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Seq-ing the SINEs of Central Nervous System Tumors in Cerebrospinal Fluid DNA 

Abstract 

Lesions within the brain cavity pose critical challenges for diagnostics, particularly distinction between 

cancerous and non-cancerous lesions.  We here introduce an analytic technique called Real-CSF to 

detect cancers of the central nervous system from evaluation of DNA in the cerebrospinal fluid (CSF). 

Short interspersed nuclear elements (SINEs) from throughout the genome are PCR-amplified with a 

single primer pair and the PCR products are evaluated by next generation sequencing. Real-CSF uses 

machine learning to assess three features from the sequencing data – gains or losses of 39 chromosome 

arms, focal amplifications, and somatic nucleotide variants.   Real-CSF was applied to 282 CSF samples 

and correctly classified 71 % of 187 cancers and misclassified only 4.2% of 95 non-neoplastic lesions in 

the brain.     

Introduction 

Central nervous system (CNS) neoplasms comprise a heterogenous class of tumors that are either 

primary, i.e., originate in the brain or spinal cord, or metastatic, i.e., cancers that spread to the CNS from 

another organ. Approximately 24,500 cases of primary brain cancers occur a year in the United States, 

with the most common being glioblastoma in adults and medulloblastoma in children 
1
. Metastatic 

spread to the brain is even more common, accounting for 100,000 cases a year in the United States 

alone, with lung and breast being the most frequent. Cancers can spread to the brain matter itself, 

called parenchymal metastases (PM) or to the covering of the brain, known as leptomeningeal disease 

(LMD).    

A pressing clinical challenge is the lack of reliable biomarkers for the diagnosis and monitoring of cancers 

involving the CNS. The current gold standard is cytology on cerebrospinal fluid (CSF), which has a 

sensitivity that ranges from 2% to 50%, depending on cancer type 
2
.  To achieve maximum sensitivity, 

cytology requires large (> 10 ml) volumes of CSF, sometimes necessitating serial lumbar punctures 
3
.    

Magnetic resonance and other imaging procedures cannot reliably distinguish cancer from inflammatory 

or other non-neoplastic processes and can detect disease only after it has caused anatomic 

perturbations 
4
. Therefore, biopsy remains the only means for definitively diagnosing CNS neoplasms. 

Brain biopsies require general anesthesia and hospitalization, are fraught with risks including 

neurological injury, and carry tremendous financial burden.  

There have been several promising types of biomarkers proposed for CNS tumors. Given the relative lack 

of tumor derived material in the blood (
5
 
6
 ), CSF has become an appealing biofluid to explore for 

diagnosis  (
7
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). While CSF sampling is more invasive than venipuncture, it is already part of 

standard of care for management of several CNS neoplasms, including medulloblastoma, 

leptomeningeal disease, metastatic spread, and central nervous system lymphomas. In lymphomas, 

cerebrospinal fluid is routinely sent for cytology and flow cytometry. Though the sensitivity is < 50%, 

lymphoma patients with CSF positive cytology can proceed directly to chemotherapy and radiation 

therapy without surgical biopsy.   

Liquid biopsies that detect tumor-derived DNA in plasma (circulating tumor DNA, called ctDNA) are now 

being widely explored to detect and monitor cancers of many types ( 
13
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 and reviewed in 
17

).  



Implementing analogous tests in CSF is challenging because the quantity of circulating DNA in CSF is 

considerably lower than in plasma 
5
.    

In the current study, we describe our efforts to develop a simple strategy, called Real-CSF, for the 

diagnosis and monitoring of several of the most common and debilitating brain cancers: glioblastomas, 

metastatic lesions, lymphomas, and medulloblastomas.    

Results 

Patient Characteristics 

Real-CSF uses a single primer pair to PCR-amplify ~350,000 short interspersed nuclear elements (SINEs) 

from throughout the genome.   As described in Methods, these PCR products of SINEs are assessed by 

next generation sequencing, and machine learning is used to assess gains or losses of 39 chromosome 

arms, focal amplifications, and Apparent Somatic Mutations.  Note that we did not analyze DNA from 

normal tissues of the same patients.  It is therefore possible that, even after the exclusions detailed in 

the Methods, a subset of the mutations we detected were rare germline variants rather than true 

somatic mutations, and we therefore dubbed them “Apparent Somatic Mutations” rather than “Somatic 

Mutations.” 

Two independent cohorts of patients were evaluated in this study: a training set and a validation set.  

