclusion and exclusion criteria for the Australian Imaging, Biomarker & Lifestyle 

Flagship Study of Ageing (AIBL) have been previously full described (Ellis et al., 2009). 

Briefly, healthy controls were 60+ and in good general health with no evidence of cognitive 

impairment. Those with MCI had to score <28/30 on the MMSE, and have abnormal scores on 

the Wechsler Memory Scale, and a CDR score of 0.5 or greater. AD patients were characterized by 

the NINCDS-ADRDA criteria (McKhann et al., 1984). There were 858 participants, of these 

participants only 581 participants had baseline MRIs that passed quality control for which 

hippocampal grading and volume could be extracted were included (413 NC, 90 MCI, 78 AD). 

 

 
2.4 Structural MRI processing  

Raw T1w scans for each participant were pre-processed through our standard pipeline 

including noise reduction (Coupe et al., 2008), intensity inhomogeneity correction (Sled, 

Zijdenbos, & Evans, 1998), and intensity normalization into the range 0-100. The pre-processed 
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images were then linearly (9 parameters: 3 translation, 3 rotation, and 3 scaling) (Dadar et al., 

2018) registered to the MNI-ICBM152-2009c average (Fonov et al., 2011). The quality of the 

linear registrations was visually verified by an experienced rater (author M.D.), blinded to 

diagnostic group. Only seven datasets did not pass this quality control step and were discarded. 

 

2.5 SNIPE grading and volume 

Scoring by Nonlocal Image Patch Estimator (SNIPE) was used to segment the hippocampus and 

measure the extent of AD-related change within the hippocampus using the linearly registered 

preprocessed T1-weighted images (Coupé, Eskildsen, Manjón, Fonov, & Collins, 2012; Coupé, 

Eskildsen, Manjón, Fonov, Pruessner, et al., 2012). The SNIPE procedure used has been 

previously described in detail (Dadar et al., 2020). In this method (SNIPE), volumes are 

calculated by counting voxels in a pseudo-Talairach stereotaxic space, thus correcting for 

subject's head size. The quality of the SNIPE segmentations were visually verified (author N.S.), 

blinded to diagnostic group. Only 11 datasets did not pass this quality control step and were 

discarded from the analyses. 

 

2.6 FreeSurfer volumes 

Freesurfer volumes were used to complete the classification analysis with the ADNI data. The 

volumes were provided by ADNI, completed using the standard protocols developed and 

implemented by The University of California, San Francisco (UCSF). For a more detailed 

explanation of the pre-processing and quality control guidelines, please see the full UCSF 

FreeSurfer Overview and QC Guide. 
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2.7 Data availability statement  
The data used for this analysis (both AIBL and ADNI data) are available on request from the 

ADNI database (ida.loni.usc.edu). 

 

2.8 Classification Analysis 

To assess the prediction power of each measure, a classification scheme with 10-fold cross 

validation was used. Specifically, SNIPE grading, SNIPE volume, or Freesurfer volume scores 

for the left and right HC were summed and used as features along with participant age and sex. 

To ensure that the potential differences in the distribution of the random splits in the cross-

validation folds do not impact the results, the same splits were consistently used for assessment 

of the performance of the three features evaluated with a support vector machine (SVM) 

classifier. To facilitate comparison with other studies in the literature and to ensure that the 

results are not classifier dependent, six other classifiers were examined: decision tree, k-nearest 

neighbors, error-correcting output codes, binary Gaussian kernel, binary linear, and random 

forests. The default parameters were used for each classifier. All analyses were performed using 

MATLAB version 9.7. 

Independent validation of the classification was completed using NC, MCI, and AD 

participants from the AIBL cohort. While ADNI classifies MCI participants into either eMCI or 

lMCI, AIBL only uses MCI. For that reason classification models for NC:MCI and MCI:AD 

were created using only the ADNI training set: 1) with both eMCI and lMCI participants, 2) with 

only the eMCI participants, and 3) with only the lMCI participants. Importantly, AIBL data was 

used only for independent validation of these three models. No AIBL data was used in the 

creation of these models, nor for any parameter adjustment. 
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2.9 Statistical Analysis 

Demographic information between groups was compared using independent sample t-tests and 

corrected for multiple comparisons using Bonferroni correction.  

