
Identification and characterization of genetic risk shared across 24 chronic pain
conditions in the UK Biobank.

Katerina Zorina-Lichtenwalter1
Carmen I. Bango2
Lukas Van Oudenhove3
Marta Čeko4
Martin A. Lindquist5
Andrew D. Grotzinger6
Matthew C. Keller6
Naomi P. Friedman6
Tor D. Wager2

1Institute of Cognitive Science and Institute for Behavioral Genetics, University of
Colorado Boulder, USA
2Department of Psychological and Brain Sciences, Dartmouth College, USA
3Department of Chronic Diseases and Metabolism, KU Leuven, Belgium
4Department of Psychology and Neuroscience and Institute of Cognitive Science,
University of Colorado Boulder, USA
5Department of Biostatistics, Johns Hopkins University, USA
6Department of Psychology and Neuroscience and Institute for Behavioral Genetics,
University of Colorado Boulder, USA

Katerina Zorina-Lichtenwalter
University of Colorado
Institute for Behavioral Genetics
Room 213
1480 30th St
Boulder, CO 80303
(303) 492-7362
(303) 492-8063
URL: https://www.colorado.edu/ibg/
Email addresses:
katerina.zorina@colorado.edu
katerina.lichtenwalter@mail.mcgill.ca

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 30, 2022. ; https://doi.org/10.1101/2022.06.28.22277025doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://www.google.com/search?q=ibg+cu+boulder+address&source=hp&ei=e-CwYufJDYe7qtsPw9-u2AI&iflsig=AJiK0e8AAAAAYrDui98ivEwVfkFeL28c52IfKOPVoxtC&ved=0ahUKEwin88Dq9rz4AhWHnWoFHcOvCysQ4dUDCAo&uact=5&oq=ibg+cu+boulder+address&gs_lcp=Cgdnd3Mtd2l6EAMyBQghEKsCMgUIIRCrAjIICCEQHhAWEB0yCAghEB4QFhAdMggIIRAeEBYQHTIICCEQHhAWEB0yCgghEB4QDxAWEB0yCgghEB4QDxAWEB0yCgghEB4QDxAWEB0yCgghEB4QDxAWEB06CwgAEIAEELEDEIMBOhQILhCABBCxAxCDARDHARCvARCLAzoFCAAQgAQ6CAgAELEDEIMBOg4ILhCABBCxAxDHARCjAjoLCC4QsQMQgwEQ1AI6CAgAEIAEELEDOg4ILhCABBCxAxCDARDUAjoOCC4QgAQQsQMQxwEQ0QM6CwguEIAEEMcBEK8BOgsILhCABBDHARDRAzoGCAAQHhAWOggIABAeEA8QFjoFCCEQoAFQAFj_HGDyHWgAcAB4AIABaYgBlgiSAQQxMC4ymAEAoAEBuAEC&sclient=gws-wiz#
https://www.colorado.edu/ibg/
mailto:katerina.zorina@colorado.edu
mailto:katerina.lichtenwalter@mail.mcgill.ca
https://doi.org/10.1101/2022.06.28.22277025
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract
Chronic pain is attributable to both local and systemic pathology. To investigate the
latter, we focused on genetic risk shared among 24 chronic pain conditions in the
UK Biobank. We conducted genome-wide association studies (GWAS) on all
conditions and estimated genetic correlations among them, using these to model a
factor structure in Genomic SEM. This revealed a general factor explaining most of
the shared genetic variance in all conditions and an additional musculoskeletal pain-
selective factor. Network analyses revealed a large cluster of highly genetically
inter-connected conditions, with arthropathic, back, and neck pain showing the
highest centrality. Functional annotation (FUMA) showed organogenesis,
metabolism, transcription, and DNA repair as associated pathways, with enrichment
for associated genes exclusively in brain tissues. Cross-reference with previous
GWAS showed genetic overlap with cognition, mood, and brain structure. In sum,
our results identify common genetic risks and suggest neurobiological and
psychosocial mechanisms of vulnerability to chronic pain.

1. Introduction
Chronic pain is a well-documented individual and societal burden, with large
costs in suffering [108] as well as cognitive [1], social [26, 46], and economic
well-being [97, 77]. These costs are driven by an incomplete understanding
of pain chronification mechanisms, which impedes effective prevention and
treatment. Chronic pain is often conceptualized as a symptom of a specific,
localized pathology. With few exceptions [131], pain conditions are classified
based on suspected etiology and/or affected anatomic sites. However, this
approach has had limited success. As evidenced by reviews showing that
pain treatments fail to reduce pain (e.g. NSAIDs for low back pain [128] and
gabapentinoids for neuropathic pain [31]), there is an urgent need for a
fundamentally different approach.
A re-conceptualization of chronic pain as a primary disease has been

evolving in the pain scholarship community for over 2 decades [93, 111, 101]
and recently culminated in the introduction of chronic primary pain disease
codes in version 11 of the International Classification of Diseases (ICD-11)
[119]. Nevertheless, clinical support for pain sufferers continues to be
divided among medical disciplines based on symptoms: back pain is treated
by orthopedists, irritable bowel syndrome by gastroenterologists, and so on.
Recent work in the epidemiology of mental health has revealed extensive

patterns of co-occurrence across disorders, leading to identification of
common factors underlying multiple conditions [88, 53], including the ‘p
factor’ [15], which captures general psychopathology. Similar approaches
have emerged in pain research, informed by studies of the co-occurrence of
pain conditions in large samples [105, 113, 66, 72, 3] and the recognition
that different forms of pain are related to similar alterations in the nervous
system [65, 76, 54, 63]. Some studies have examined genetic correlations
among pain syndromes [129] and genetic risks of having pain in more than 1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 30, 2022. ; https://doi.org/10.1101/2022.06.28.22277025doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.28.22277025
http://creativecommons.org/licenses/by-nc-nd/4.0/


of 7 locations on the body [56, 59]. However, a systematic assessment of
shared susceptibility across a broad spectrum of pain conditions is lacking,
and common factors underlying general pain susceptibility have not yet been
characterized.
Most chronic pain conditions are the result of a complex interaction

between genetic, environmental, lifestyle, and experiential contributors [80].
However, assessing the genetic component gives insight into commonalities
across conditions that can be linked to measurable and potentially targetable
biological pathways. In addition, genetic predispositions can be measured
cost-effectively using genome-wide association studies (GWASs) and used to
characterize and predict risk for chronic pain (e.g., after surgery), predict
treatment response, and identify new targets.
We applied this approach here, using the U.K. Biobank (UKBB) [14] and