The training set was composed of CSF samples from 92 patients, 37 with GBM, 14 with metastasis from 

primary tumors outside the brain, 7 with lymphoma, and 34 without cancer.  The validation set was 

composed of CSF samples from 190 patients, 27 with GBM (five of which were pediatric H3K27M diffuse 

midline gliomas), 52 with metastasis from primary tumors outside the brain, 27 with CNS lymphoma, 23 

with medulloblastoma, and 61 without cancer (Fig. 1).  Thirteen metastatic samples were previously 

analyzed using an alternate assay and reported in Naidoo et al. 
18

. The CSF was obtained in almost all 

cases from lumbar puncture or aspiration from a ventricular catheter placed as part of standard of care. 

The general demographics of the training and validation set are presented in Supplementary Table S1. 

Training Set Data 

Our goal was to discriminate CSF from patients with and without central nervous tumors. Sensitivity was 

determined by the fraction of patients with cancer above a given threshold while specificity was 

determined as the fraction of patients without cancer less than this threshold.  We used the training set 

to determine reasonable thresholds for each of the three parameters - global aneuploidy score, focal 

amplification Z Scores, and apparent somatic mutations burden – as described in Methods.  

For each metric, thresholds were selected based on the largest observed magnitude in the 34 non-

cancer training samples. Under this approach, no non-cancer training samples will be positive. Because 

this is a training set and we are retrospectively selecting an idealize threshold, this does not provide a 

true estimate of specificity. True sp
19

ecificity should be reported in an independent validation set after 

predetermining thresholds for positivity. Because the independent validation set contains more samples 

from more institutions, we anticipate a reduction in specificity. To calculate aneuploidy, Zw scores for 

each of the 39 non-acrocentric chromosome arms in each sample were calculated (detailed in Methods).  

These chromosome arm-level Zw scores were then integrated into a single score, called the Global 

Aneuploidy Score. The Global Aneuploidy Score reflects the likelihood that a sample of interest has 

gained or lost at least one chromosome, with the magnitude of the score reflecting both the number of 



chromosomes lost or gained as well as the fraction of cells in which these changes occurred. With n 

Aneuploidy Score threshold of 0.25, 57% (CI 43% to 70%) of CSF samples from patients with CNS cancers 

in the training set (51% of patients with GBM, 86% of patients with metastases to the brain, and 29% of 

patients with lymphomas) scored positive (Fig 2A). 

The Focal Amplification Score is based on a metric called Zgene, reflecting the likelihood that a sample 

harbors an amplification of at least one of four bona fide oncogenes previously shown to be amplified in 

cancers of the brain and other organs.   A Focal Amplification Z Score of 10 was used as the threshold, as 

explained in Methods.   With this threshold, 28% (CI 17% to 41%) of CSF samples from patient with CNS 

cancers in the training set (24% of patients with GBM, 43% of patients with metastases to the brain, and 

14% of patients with CNS lymphomas) scored as positive.   Dot plots are graphed in Fig. 2B-E, 

respectively, and representative examples of data from cases with focal amplifications are shown in Fig. 

3.  Twenty-eight percent of the CSF samples that did not score positively for aneuploidy had a positive 

Focal Amplification Score.   We selected to the focal thresholds to ensure none of the 34 samples from 

patients without CNS cancers in the training set were positive for focal amplifications.     

Somatic mutations in a sample have often be used to evaluate whether neoplastic cells contributed to 

its DNA (as reviewed in 
17
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  ).  Many of these studies use cancer driver genes as the most reliable 

indicators of neoplasia, because they are known to have functional consequences.  However, few if any 

of the mutations observed in RealSeqS amplicons are likely to have functional consequences because 

the vast majority of them are outside coding regions of the genome.   On the other hand, we previously 

reported that the number of mutations in repetitive elements is proportional to the number of 

mutations found by exome sequencing and can be used as a surrogate for the number of somatic 

mutations, often referred to as “Tumor Mutation Burden” 
21

.  We therefore measured the number of 

Apparent Somatic Mutations (Methods) in RealSeqS data on DNA from CSF.  With a threshold of >39, 

26% (CI 16% to 39%) of cancers (35% of GBM, 7% of metastatic lesions, 14.3% lymphomas) scored as 

positive.  Dot plots of these scores are graphed in Fig. 2, respectively.   