 

3 Results  
3.1 Demographic and clinical results in ADNI 

Table 1 provides the demographic characteristics for all participants separated by group for both 

the full sample and amyloid positive sub-group.  

Several demographic and clinical factors differed between sub-groups in the full sample 

after correction for multiple comparison. With respect to age differences, eMCI were 

significantly younger than NC (t=6.84, p<.001), people with lMCI (t=5.74, p<.001), and people 

with AD (t=6.71, p<.001). AD had significantly lower education than NC (t=5.84, p<.001), 

people with eMCI (t=3.54, p<.001), and lMCI (t=3.59, p<.001). All groups significantly differed 

in ADAS-13 scores, with scores progressively increasing with each stage of decline (NC:eMCI, 

t= -8.31, p<.001; eMCI:lMCI, t= -13.89, p<.001; and lMCI:AD, t= -21.51, p<.001). Similarly, 

all groups significantly differed in CDR-SB scores, with scores progressively increasing with 

each stage of decline (NC:eMCI, t=-26.44, p<.001; eMCI:lMCI, t=-6.01, p<.001; and lMCI:AD, 

t=-28.51, p<.001). 

Demographic differences were also observed in the amyloid positive sub-analysis. After 

correction for multiple comparisons, eMCI were younger than only NC (t=3.49, p<.001). No 

group differences were observed in education after correction for multiple comparisons. All 

groups significantly differed in ADAS-13 scores, with scores progressively increasing with each 

stage of decline (NC:eMCI, t= -7.12, p<.001; eMCI:lMCI, t= -10.16, p<.001; and lMCI:AD, t= -

15.83, p<.001). Similarly, all groups significantly differed in CDR-SB scores, with scores 
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progressively increasing with each stage of decline (NC:eMCI, t=-18.34, p<.001; eMCI:lMCI, 

t=-3.49, p<.001; and lMCI:AD, t=-24.07, p<.001). 

 

3.2 Classification results in ADNI 

Table 2 shows the participant classification accuracy, sensitivity, and specificity scores for 

SNIPE grading, SNIPE volume, and Freesurfer volume for each analysis using SVM. Accuracy, 

sensitivity, and specificity obtained using the other classifiers are available in Supplementary 

Table S.1.   

 The highest classification accuracy was obtained using SNIPE grading, followed by 

SNIPE volume, then Freesurfer. This order was obtained for all group classifications in both the 

full sample and amyloid positive sample. When examining NC vs. AD classification, SNIPE 

grading provided an accuracy of 89% compared to 80% for SNIPE volume and 65% obtained 

using Freesurfer. When examining NC vs. AD in the amyloid positive sample SNIPE grading 

accuracy dropped by only 2% to 87%. On the other hand, SNIPE volume accuracy dropped by 

4% to 76% and Freesurfer classification accuracy dropped to 46%, a difference of 19%. In the 

NC vs. eMCI classification, SNIPE grading obtained the highest with 70% accuracy compared to 

SNIPE volume with 68% and Freesurfer volume with only 62%. When comparing NC vs. eMCI 

in the amyloid positive sample SNIPE grading obtained the highest accuracy compared to SNIPE 

volume and Freesurfer volume (63% vs 59% and 56%, respectively). 

   In the eMCI vs. lMCI classification, SNIPE grading and SNIPE volume obtained the 

highest with 67% accuracy compared to Freesurfer volume with 53%. When comparing eMCI 

vs. lMCI in the amyloid positive sample SNIPE grading and volume accuracies did not change 

while Freesurfer accuracy dropped 2% to 51%. In the lMCI vs. AD classification, SNIPE 
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grading obtained the highest with 68% accuracy compared to SNIPE volume at 63% and 

Freesurfer with 60%. When comparing lMCI vs. AD in the amyloid positive sample SNIPE 

grading once again provided the highest classification accuracy compared to SNIPE volume and 

Freesurfer volume (67% vs 58% and 57%, respectively). 

It is interesting to note that in all experiments, the standard deviation of the Freesurfer 

volume classification accuracy is much larger that SNIPE grading or SNIPE volumes except for 

lMCI:AD. 

 

3.3 Classification results in the AIBL cohort (external validation) 

In the first set of classification results we observed that SNIPE grading and volume were both 

more accurate than using hippocampal volumes obtained using Freesurfer at classifying groups. 