recently developed Genomic Structural Equation Modeling (SEM) software
[43]. Genomic SEM enabled us to model the underlying factor structure while
accounting for the complex correlations within genetic segments and run a
GWAS on the extracted factors. Genomic SEM also produces a Q
heterogeneity statistic (QSNP) that indexes single nucleotide polymorphisms
(SNPs) unlikely to operate through the genomic factors, such as variants that
have a disproportionately strong effect on 1 condition or directionally
opposing effects on a subset of traits. Collectively, this allowed for distilling
SNPs associated with general pain etiology from trait-specific, genetic
pathways. Lastly, we performed functional characterization of common-
factor SNPs in FUMA [133].
The questions we aimed to answer in this study were: (1) Is there a

general, condition-agnostic genetic risk factor? (2) Are there additional
genetic factors underlying subsets of pain conditions? (3) Does the genetic
structure correspond to organization of pain by symptom location or
hypothesized etiology? (4) What biological pathways and tissues are
associated with these genetic factors? Figure 1 provides a graphical
overview of the study.

2. Methods
2.1 Individual pain conditions
2.1.1 Cohort
Analyses were conducted in the UKBB cohort of participants aged 40-69, who
were recruited between 2006 and 2010 (UKBB data-request application
16651). The current standard in genetics is to limit analyses to samples of
homogeneous ancestral background to avoid introducing confounds from
ethnically mixed samples [115]. We analyzed data from White Europeans
(UKBB data field 22006), given that no other group had a sufficient sample
size (see Supplementary Table S2 for descriptive statistics of South Asians,
the next highest sample size), though analyses in different ancestral groups
will be a high priority when more data become available. Individuals who
withdrew from the study by August 2020 were removed. A maximum of
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435,971 people were included in the analysis, with sample size varying by
phenotype, Table 1.

2.1.2 Phenotypes
The selected phenotypes were either chronic pain conditions, such as
migraine or back pain lasting longer than 3 months, or conditions with
persistent pain as a prevalent symptom, such as osteoarthritis. An initial list
of 92 phenotypes was drawn from 4 UKBB categories: Medical conditions
(100074), Health outcomes (713), Self-reported medical conditions (1003),
Health and medical history (100036), and First occurrences (1712),
downloaded in May 2020. These conditions were recoded into binary
phenotypes for analysis (Supplementary Table S1) and subsequently pruned
to remove conditions in the following categories: 1. heterogeneous disorders
or groupings thereof, such as “Other diabetic polyneuropathies”; 2.
branching traits (answers to questions dependent on endorsement of a
previous question, with the exception of DF6159: “Pain type(s) experienced
in last month”, which was included); 3. disorders with case count < 500; 4.
disorders that were not sufficiently related to genetics, with SNP heritability
less than or equal to 2 standard errors above zero h2SNP - 2*SE ≤ 0, as
described below. This pruning left 33 conditions (Table 1), further reduced to
24 during the factor analysis step (see section “Factor analysis and Genomic
SEM” below).

2.1 3 GWAS
We used genotypes (EGAD00010001474 downloaded using ukbgene

imp), imputed from the UK10K reference panel [50]. SNP quality control
filters consisted of heterozygosity rate (|Fhet| > 0.2) (determined using the --
het option in Plink), final call rate > 0.95 (--geno option in Plink), Hardy-
Weinberg equilibrium (1.0x10-8), and minor allele frequency > 0.01. The
sample quality control filter removed mismatches between reported and
genotyped sex (Category 100313). We ran GWAS analyses in Regenie [78],
using Firth approximation-corrected logistic regression [32]. Briefly, the
analysis was run in 2 steps: 1. a model-fitting step, in which genotyped SNPs
were split into chunks and 2 levels of ridge regression were run to obtain a
per-chromosome genetic predictor of the phenotype; 2. a test of association
for all available (imputed) SNPs, also split into chunks, with covariates
(described below) regressed out and predictors from the first step removed
from phenotypes, using a leave-one-chromosome-out (LOCO) scheme. We
used 339,444 genotyped SNPs in 100-SNP chunks in the first step and
11,359,143 imputed SNPs in 200-SNP chunks in the second step, with age,
sex, and 10 PCs from genetic PCA (principal component analysis) as
covariates [99].
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2.2 Factor analysis and structural equation model
2.2.1 Heritability and genetic correlations
Using the Genomic SEM R package, summary association statistics from
GWAS were converted to z-scores with the munge function, and genetic
covariances [12] and SNP heritabilities [142] were estimated with the ldsc
function [13], modified by the authors of Genomic SEM to include a sampling
matrix that corrects for sample overlap [43]. We estimated SNP heritability
on a continuous liability scale [69] for each pain condition. Genetic
covariances were converted to correlations using the cov2cor function in R
and ordered using hierarchical clustering, which produced a matrix of
genetic correlations across pairs of pain conditions (Figure 2A).

2.2.2 Factor analysis and Genomic SEM
For the factor analytic step, we pursued 3 primary genomic SEM models: one
using a confirmatory factor analysis (CFA) informed by an exploratory factor
analysis (EFA), and 2 using hypothesis-based CFA. EFA-CFA, is a partially
data-driven approach that captures observed groupings in the data, while
still permitting structure and inferences based on theory. This approach
aligned with our main goal: to test for common factors without rigidly
specifying the groupings a priori. The 2 hypothesis-based CFAs were used to
test whether the observed correlations were well described by pre-specified
anatomic and etiological groupings. The anatomic model included the
general factor (on which all disorders loaded) and 6 specific factors that
group conditions based on body site: Cranial, Gastrointestinal, Joint, Leg/Foot,
Pelvic, and Torso. The etiologic model included the general factor and a
specific factor for inflammatory conditions, which was the only putative
etiology with a substantial number of representative conditions. We
discussed a variety of other groupings, but as biological etiology is often
unknown – a central problem in pain research – we did not reach clear
consensus on additional etiological factors.
For all 3 approaches, the goal was to test a bifactor model, which

consisted of a general factor with loadings for all conditions and specific
factors that were orthogonal to the general factor and had loadings for
specific subsets of conditions. This type of model aligned well with our aim to
test whether a common genetic factor underlay all tested conditions, while
still allowing for additional shared variance for certain groups of conditions,
such as joint-related pain. Similar approaches have been used to model
other multidimensional constructs, including personality [18] and
psychopathology [9]. EFA as a precursor to CFA has been evaluated in [38]
and recently used in [19, 64, 24].
For the EFA portion of the EFA-CFA approach, a scree plot (Supplementary