Finally, some of the cancers that did not score positively for aneuploidy did score positively for either   

focal amplifications or Apparent Somatic Mutations, and vice versa, as noted above and detailed in 

Table S3.  We therefore integrated all three metrics into a single composite score, called Real-CSF.   The 

threshold for Real-CSF was simply a boolean OR gate applied to the thresholds based on its three assay 

components.  In other words, if any of the three assays on a sample were above the threshold defined 

for positivity for that assay, the sample was scored as positive.  Though non-conservative, we believed 

that this metric would increase sensitivity at the expense of specificity, reasoning that a false positive 

call would be relatively less deleterious to patients with suspected CNS cancers than a false negative 

call.  In the composite Real-CSF assay 69% (CI 55% to 80%) of cancers (68% GBM, 86% of metastatic 

lesions, and 43% of lymphomas) scored as positive.  Dot plots for Real-CSF data are graphed in Fig. 2.   

Validation Set 

The validation set provided an opportunity to independently assess the sensitivity and specificity of 

RealSeqS in CSF. Note that the validation set included samples from four different institutions, while the 

samples in the training set were all from only one of these four institutions.   This multi-institutional 

acquisition was designed to minimize confounders previously observed when a classification method 

based on samples from a single institution is applied to samples from other institutions.  



Using the threshold pre-defined by the training set data, 71% of cancers (85% of GBM, 74% of 

metastatic lesions, 44% of lymphomas, and 78% of medulloblastomas) scored positive in Real-CSF  (Fig. 

4A). No sample types (GBM, metastatic, lymphomas, non-cancer) present in both the training and 

validation sets had statistically different detection rates (P>0.05 Two Proportion Z-Test). Interestingly, 

most samples from patients with medulloblastomas in the Validation set were scored as positive, even 

though medulloblastoma patients were not represented in the training set (Fig. 2 and Fig. 4).   Of the 61 

samples from patients without CNS cancers in the validation set, four (6.6%, CI 2.1% to 16.7%) scored 

positive in Real-CSF. 

Of the 92 cancers scoring positively with Real-CSF, 11% were detected by all three of its component 

assays, 46% by two assays; and 43% by one assay. None of the four false positive samples had more 

than one assay positive; two were positive for aneuploidy and another two were positive for Focal 

amplifications (Table S3) 

Comparison to Cytology 

CSF cytology is used standard of care for patients with suspected CNS neoplasms.  Of the 123 cases in 

whom cytology was available, 70% were detectable by Real-CSF assay while only 23% were detectable 

by cytology.   In the 28 cancer cases with positive cytology, Real -CSF detected 82% and in the 95 cases 

with negative or indeterminate cytology, Real-CSF detected 66%. Together, either Real-CSF or cytology 

were positive in 74% (CI 65% to 81%) of cases (Fig. 4B). 

Survival Analysis 

There were sufficient follow-up data to analyze progression free and overall survival in subjects with 

GBM treated at one of the institutions, JHU. Of the 14 newly diagnosed GBM patients, 10 had detectable 

levels of CSF-tDNA, while 4 did not. The individuals with detectable levels of CSF-tDNA had an odds ratio 

of 5.1 (p = 0.02, log rank test, Supplementary Figure 1A) for disease progression when compared to 

those without CSF-tDNA detection. Of the 29 newly diagnosed and recurrent GBM patients, 20 had 

detectable levels of CSF-tDNA and 9 had undetectable levels. The cases with detectable CSF-tDNA had 

an odds ratio of 2.4 for poorer overall survival (p = 0.011, log rank test, Supplementary Figure 1B).  

 Analysis of Plasma from Patients with CNS cancers  

Given that plasma is much more accessible than CSF, it was of interest to determine how well assays for  

aneuploidy, focal amplifications, and apparent somatic mutations on plasma DNA compared to those on 

CSF DNA. We were able to obtain 65 plasma samples from patients with either GBM, lymphomas, or 

medulloblastomas (Table S4) We also scored 185 non-cancer plasmas to assess specificity and used 

thresholds identical to those used for the analysis of CSF (Table S4).   

Positive Global Aneuploidy Scores were obtained in 14% (CI 6.9% to 25%) of the 65 CNS cancer patients, 

and none from focal amplifications at a specificity of 98.9% and 99.5% respectively. The apparent 

somatic mutation count, however, could not reliably distinguish cancers and non-cancers in plasma. The 

cutoff of > 39 somatic mutations produced a much higher rate of positivity and identified 57.8% of the 

non-cancers and 67.7% of the CNS cancer plasmas.  