For that reason, in this validation procedure only SNIPE grading and volume were compared 

because both these techniques outperformed hippocampal volumes obtained using Freesurfer. 

Furthermore, given the similar prediction accuracies between the different classifiers, this 

external validation was completed using only the SVM classifier. Table 3 shows the participant 

classification accuracy, sensitivity, and specificity scores for SNIPE grading and SNIPE volume 

for each analysis using SVM. 

 The highest classification accuracy was obtained using SNIPE grading over SNIPE 

volume for almost all analyses. When examining NC vs. AD classification, SNIPE grading 

provided an accuracy of 90% compared to 80% for SNIPE volume. In the NC:MCI prediction, 

accuracy for SNIPE grading was higher than SNIPE volume 55% vs 41% (trained with eMCI 

and lMCI) and 74% vs 64% (trained with lMCI only), but higher for SNIPE volume over SNIPE  

grading 82% vs 79% (trained with eMCI only). In the MCI:AD prediction, accuracy for SNIPE 
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grading was higher than SNIPE volume in all three training cases, 66% vs 54% (trained with 

eMCI and lMCI), 65% vs 59% (trained with eMCI only), 66 vs 54% (trained with lMCI only). 

 

4 Discussion  

In recent years, numerous studies have implemented machine learning techniques on imaging 

data with the goal of accurately classifying and predicting people with dementia and more 

specifically AD (see Tanveer et al., 2020 for review). Many of these studies have been 

completed on small samples, do not attempt to classify people with MCI (from NC or AD), and 

relatively few have implemented new techniques aimed at measuring changes in the 

hippocampus. The current study addressed these limitations by comparing classification 

accuracy on a large sample of NC, and people with eMCI, lMCI, and AD (and with MCI and AD 

in AIBL), using a relatively new method to detect hippocampal changes. The findings observed 

here show that SNIPE grading has higher classification accuracy than both SNIPE volume and 

Freesurfer volume when classifying: 1) NC:AD, 2) NC:eMCI, 3) eMCI:lMCI, and 4) lMCI:AD 

in both the full sample and the amyloid positive sub-sample of ADNI and when classifying 1) 

NC:AD, 2) NC:MCI and 3) MCI:AD in the AIBL cohort..  

 These findings compliment those previously completed on SNIPE grading and volume 

(Coupe et al., 2012a,b, 2015). They found that SNIPE grading could classify between NC and 

AD with 93% accuracy using both hippocampal and entorhinal cortex grading (Coupe et al., 

2012a). Coupe et al., (2012b) also observed that grading was more accurate than volume at 

classifying progressive MCI vs stable MCI. The current study also found high accuracy (89%) 

when classifying NC vs. AD using only hippocampal grading and observed the novel finding 

that when focusing on those in the AD trajectory (amyloid positive) the results also remained 
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high (87%). This finding of high accuracy in the amyloid positive group is important when 

attempting to identify those in the pre-clinical stages of AD. High accuracy at identifying those 

in the pre-clinical stage of AD is important for clinical trials and further shows the importance of 

these results. Future work should determine the predictability of SNIPE at determining which 

amyloid positive NC will convert to pathological AD.  

  Compared to Freesurfer, SNIPE measures provided higher classification accuracy for all 

group classifications. The comparison of SNIPE to Freesurfer is essential in determining the 

usefulness of SNIPE because Freesurfer is a common method used to examine volume changes 

in AD. A quick MEDLINE search shows almost 600 papers with the keywords of Freesurfer and 

AD. Furthermore, Freesurfer volumetric measures are provided for the hippocampus in ADNI. 

While Freesurfer is somewhat accurate at classifying NC vs. AD (65%), Grading was much more 

accurate (89%), with a 24% improvement in classification accuracy. Similarly, differentiating 

between NC vs. AD in amyloid positive group the classification was much more robust with 

Grading compared to Freesurfer (87% vs. 52%), with grading offering 35% higher accuracy. 

These findings show that Grading is more sensitive than Freesurfer to hippocampal differences 

that occur in AD compared to NC. It should be noted that while we use the term AD to refer to 

both the full-sample based on clinical diagnosis and the amyloid positive sub-sample, the full 

sample represents AD and other dementias. Thus, these findings suggest that not only is grading 

accurate at detecting to hippocampal changes due to dementia but is also highly accurate at 

classifying between NC and AD who are on the AD path. An important benefit of using the 

SNIPE grading scores proposed here is the robustness of the method. In the 1666 MRI volumes 

processed, only 7 failed stereotaxic registration and 11 failed SNIPE segmentation. Robustness is 

important in clinical trials since losing data to pipeline failures results in reduced power to detect 
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group differences. Another advantage of the SNIPE method is the low standard deviation 

compared to Freesurfer in all the classification analyses.  