Figure S3) suggested 3 factors. We specified oblique rotation to estimate
expected factor covariances. The resulting factor loadings were used to
specify a correlated-factors CFA model, first, for testing in Genomic SEM. A
condition loaded on a factor in the CFA model if it had positive standardized
EFA loadings > 0.2, with the highest loading dictating the factor onto which
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the indicator would load in CFA. If an indicator had 2 loadings within 0.1,
both were included in the CFA model. We further specified residual
covariances for conditions that were very similar conceptually and had
definitional overlap (knee arthrosis and knee pain, hip arthrosis and hip pain,
general chest pain/discomfort and chest pain during physical activity,
headache and migraine). This obviated one of the 3 factors (a headache-
migraine factor), leaving a 2-factor model. Polymyalgia rheumatica and
ulcerative colitis were excluded at this step due to lack of positive loadings >
0.2 onto any factor in the EFA model. This correlated factors CFA served as
the interim step between EFA and bifactor CFA, in which we specified all
conditions to load onto one general factor and the prior model’s correlated
factors as uncorrelated additional specific factors.
As the EFA-CFA model is more flexible, we tested for overfitting [33] by

repeating the analysis originally conducted on the whole dataset, using a
split-genome approach [42, 34]. In step 1, we applied the EFA-CFA procedure
described above in odd autosomes (1,3,...21), and in step 2, we assessed the
fit of the CFA from step 1 in even autosomes (2,4,...22). This validation step
led to a further exclusion of 7 conditions (arthropathy of carpometacarpal
joint, diabetic neuropathy, Crohn’s disease, fibromyalgia, prostatitis,
seropositive rheumatoid arthritis, and urinary colitis), whose heritability
estimates were not significantly above 0 in at least one holdout set, Table 2.
This does not imply that these conditions are not heritable or are genetically
unrelated to the common factors, as some conditions may be selectively
related to genes on odd or even autosomes (limiting replicability here).
However, the exclusions helped ensure that the conditions included in the
factor model had broad polygenic representation across odd and even
autosomes independently. The exclusion left 24 pain conditions for the
validation step, which we also used in the main analysis and in the 2
hypothesis-driven approaches for consistency and comparability.
Models were evaluated using CFI (comparative fit index), which compares

the model fit to one with entirely independent variables, and SRMR
(standardized root mean residual), a measure of variance unexplained by the
model [49]. A well-fitting model should generally have a CFI≥ .95 and an
SRMR≤ .08 [49]. The models were additionally compared using AIC, (Akaike
information criterion), a goodness-of-fit index favoring more parsimonious
models [60].

2.2.3 Factor GWAS
To estimate the genetic effects of genome-wide variants on the EFA-CFA
model factors, we ran a factor GWAS in Genomic SEM (userGWAS function).
SNP effects on the common factor and one specific factor were calculated by
adding the genotypic score for each SNP to the genetic correlation matrix
output by ldsc for 24 conditions, estimating a new matrix of correlations,
and fitting the model with additional paths from the SNP to each of the
factors (Supplementary Figure S6).
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To conduct a heterogeneity Q test [51, 43], we specified a less restrictive
model, in which for every SNP, path coefficients were estimated from the
SNP to the individual phenotypes (independent pathways model). We
formally assessed the difference between the 2 models – common and
independent pathways – using the chi-square difference test. If significant,
the SNP’s effects on the individual pain conditions were interpreted to be
inadequately modelled by the factor approach. Because this test was
calculated for every imputed SNP, we used the standard whole-genome
correction for multiple testing, p < 5x10-8, as the threshold for Q significance.
The resulting QSNPs were considered to be associated with pain conditions
independent of common factors.
Additionally, we tested for SNPs in linkage disequilibrium (LD), i.e.

correlated with QSNPs, using Plink, version 1.9, --indep-pairwise 500 50 0.6,
corresponding to 500 kilobases, 50 SNPs, 0.6 r2 threshold. We removed
QSNPs, and SNPs in LD with them, which were liable to capture the
contribution of QSNPs, before annotating the GWAS results.

2.3 Network analysis
While CFA has many strengths in permitting model comparison, some groups
have emphasized that relationships among clinical conditions can have a
complex causal structure that can be characterized in terms of networks of
interacting variables [127]. We make no strong claims about the underlying
causal structure and complement the factor-analytic models with a network-
based approach to characterize genetic relationships among conditions.
Network characterization and visualization was done in igraph in R [22].
Genetic correlations of the final 24 pain conditions were filtered for positive
significant correlations, using a threshold of 0.01 false discovery rate (FDR)-
corrected, calculated with fdrtool in R. We calculated 2 graph-theoretic
properties for each pain condition: (1) strength, calculated as the number of
edges (genetic correlations with other pain conditions) weighted by their
magnitude [7]; and (2) betweenness-centrality, the number of shortest paths
between pairs of pain conditions that go through the condition in question)
[11]. Strength identifies ‘hub’ conditions that are robustly genetically related
to many other conditions and may thus be prominent indicators of multi-
disorder susceptibility. Betweenness-centrality identifies ‘con nector hubs’,
conditions that are genetically related to multiple other conditions that are
themselves less interrelated. ‘Connector hubs’ are thus key indicators of
shared genetic vulnerability. These measures may themselves be correlated,
and if so, combined into an overall index, as we did here (described below).
At the network level, we estimated the largest clique, complete subgraph of
intercorrelated pain conditions [29], which identifies a group of genetically
linked conditions that may together serve as indicators of multi-disorder
susceptibility.
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2.4 Summary score
To summarize the evidence on which conditions were the most consistent
key indicators of multi-disorder vulnerability, we combined results from
Genomic SEM and network analysis, obtaining an overall measure of
interconnectedness. We derived a summary score for each pain condition
using F1 loadings from EFA-CFA, network strength, and betweenness
centrality, which are intercorrelated: r =.935 for F1 and strength, r =.614 for
F1 and betweenness, and r =.693 for strength and betweenness. We
calculated a geometric mean of these 3 measures, after vector-normalizing
them using the norm function in R.