Thirty-five of the 65 patients donating plasma samples also had donated CSF (Table S4).  In these 

matched samples, 66% of the CSF samples scored positive in Real-CSF while only 23% of the plasma 



samples scored positively. There were three (9%) of the 35 cases in which a positive score was observed 

in plasma but not in CSF, twenty (60%) of the 35 cases in whom a positive score was observed in CSF but 

not plasma, and five patients in whom positive scores were observed in both plasma and CSF. We 

conclude that CSF is a more informative source of DNA for assessing aneuploidy and related parameters 

than plasma in any of the tumor types assessed (P<0.00001, Z Score for 2 Population Proportions, Fig. 

4C).     

Discussion 

There are many non-neoplastic diseases that present with an imaging abnormality that mimics a 

neoplastic process. Correctly identifying the lesions as non-malignant is critical, as such patients would 

not benefit from surgical biopsy and can almost always be managed non-operatively. In contrast, 

patients with cancer would benefit from immediate consultation with appropriate neurosurgical and 

oncology specialists.    

Biomarkers for distinguishing non-neoplastic from neoplastic lesions, as well as improved imaging 

techniques, are currently the best hopes for resolving the diagnostic conundrum that exists for 

thousands of patients with space-occupying lesions of the brain.  While a blood-based biomarker would 

be easier to access, paired analysis of plasma and CSF suggests that CSF is significantly enriched for 

tumor derived analytes.  The ideal biomarker would not require brain tissue, would require only a small 

amount of CSF, would be simple to interpret, relatively inexpensive, could identify a myriad of cancer 

types and be done robotically.   Real-CSF satisfies all of these criteria and appears to be more 

informative than cytology, the current gold standard.  In addition, Real-CSF shows for the first time the 

applicability of a multi-analyte approach in CSF, in this case employing copy number changes, sub-

chromosomal alterations and apparent somatic mutations for the detection of multiple cancers.   

Other groups have demonstrated that low pass whole genome sequencing (WGS) can identify 

chromosomal copy number alterations in the CSF derived from individuals with select brain cancers (
22

 
8
;). While WGS has promise, Real-CSF has distinct advantages. It is less expensive, a more simplified 

workflow, fewer computational requirements and requires minimal starting material.  

The ability to identify amplifications and deletions is of increasing importance in neuro-oncology. They 

can identify potential therapeutic targets and help distinguish different categories of brain cancers.  

For example, based on imaging and clinical findings, GBM and lymphoma can have overlapping 

presentations but face drastically different clinical approaches. Real-CSF has the potential to distinguish 

between these entities based on patterns of chromosomal alterations and apparent somatic mutations. 

GBM frequently has a gain on 7p and 7q and losses on 10p and 10q—all infrequently observed in 

lymphoma. Conversely, lymphoma often has a gain on 18q and very few chromosome arm losses. These 

chromosomal alterations alone could accurately distinguish 73.0% of the Real-CSF positive GBM and 

lymphomas in the current cohort.  With additional samples, we anticipate the performance will improve 

and allow accurate identification and classification of other cancer types beyond just those tested in the 

current study.   

There are preliminary data to suggest Real-CSF can be used for the longitudinal monitoring of brain 

cancers. The first illustrative case is CGLIA 303, a patient with leptomeningeal squamous cell cancer 

metastasis involving the high cervical spine. The patient was treated with immunotherapy and had a 



robust response (Supplementary Fig. S2) 
18

. The patient’s initial CSF sample was positive but the second 

and third samples were negative. Serial MRI scans showed eventual resolution of the enhancement but 

Real-CSF was able to detect the resolution of disease approximately 8 months prior to radiographic 

clearance. It is well appreciated that MRI changes lag often months behind biological changes (
23

).  

CGLIA 301 was a case in which the patient had an MRI that did not show signs of LMD but six weeks later 

the patient had multiple areas of enhancement suggestive of LMD (Supplementary Fig. S3). In both 

cases, Real-CSF was able to accurately predict disease status before radiographic findings emerged. 

The standard of care treatment for glioblastoma includes concomitant chemo and radiation therapy.  