Similar classification accuracies were also obtained when validating our results in the 

independent AIBL cohort. We obtained a high accuracy of 90% when classifying NC vs. AD in 

the AIBL cohort. Accuracies similar to those observed using the ADNI dataset were also 

observed in the AIBL NC vs. MCI and MCI vs. AD classification. These findings suggest that 

the classification model is not only accurate in the ADNI dataset but is generalizable to and 

replicable in other datasets. In a recent meta-analysis, authors found that almost 30% of articles 

reviewed use the test set in the training process, thus double dipping during their evaluation 

(Ansart et al., 2021). This finding further emphasizes the importance of the current study using 

cross-validation in the original dataset as well as using an independent cohort for validation.    

The results found here are better or equivalent to past machine learning techniques that 

attempt to classify different disease cohorts from each other and NCs (see Taveer et al., 2020). 

The majority of the studies examined in the above-mentioned review focused on only classifying 

NC vs. AD, with less than 25% of the 60 studies using SVM to classify between MCI and AD 

and just over 30% classifying between NC and MCI (Taveer et al., 2020). In order to target early 

diagnosis of AD, researchers must be able to correctly classify between MCI and AD. In our 

sample, we were able to differentiate between eMCI vs. lMCI and lMCI vs. AD with almost 70% 

accuracy. Although there is some research that has shown similar success the novelty and 

advantage of the current results is that we employed a larger sample to improve generalizability, 

examined those on the AD trajectory (by studying amyloid positive groups), and classified 

people with eMCI vs. lMCI. Furthermore, we also validated these results in an independent 

cohort of NCs, MCI, and AD. These findings show promise for the use of SNIPE grading as a 
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powerful MRI-based feature that could be used in conjunction with other data to improve 

classification of patients into the correct disease cohort. Future research should examine whether 

SNIPE grading is useful at detecting which amyloid positive subjects will cognitively decline 

and develop AD. Early detection of AD will not only improve a clinicians’ ability to provide 

effective care to patients but also potentially improve selection of patients for clinical trials.    

 

 
5 Conclusion 
 
The current paper observed that SNIPE grading scores provided higher classification accuracy 

than both SNIPE volume and Freesurfer volumes. Importantly, this classification accuracy 

remained similar in the independent validation analysis using the AIBL cohort. These findings 

suggest that HC grading offers promise as a method to accurate classify those with and without 

AD. Future work should examine whether HC grading is predictive of future conversion from 

NC to MCI and dementia.   
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Figure 1: Flowchart summarizing the participant inclusion and exclusion criteria based on 
amyloid positivity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: 1 = the participants included in the first analysis including the entire sample. 2 = amyloid 
positive participants included in the second analysis focusing on those in the AD trajectory  
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Table 1: Demographic information for cognitively normal, early and late MCI, and AD 
participants. 

Notes. Values are expressed as mean ± standard deviant, or number (percentage %). Female Sex 
is represented as total number of sample and percentage of sample. NC = cognitively normal 
controls. eMCI = early mild cognitive impairment. lMCI = late mild cognitive impairment. AD = 
Alzheimer’s disease. ADAS-13 = Alzheimer's Disease Assessment Scale–Cognitive Subscale. 
CDRSB = Clinical Dementia Rating Scale – Sum of Boxes. * eMCI were younger than NC. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Full Sample NC 
n=513 

eMCI 
n= 269 

lMCI 
n= 556 

AD 
n= 328 

Age 74.36 ± 5.79 70.82 ± 7.38 73.99 ± 7.53 75.00 ± 7.78 
Education  16.35 ± 2.71 15.93 ± 2.65 15.90 ± 2.92 15.16 ± 3.01 
Female Sex  265 (52%) 120 (45%) 215 (39%) 147 (45%) 
ADAS-13 9.30 ± 4.54 12.59 ± 5.54 18.70 ± 6.53 29.95 ± 7.90 
CDR-SB  0.05 ± 0.19 1.29 ± 0.75 1.65 ± 0.92 4.45 ± 1.62 
Amyloid Positive NC 