2.5 GWAS annotation
To functionally characterize the genetic contributors to both individual
phenotypes and the 2 factors, we submitted all GWAS results to FUMA for
prioritization and annotation, using several integrated databases [133].
These analyses consisted of: 1. prioritizing SNPs based on their effect sizes
and independence from each other; 2. mapping significant SNPs to genes as
described below; 3. conducting a genome-wide gene-based association
analysis with FUMA-implemented MAGMA (only used for FUMA’s gene
analysis and gene property analyses; 4. gene set analysis for enrichment in
known biological pathways; and 5. gene property analysis (testing for
preferential expression of associated genes with 53 Gene-Tissue Expression
repository
(GTEX) tissues). We used standard significance thresholds and parameters,
including p < 5e − 8 for lead SNPs (independent at r2 < 0.1); p < 0.05 for all
other SNPs; r2 threshold for independent significant SNPs used for further
annotations, including gene mapping: 0.6; reference panel population = UKB
release 2b 10K European; minimum minor allele frequency = 0.01; maximum
distance between LD blocks to merge into a locus = 250 kilobases. The r2
threshold represents a squared pairwise correlation for SNP variant alleles.
The sample sizes for the 2 factors (common and musculoskeletal) identified
in the final EFA-CFA model were 422,752 and 468,929, respectively,
calculated using the method described in [74]. Variants from the reference
panel that were in LD with GWAS lead SNPs were included to increase the
chance of capturing causal variants.
Mappings of independent significant (as defined in FUMA, p < 5x10-8 and

r2 < 0.6) SNPs onto genes was based on (1) positional distance (within 10
kilobases of gene start and stop coordinates); (2) statistical associations with
transcription levels (expression quantitative trait locus, eQTL); and (3)
chromatin interaction mapping, physical interactions with gene chromatin
states (indicative of transcriptional accessibility). We included protein-coding
genes and excluded the major histocompatibility (MHC) region from
annotation. MAGMA analysis for gene-based associations [23] was conducted
with SNP assignment within windows of 10 kilobases of gene start and stop
coordinates, and GTEx, version 8, [71] was used for gene expression analysis
in 53 tissues. FUMA parameters are summarized in Supplementary Table S3.
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3. Results
The work reported here is part of a project preregistered on Open Science
Foundation, OSF (Identifying and Characterizing Genetic Susceptibility and
Its Overlap with Psychosocial Traits, https://osf.io/4p5e3).

3.1 Univariate pain condition GWAS curation and annotation
We considered 24 pain phenotypes in the UK Biobank that (a) were indicative
of chronic pain conditions, (b) had sufficient case counts (> 500), and (c)
were sufficiently heritable (see Methods; Table 1 and Supplementary Table
S1). The sample size available for case assessment varied by condition and
ranged from 63,982 (chest pain during physical activity) to 435,971 (several
conditions). Prevalence ranged from 0.002 (772 cases, diabetic neuropathy)
to 0.473 (119,216 cases, back pain). SNP heritability (variance in the
phenotype explained by variance in the genotype) ranged from 0.03 (SE
0.008) for cystitis to 0.20 (SE 0.029) for gout.
Summaries of results from univariate GWAS are reported in Table 1 (SNP

heritabilities), in Supplementary Figures S1 and S2 for Manhattan and
quantile-quantile (QQ)-plots, and in Supplementary Table S14 (numbers of
significant SNPs and genes).

3.2 Pain condition genetic correlations
Pairwise genetic correlations for the 24 pain conditions, Figure 2A, showed a
large cluster of interconnected vertices. This main cluster included
etiologically and anatomically diverse conditions, such as back pain,
oesophagitis, IBS, and carpal tunnel, suggesting shared genetic susceptibility
among these disparate syndromes. Headache and migraine formed a tight
mini-cluster (top left), and cystitis, hip arthrosis, enthesopathies of the lower
limb and gout showed weaker correlations, suggesting more specific genetic
risks for each of these 4 conditions.

3.3 Structural equation modeling
Using 3 approaches – hypothesis-driven anatomic (1) and etiologic (2), and
largely data-driven exploratory-then-confirmatory (3) factor analyses (EFA-
CFA) – we fit a bifactor model to test the loadings of all conditions onto a
general factor, with differences in specific factor groupings in each approach.
The anatomic model based on body site (Supplementary Figure S4,
CFI= .875 and SRMR = .087) and the etiologic model, based on a grouping of
inflammatory disorders (Supplementary Figure S5, CFI= .905, SRMR= .095)
both had suboptimal fit (CFI≤ 0.95 and SRMR≥ .08), see Methods. The EFA-
CFA model, shown in Figure 2C, produced an adequate overall fit (CFI= 0.956,
SRMR = 0.075). All pain conditions loaded positively and significantly onto
the general factor (F1). The specific factor (F2) had substantial positive
loadings for arthropathies (which included osteoarthritis), carpal tunnel,
enthesopathies of lower limb, other enthesopathies, hip arthrosis, hip pain,
knee arthrosis, knee pain, leg pain, pain in joint, and rheumatoid arthritis.
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Given the pronounced musculoskeletal component among these indicators,
we interpreted F2 as a musculoskeletal factor. This model was superior
(AIC=4849.164) to both the anatomic (AIC=13184.43) and the etiologic
(AIC=10024.93) models (see Methods). In addition, the latter models had
non-significant loadings on their specific factors (Leg/Foot, Pelvic, and Torso
for the anatomic, Supplementary Figure S4, and Inflammatory for the
etiologic, Supplementary Figure S5, suggesting that shared variance for
those indicators was mainly explained by the general factor (details in
Supplementary Note). We validated this model by training on odd (CFI= .884
and SRMR= .123) and testing on even (CFI= 0.903 and SRMR= .129)
autosomes (details in Supplementary Note). These comparable metrics in the
training, validation, and whole genome datasets suggested that using EFA
and CFA on the same dataset did not result in substantial overfitting.