n=179 
eMCI 
n=148 

lMCI 
n=298 

AD 
n=209 

Age 74.81 ± 5.68 72.29 ± 7.11* 73.51 ± 7.14 74.16 ± 8.01 
Education  16.22 ± 2.67 15.83 ± 2.74 16.00 ± 2.87 15.44 ± 2.79 
Female Sex  86 (62%) 62 (42%) 121 (41%) 93 (44%) 
ADAS-13 9.64 ± 4.62 13.70 ± 5.46 19.77 ± 6.65 30.74 ± 8.21 
CDR-SB  0.06 ± 0.27 1.40 ± 0.84 1.70 ± 0.91 4.53 ± 1.60 
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Table 2: Percent accuracy, sensitivity, and specificity (± standard deviation, evaluated over 10 folds) for classifying cognitively 
normal, early and late MCI, and AD participants. 

Notes: SVM = support vector machines, NC = normal controls, AD= Alzheimer’s disease, eMCI = early mild cognitive impairment. 
lMCI = late mild cognitive impairment, Grading = Scoring by Nonlocal Image Patch Estimator Hippocampal Grading, Volume = the 
Scoring by Nonlocal Image Patch Estimator Hippocampal Volume, Freesurfer = Hippocampal volume measured with Freesurfer.  

 

Table 3: Percent accuracy, sensitivity, and specificity for classifying NC, MCI and AD participants in the AIBL cohort. 

Notes: AIBL = Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing. SVM = support vector machines, NC = normal 
controls, MCI = mild cognitive impairment, AD= Alzheimer’s disease. Grading = Scoring by Nonlocal Image Patch Estimator 
Hippocampal Grading, Volume = the Scoring by Nonlocal Image Patch Estimator Hippocampal Volume. 1 = Training sample from 
ADNI used both eMCI and lMCI.  2 = Training sample from ADNI used only eMCI. 3 = Training sample from ADNI used only lMCI. 

SVM NC: AD  NC: eMCI  eMCI: lMCI  lMCI: AD 
 Grading Volume Freesurfer  Grading Volume Freesurfer  Grading Volume Freesurfer  Grading Volume Freesurfer 
Accuracy  89 ± 4 80 ± 4 65 ± 12  70 ± 4 68 ± 3 62 ± 6  67 ± 5 67 ± 5 53 ± 14  68 ± 6 63 ± 5 60 ± 7 
Sensitivity  82 ± 6 66 ± 6 30 ± 3  23 ± 8 15 ± 4 37 ± 2  89 ± 8 100 ± 0 49 ± 3  45 ± 6 0 ± 0 24 ± 3 
Specificity 94 ± 5 89 ± 8 87 ± 8  94 ± 4 96 ± 2 76 ± 17  23 ± 2 0 ± 0 60 ± 2  82 ± 5 100 ± 0 82 ± 2 
Amyloid 
Positive 

Grading Volume Freesurfer  Grading Volume Freesurfer  Grading Volume Freesurfer  Grading Volume Freesurfer 

Accuracy  87 ± 2 76 ± 5 46 ± 11  63 ± 6 59 ± 5 56 ± 10  67 ± 5 67 ± 4 51 ± 14  67 ± 4 58 ± 4 57 ± 4 
Sensitivity  85 ± 5 77 ± 5 26 ± 3  52 ± 6 48 ± 2 32 ± 2  88 ± 8 100 ± 0 44 ± 3  57 ± 9 0 ± 0 23 ± 3 
Specificity 89 ± 3 75 ± 5 68 ± 9  72 ± 4 69 ± 1 77 ± 2  27 ± 2 0 ± 0 65 ± 3  74 ± 6 100 ± 0 81 ± 15 

SVM NC:AD NC:MCI1 NC:MCI2 NC:MCI3 MCI:AD1 MCI:AD2 MCI:AD3 
 Grading Volume Grading  Volume Grading  Volume Grading  Volume Grading  Volume Grading  Volume Grading  Volume 
Accuracy  90 80 55 41 79 82 74 64 66 54 65 59 66 54 
Sensitivity  77 59 67 79 27 0 56 59 29 0 76 76 40 0 
Specificity 93 88 53 32 90 100 78 65 93 100 57 46 89 100 
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