3.4 Network analysis and central conditions
Network analysis provided additional evidence for substantial genetic
overlap across pain conditions with a different theoretical model (Figure 2B).
There was a complete subgraph of 19 interconnected conditions, highlighted
in yellow: arthropathies, back pain, neck/shoulder pain, hip pain, knee pain,
leg pain, chest pain (baseline and during physical activity), rheumatoid
arthritis, knee arthrosis, joint pain, carpal tunnel, enthesopathies,
widespread pain, gastritis, oesophagitis, stomach pain, headache, and IBS.
Consistent with the CFA model, these conditions affect diverse body sites
and span inflammatory and non-inflammatory as well as musculoskeletal and
non-musculoskeletal forms of pain. Gout, hip arthrosis, enthesopathies of the
lower limb, cystitis, and migraine lay outside the large cluster, but they still
had more than 10 connections each. Overall, the network revealed a large
core of pain syndromes with shared genetic vulnerability.
Some conditions were particularly central in the network, in several ways.

Arthropathies, back, and neck/shoulder pain had the highest betweenness
centrality, indicating that genetic associations between many conditions
shared genetic vulnerability with at least 1 of these 3.
The summary score derived from F1, network node strength, and

betweenness centrality, Figure 2d, reflected the highest degree of genetic
overlap with other conditions. Once again, the top highest scorers were
neck/shoulder pain, back pain, and arthropathies.

3.5 Factor GWAS and annotation
After running factor GWASs, we excluded QSNPs, which showed evidence of
effects specific to certain pain conditions (not through the common factors),
and we conducted functional annotation of the GWAS output for each of
these factors.

3.5.1 General Factor (F1)
The F1 GWAS yielded 33 genome-wide independent significant SNPs,
Supplementary Table S4, Figure 3. FUMA mapped these to a total of 241
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genes, using at least 1 of 3 methods (positional, eQTL, and chromatin
interactions, see Methods), Supplementary Table S5: 26 by positional, 52 by
eQTL, and 57 by chromatin interaction mappings. All 3 annotations were
identified for 25 genes, highlighted in green in Supplementary Table S5.
We used REVIGO [112] to assign, prune, and summarize biological

pathways to the 25 genes with overlapping mappings (details in
Supplementary Note). The resulting pathways represented by these genes
covered a broad range of biological processes, including organ development
(gut, heart, muscle and brain), metabolism, catabolism, signaling, immunity,
neuronal development, transcription, and DNA repair (Supplementary Table
S6).
Additionally, FUMA gene set annotation showed a suggestive significant

enrichment (p = 1.64x10-5, Bonferroni-corrected p = .253) for
mechanosensory behavior, several neuronal development processes, and
several biosynthesis and calcium channel regulation processes,
Supplementary Table S7.
MAGMA-based tissue expression analysis, as implemented in FUMA, tested

for association between highly expressed genes in 53 GTEx tissues and
GWAS effect sizes for the same genes (details in Supplementary Note).
Associations were significant only in brain tissues: cortical regions (the
cerebral cortex, dorsomedial prefrontal cortex BA9, and anterior cingulate
cortex BA24), nucleus accumbens, basal ganglia, amygdala, hippocampus,
hypothalamus, and cerebellum, Figure 3D.
Additionally, we used FUMA to cross-reference SNPs and genes with other

GWAS reports. Of note was the overlap in SNPs (Supplementary Table S8),
and significant enrichment for genes reported to be associated with chronic
pain conditions (back pain, Crohn’s disease, IBS, and multi-site chronic pain),
brain structural traits, anthropometric traits, cognition and intelligence-
related phenotypes, sleep-related phenotypes, neuroticism, and mood
phenotypes (Supplementary Figure S9). Genetic overlap with non-pain
conditions was suggestive of the complexity of factors contributing to
chronic pain. Furthermore, DCC, the top gene associated with F1, was also
the top gene reported in a recent study of chronic overlapping pain
conditions (COPCs), which used pain for more than 3 months in different
body sites from the UKBB (head, face, neck/shoulder, back, stomach, hip,
knee, all over the body) [59]. Of the 241 genes mapped to independent
significant SNPs from the F1 GWAS, FKBP5 was the only one previously
targeted in a candidate gene study (as opposed to GWAS) for posttraumatic
musculoskeletal pain [144, 10].

3.5.2 Musculoskeletal Factor (F2)
The F2 GWAS yielded 7 genome-wide significant lead SNPs,

Supplementary Table S9. Positional mapping yielded 5 unique genes; eQTL
mapping yielded 18 genes; and chromatin interaction mapping yielded 19
genes, with 5 genes mapped using all 3 methods, green: DPYD, MAPK6,
GLIS3, COL27A1, and SLC44A2, Supplementary Table S10.
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REVIGO pathway analysis showed associations with genes involved in
bone and neuronal development, cell cycle, transcription regulation and
signal transduction, Supplementary Table S11. Gene set annotation showed
a Bonferroni-corrected significant enrichment for regulation of RNA
biosynthetic process and nominally significant (p < 0.05) enrichment for
several other regulatory processes, chromatin organization, cell migration
involved in heart development, and DNA damage response, Supplementary
Table S12. MAGMA tissue expression analysis found no significant
association between gene expression and GWAS effect sizes for 53 tissues,
Supplementary Figure S7D.
Cross-referencing with other GWAS reports identified previously reported

SNP associations with anthropometric traits (height, hip circumference,
offspring birth weight), hip or knee osteoarthritis, sleep-related phenotypes,
and type 2 diabetes (Supplementary Table S13), and significant overlap with
genes reported to be associated with inflammatory skin disease, palmitic and
stearic acid levels, (Supplementary Figure S9). None of the genes previously
targeted in candidate gene studies for pain [144] mapped to independent
significant SNPs for F2.

4. Discussion
The UKBB is a large and extensively phenotyped cohort, which recently
added First Occurrences data (category 1712), giving researchers access to
primary care and death register records to supplement self- reports and ICD-
10 diagnoses, earlier available exclusively from hospital intake records. This
growing trove of genotypic and phenotypic data has enabled us to examine a
much larger number of pain conditions than reported in prior genetic studies
of multi-site pain [58, 56, 59, 120]. Our work builds on earlier studies, which
included smaller numbers of conditions, often selected a priori based on
anatomic proximity or hypothesized etiology. Most of these have been
conducted in twins. They include reports of genetic correlations of
musculoskeletal pain in different body sites [136]; spinal pain syndromes
[45]; chronic pain syndromes (chronic widespread musculoskeletal pain,
chronic pelvic pain, migraine, and IBS), which estimated 66% heritability
using a common pathway model [130]; low back pain with common
widespread pain [73]; and TMD with migraine [98].
Several large-scale chronic pain GWAS, with strengths complementary to

twin studies [36], have been published on pain in the past 3 years [114, 81,
35, 82, 84, 86]. These reports, which used earlier releases of the UKBB,
include 3 on multi-site pain [56, 57, 59]. However, a significant caveat to
earlier GWAS on multi-site pain as a single phenotype is the potential for
gene variants that selectively act on one of the conditions included in the
multi-site definition to be interpreted as cross-condition variants. The
Genomic SEM approach has allowed us to extract genetic variance that is
truly common to different conditions, rather than detecting associations with
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an averaged phenotype. In other words, it enabled us to capture genetic risk
for chronic pain, regardless of etiology or symptomatology.
Our results identified a single common genetic factor that explained

substantial genotypic variance in pain conditions with different suspected
etiologies and anatomic presentations, as evidenced by significant loadings
onto this factor for all 24 conditions tested. This common factor implied
shared genetic risk for a range of conditions, some as clinically distinct as
migraine and cystitis, and pointed to their shared systemic pathophysiology.
Additionally, a second factor explained some of the shared genetic variance
across diverse musculoskeletal conditions: arthropathies, carpal tunnel,
enthesopathies (general and lower limb), hip arthrosis, hip pain, knee
arthrosis, knee pain, leg pain, and joint pain. This musculoskeletal factor was
in line with the World Health Organization’s grouping of pain diseases of the
musculoskeletal system, which groups conditions that affect joints, bones,
muscles, the spine, and multiple body areas or systems [134]. The 2-factor
model explained the pattern of genetic associations among disorders better
than either the anatomic or etiologic grouping of known inflammatory
disorders. The shared genetic burden was also apparent in network-based
analyses, which complemented factor analyses by conceptualizing common
risk in terms of multiple local causes instead of a few latent causes.
The existence of widespread shared genetic risk factors – and the

existence of a general factor in particular – challenges the current clinical
practice of grouping chronic pain conditions based on location of symptoms
on the body or suspected etiology [30]. Evidence for central processes
beyond local pathophysiology has been accumulating, including recent
studies demonstrating that chronic pain is best conceptualized as a
combination of biopsychosocial factors that may lead to a variety of pain
conditions [21, 125, 75, 20, 124, 16]. Studies in rodents have identified
neuroinflammation- and neuroplasticity-related changes in brain pathways
that mediate persistent pain behavior in animal models of different pain
modalities [143, 96, 91, 27, 6, 122, 52, 5, 37, 87]. Neuroimaging studies
have identified common brain systems involved in musculoskeletal pain [79,
68, 17, 44, 67, 61, 90], IBS [106, 4], orofacial pain [2], neuropathic pain [95,
100, 139], and postsurgical pain [47]. These different lines of evidence have
led to a new classification system for chronic pain in ICD-11.
The new system shifts pain category assignment from ”perceived

location”, ”etiology”, or ”primarily affected anatomical system” to a
hierarchical approach, which assigns based on etiology first, then
pathophysiology, then body site, and allows for ”multiple parenting”, i.e.
assignment of a diagnosis to multiple categories [118]. Furthermore, chronic
primary pain was included in the ICD-11 as a diagnosis ”agnostic with regard
to etiology” [92]. These changes are important steps toward a more
comprehensive characterization of chronic pain that considers the complex
and multifaceted nature of its experience.
In service of this goal, our model suggests that, in addition to condition-

specific genetic susceptibility, there is a genetically encoded
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pathophysiology common to different chronic pain conditions. This supports
the view of chronic pain as a disorder involving systemic pathology and of
localized peripheral pain as a possible symptom of non-local vulnerabilities
and central pathophysiology [137].
Beyond identifying shared genetic risk components, the functional

annotation of these components offers insight into possible molecular
mechanisms involved in their pathophysiology. Our study adds to existing
evidence for the role of DCC, which is involved in axonal guidance [140], in
chronic pain [114, 103, 59]. However, the presence of other statistically
significantly associated genes and the myriad different pathways they tag
suggests that focus exclusively on the top association – however tempting it
may be to uphold this representative of the nervous system in a pain study –
may be detrimental to obtaining a more comprehensive picture of pain
susceptibility. Primary chronic pain, like many other complex traits, is very
likely a highly polygenic trait [138]. Nor is the highest association statistic
necessarily correlated with its relative importance (see this recent
publication discussing negative selection as a mechanism for purging high-
effect variants in critical genetic loci [94]). Therefore, our approach is to
prioritize genes based on: 1. an a priori association p value cut-off to ensure
statistical rigor; and 2. convergent lines of evidence for functional
importance, i.e. overlap in mapping approaches. In the resulting set, we
interpret our findings in their entirely, without deference to the top
association.
Gene mapping of the common factor (F1) implicates a large number of

genes. Gene set analysis highlights genes with regulatory function and likely
pleiotropy, i.e., roles in other complex traits [132]. There is converging
evidence for the involvement of the nervous system: gene expression data
shows an enrichment exclusively for brain tissues, and FUMA gene set
analysis implicates biological processes specific to the nervous system.
Echoing a recent report of heritability enrichment for chronic overlapping
pain conditions exclusive to the CNS [59], these findings provide a genetic
line of evidence for the reported alterations in brain circuitry shared by
chronic pain conditions [116, 5, 62, 52]. In addition to CNS activity, however,
the pathways mapped in FUMA implicate a broad range of other functions,
such as gut development, locomotion, and protein secretion, suggesting that
susceptibility to chronic pain may involve other systemic biological changes.
The overlap with genetic variants previously reported in GWAS for cognitive,
structural, mood, and personality traits, regulation of inflammation and
neuroplasticity, and psychiatric disorders underscores the highly
multifaceted nature of pain as a biopsychosocial condition, while providing
new clues about the key genes and systems involved [21, 125, 75, 20, 124,
16].
As might be expected, the genes associated with the specific

musculoskeletal factor are fewer, and their pathways are less diverse. They
implicate skeletal development, choline transport, signaling, and
transcription machinery. Notably, they do not implicate the nervous system.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 30, 2022. ; https://doi.org/10.1101/2022.06.28.22277025doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.28.22277025
http://creativecommons.org/licenses/by-nc-nd/4.0/


Overlap with previous GWAS results suggests involvement of variants
affecting anthropometric traits, thus implicating body-structural mechanisms.
Similar associations have been shown for musculoskeletal pain conditions
before: genetic overlap in osteoarthritis with height and BMI [28], back pain
[35] and multi-site musculoskeletal pain [120] with structural-anatomic
genes.

4.1 Limitations
There are several notable limitations of this study. First, the precise
biological and psychological traits that may underlie the common genetic
pain factors remain to be elucidated in future studies. The annotated genetic
profile of the general factor (F1) suggests a combination of systemic
biological and psychological predispositions, including the tendency to
evaluate somatic experience in a more negative way (genetic association
overlap with traits such as neuroticism and moodiness). Prior studies of
psychosocial [48], biological [107], as well as structural and functional brain
[126, 63] correlates for pain should be extended to assess the specific roles
of each of these contributors to general pain risk, as was recently done for
chronic back pain [123].
The second limitation lies in the reliance of annotations obtained from

FUMA on the information available in existing data repositories, which may
be restricted by insufficient resolution or small sample sizes. Thus, although
we did not find associations with inflammatory cytokines, a wealth of
evidence links inflammation with multiple forms of chronic pain [110, 55, 40]
and should be investigated further.
Third, the genetic scores of our common factors should be validated for

association with chronic pain or intermediate phenotypes using either
association analysis in an independent sample or cross-validation methods.
This would require obtaining a polygenic score and is the aim of a follow-up
study.
Fourth, given sample size limitations in the UKBB for non-European

individuals, we were not able to test our model for generalizability across
ancestral populations. On a related note, it would be of interest to examine
the common factors for sex differences, given a larger sample.
By establishing genetic risk factors in a large sample, this study paves the

way for more detailed assessments of pain prognosis and treatment
response in targeted studies. For example, the ongoing Acute to Chronic Pain
Signatures (A2CPS) study aims to establish risk factors for post-surgical pain
from genetic, multi-omics, psychosocial, and neuroimaging measures in
another large sample (3,000 patients; a2cps.org). Our factor scores could be
tested as prognostic risk factors for chronic post-surgical pain, combined
with psychosocial [104, 89] and quantitative sensory testing (QST) measures
[30, 119, 109].
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4.2 Conclusions
In summary, our findings support the hypothesis that there is a genetic
susceptibility common to a broad range of diverse chronic pain conditions.
The shared pathophysiology for the conditions examined here appears to lie
partly in the CNS and partly scattered across many different systems and
functional processes. Additionally, there is a body-wide, suggestively
musculoskeletal system-specific shared genetic factor. These findings are
consistent with emerging views that chronic pain is a disease in its own right
[116, 92, 124], meaning that one systemic pathology underlies disparate
types of pain. Our results help identify and charac- terize the genetic
components of this pathology and suggest that brain prefrontal and
affective/motivational circuits may play a key role, supporting converging
evidence from animal [117, 54, 141, 41, 52] and human [8, 91, 62, 70]
studies. Together, this evidence underscores the importance of new ways to
diagnose and treat chronic pain, whereby a given chronic pain condition is
not considered as only a symptom of a localized somatic disease but is seen
as a manifestation of an underlying shared pathology with concurrent risk for
other pain conditions and previously unexplored centralized treatment
targets.
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Table 1: Pain condition descriptive statistics

Con-

dition
Full name Cases Controls

Preva-
lence

h2
SNP(SE) Reporte

d h2
SNP

Citations

*aCMC Arthropathy of
carpometacarpal joint

1837 201439 0.009 0.09 (0.036) NA NA

arth Arthropathies

(non-specific, incl.
osteoarthritis)

80737 157458 0.339 0.09 (0.005) NA NA

back Back pain 119216 132641 0.473 0.09 (0.005) 0.11/

0.12/

0.076

[83,

35,

114]

chDs Chest pain/discomfort 72156 359415 0.167 0.08 (0.004)

chPh Chest pain during
physical activity

2938 61044 0.046 0.13 (0.032)

*Crhn Crohn’s Disease 1826 201030 0.009 0.13 (0.038) 0.47 [121]
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crpl Carpal tunnel 11912 424059 0.027 0.16 (0.011) 0.02/

0.01

[135,
102]

CWP Chronic widespread
pain

6021 427884 0.014 0.14 (0.014) 0.10 [56]

cyst Cystitis 15371 189253 0.075 0.03 (0.008)

*dbNr Diabetic Neuropathy 772 435199 0.002 0.13 (0.051) 0.11 [85]

enLL Enthesopathies

of lower limb

7000 195713 0.035 0.06 (0.014)

enth Enthesopathies 28754 175077 0.141 0.06 (0.007)

*FM Fibromyalgia 2149 433822 0.005 0.10 (0.025) 0.14 [25]

gast Gastritis 41746 179970 0.188 0.07 (0.006)

gout Gout 15069 192253 0.073 0.20 (0.029)

hdch Headache 40222 345292 0.104 0.13 (0.008) 0.21 [81]

hipA Hip arthrosis 17676 193048 0.084 0.14 (0.012)

hipP Hip pain 41907 381055 0.099 0.08 (0.005) 0.12 [83]
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IBS Irritable bowel
syndrome

28419 182876 0.134 0.07 (0.008)

kneA Knee arthrosis 31267 184763 0.145 0.14 (0.009)

kneP Knee pain 78507 334812 0.190 0.10 (0.005) 0.08 [82]

legP Leg pain 41484 108241 0.277 0.10 (0.008)

mgrn Migraine 21586 189874 0.102 0.12 (0.009) 0.15 [39]

nksh Neck/Shoulder pain 72952 329192 0.181 0.08 (0.004) 0.11 [84]

oesp Oesophagitis 13003 195329 0.062 0.06 (0.010)

rhAt Rheumatoid arthritis 8685 198125 0.042 0.08 (0.014)

**plrh Polymyalgia
rheumatica

2460 433511 0.006 0.09 (0.023)

pnjt Pain in joint 12016 423955 0.028 0.05 (0.008)

*prst Prostatitis 3604 199950 0.018 0.06 (0.020)

*seRA Seropositive
rheumatoid arthritis

839 201957 0.004 0.15 (0.064)

stmP Stomach pain 21417 396116 0.051 0.08 (0.006) 0.14 [83]
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**ulcC Ulcerative colitis 4211 199773 0.021 0.12 (0.022)

*urCl Urinary colic 4743 198679 0.023 0.06 (0.016)

h2
SNP is SNP heritability, variance in the phenotype explained by variance in genotypes (SNPs). S.E. is standard error. Reported

h2
SNP is provided where available. *phenotypes that did not have a significant h2

SNP in either the odd or even autosome set.
**phenotypes that did not load significantly onto either the common or specific factor in the EFA-informed CFA.

Table 2: SNP heritability in whole genome, odd and even chromosomes

Condition
Whole genome

h2
SNP (SE)

Odd chroms.
h2

SNP (SE)
Even chroms.
h2

SNP (SE)

*aCMC 0.09 (0.036) 0.09 (0.026) 0.00 (0.023)

arth 0.09 (0.005) 0.05 (0.004) 0.04 (0.004)

back 0.09 (0.005) 0.04 (0.003) 0.05 (0.003)

chDs 0.08 (0.004) 0.04 (0.003) 0.04 (0.002)

chPh 0.13 (0.032) 0.09 (0.025) 0.05 (0.023)

*Crhn 0.13 (0.038) 0.08 (0.029) 0.05 (0.025)

crpl 0.16 (0.011) 0.07 (0.008) 0.08 (0.009)
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cyst 0.03 (0.008) 0.01 (0.006) 0.02 (0.006)

*dbNr 0.13 (0.051) 0.02 (0.033) 0.11 (0.038)

enLL 0.06 (0.014) 0.03 (0.010) 0.03 (0.009)

enth 0.06 (0.007) 0.03 (0.005) 0.03 (0.005)

*FM 0.10 (0.025) 0.06 (0.017) 0.04 (0.019)

gast 0.07 (0.006) 0.03 (0.004) 0.04 (0.004)

CWP 0.14 (0.014) 0.07 (0.010) 0.07 (0.010)

gout 0.20 (0.029) 0.08 (0.013) 0.12 (0.024)

hdch 0.13 (0.008) 0.06 (0.004) 0.07 (0.007)

hipA 0.14 (0.012) 0.07 (0.009) 0.07 (0.008)

hipP 0.08 (0.005) 0.04 (0.003) 0.04 (0.003)

IBS 0.07 (0.008) 0.04 (0.005) 0.03 (0.004)

kneA 0.14 (0.009) 0.07 (0.005) 0.08 (0.007)

kneP 0.10 (0.005) 0.05 (0.003) 0.05 (0.003)
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legP 0.10 (0.008) 0.05 (0.005) 0.05 (0.005)

mgrn 0.12 (0.009) 0.06 (0.006) 0.06 (0.007)

neck 0.08 (0.004) 0.04 (0.003) 0.04 (0.003)

oesp 0.06 (0.010) 0.03 (0.007) 0.03 (0.006)

rhAt 0.08 (0.014) 0.05 (0.010) 0.04 (0.010)

**plrh 0.09 (0.023) 0.05 (0.016) 0.03 (0.015)

pnjt 0.05 (0.008) 0.03 (0.006) 0.02 (0.005)

*prst 0.06 (0.020) 0.03 (0.014) 0.04 (0.013)

*seRA 0.15 (0.064) 0.17 (0.043) -0.02 (0.047)

stmP 0.08 (0.006) 0.04 (0.004) 0.04 (0.005)

**ulcC 0.12 (0.022) 0.07 (0.016) 0.05 (0.015)

*urCl 0.06 (0.016) 0.02 (0.012) 0.03 (0.012)

h2
SNP is SNP heritability, variance in the phenotype explained by variance in genotypes (SNPs). S.E. is standard error. *phenotypes

that did not have a significant h2
SNP in either the odd or even autosome set. **phenotypes that did not load significantly onto either

the common or specific factor in the EFA-informed CFA. Condition definitions are in 1, and details are in Supplementary Table S1.
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Figure Legends

Figure 1 Scheme of study methods and analyses.
Abbreviations: GWAS, genome-wide association study; LDSC, linkage-
disequilibrium score regression; EFA, exploratory factor analysis; CFA,
confirmatory factor analysis; Genomic SEM, genomic structural equation
modeling; CFI, comparative fit index.

Figure 2 Genetic correlations, network, and Genomic SEM model.
(a) Genetic correlations for 24 pain conditions estimated using linkage
disequilibrium score regression (LDSC) implemented in Genomic SEM. (b)
Network of genetic correlations for 24 pain conditions, pruned for
significance at FDR 0.01. The 19 conditions in yellow (arthropathies, back
pain, neck/shoulder pain, hip pain, knee pain, leg pain, chest pain (baseline
and during physical activity), rheumatoid arthritis, knee arthrosis, joint pain,
carpal tunnel, enthesopathies, widespread pain, gastritis, oesophagitis,
stomach pain, headache, and IBS) form a clique, complete subgraph. The 3
conditions in blue (neck/shoulder pain, back pain, and arthropathic pain)
have the highest betweenness centrality, shortest path between 2 other
nodes. Node size corresponds to strength, magnitude-weighted number of
connections with other nodes. (c) EFA-CFA model for 24 pain conditions with
residual covariances (~~) estimated for same body-site conditions: hip
arthrosis and pain; knee arthrosis and pain; headache and migraine; chest
pain at baseline and during physical activity. F1 is the general factor with
positive loadings from all conditions, and F2 is the musculoskeletal factor
with positive laodings from carpal tunnel, hip pain, knee pain, leg pain,
enthesopathies, rheumatoid arthritis, arthropathies, and pain in joint. CFI,
comparative fit index; SRMR, standardized root mean squared residual. All
loadings shown are significant at α=0.05. (d) Summary scores (overall
measure of interconnectedness for each pain condition) obtained using F1
loadings from EFA-CFA and network strength and betweenness centrality,
vector-normalized geometric means (y-axis). (More information on all
conditions in Supplementary Table 1
(https://docs.google.com/spreadsheets/d/1S-
vFvnwkD5iCP16La_iyjRDTxIqBoMRqAOV6SXpKhN8/edit\#gid=0).

Figure 3 F1 factor GWAS output.
Genome-wide association study (GWAS) results for general pain factor (F1).
SNP Manhattan (a) and quantile-quantile, QQ, (b) plots for F1 GWAS. (c)
Gene-based genome-wide association Manhattan plot, with the top 31
associated genes labelled. (d) Gene property analysis for association
between factor GWAS gene effects and gene expression levels in 53 specific
tissues from GTEx, version 8.
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