Discerning true disease recurrence from treatment related changes (pseudoprogression) on imaging can 

be very challenging 
19

. Frequently, individuals are taken to surgery for pathological confirmation of 

disease status and approximately 30% of cases will have only treatment effect on histological 

examination 
24

.  If a biomarker was able to discern active disease from pseudoprogression, it may 

obviate the need for surgery in select patients. GLIA 566 is a case that suggests Real-CSF may be able to 

serve as such a biomarker.  The subject had completed treatment with temozolomide and radiation 

therapy but was found to have progressive enhancement on MRI and was taken to surgery to distinguish 

tumor progression from treatment effect (Supplementary Figure S4). Real-CSF accurately demonstrated 

active disease, which was confirmed on pathological examination. In the future, testing with an assay 

such as Real-CSF may help accurately identify disease status without the need for neurosurgical 

intervention.  

For a CSF biomarker to be clinically viable, it must be able to distinguish neoplastic from non-neoplastic 

conditions. For the first time, we test the performance of an assay designed to detect tumor derived 

DNA in a sizeable cohort (95) of CSF samples from individuals without cancer but with a variety of other 

neurological conditions. These control samples represent inflammatory, autoimmune, degenerative, 

congenital and vascular conditions affecting the brain and central nervous system. The specificity in the 

Validation set was 93%, which is comparable to CSF cytology, the current gold standard (
2
).  

While the sample size was small and needs to be confirmed on larger datasets, CSF-tDNA detection may 

correlate with progression free and overall survival in GBM, a finding that others have reported in the 

literature 
25

 
26

;. This suggests that cancers that shed tumor derived material into the CSF could represent 

a more aggressive phenotype, information that may be used to help guide clinical decision making.        

Though Real-CSF is a step in the right direction, it is not perfect.  While specificity could be enhanced, 

perhaps more importantly, its sensitivity could be improved; in the Validation set, it was able to detect 

only 85% of GBM, 74% of metastatic lesions, 44% of lymphomas, and 78% of medulloblastomas. One 

opportunity to augment sensitivity in future studies would be to analyze larger volumes of CSF.  The 

current study utilized 1 ml or less of CSF, which for comparison is only ~10% of what is utilized currently 

for cytological examination.  While these experiments are the first to demonstrate utility with a multi-

analyte approach in CSF, they are all genetic in origin.  Integrating additional analytes such as proteins, 

microRNA or epigenetic markers, all of which have shown promise in brain cancers 
27
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, and 

reviewed in 
12

 may further improve performance.     

Our study has several other limitations. Although the total number of samples in the manuscript is large 

when compared to previously published CSF biomarker studies, confidence limits for subtypes of 

cancers could be narrowed by studying more patients.   Second, the optimal way to define thresholds 

for Real-CSF would be to use a second set rather than from the Training set used to develop the initial 



models.  These thresholds could then be used to establish sensitivity and specificity in a third, 

independent cohort. We did not have sufficient number of samples to do this in the current study,.   

A third limitation is that this study was retrospective in nature.   A large, prospective study will be 

required to progress Real-CSF as a diagnostic tool.  In such a future study, the performance of both 

cytology and Real-CSF could be assessed in all samples, and we expect that both could be used together 

to increase sensitivity while retaining specificity for brain cancers.  The results reported here establish 

the conceptual and practical foundation for such a future study, which could have a substantial impact 

on standard of care. 

Methods 

Sample acquisition 

This study was cross-sectional in design. Patients were recruited as part of an Institutional Review 

Board-approved, multi-institutional study to develop biomarkers for central nervous system tumors 

using cerebrospinal fluid. The four institutions involved (Johns Hopkins, University of Michigan, Penn 

State University, Children Tissue Brain Tumor Tissue Consortium (CBTTC)) are tertiary centers that care 

for patients referred for management of central nervous system tumors. In general, patients underwent 

sampling on the day of enrollment and only tumors with radiographic confirmation with contrast 

enhanced MRI were included in the study. Radiographic findings of disease were based on the findings 

of a board certified- neuroradiologist at each site. In total there were 282 samples collected for this 

study.   Pathologic diagnosis for all cases was verified by board-certified neuropathologists at the site of 

enrollment. Patients whose diagnosis was GBM, CNS lymphoma, or metastasis from outside the brain 

comprised the true positive subset.  Patients who were not diagnosed with any neoplastic disease 

comprised the true negative set.  We were also able to assess plasma samples from 65 cancer patients 

of which 35 had matched CSF for comparison purposes.  

Samples were pre-specified into training and validation cohorts based on the sample source and the 

time in which the sample was available for evaluation at Johns Hopkins. An initial batch of samples from 

Johns Hopkins were labeled as training samples. To reduce potential cohort biases and overfitting from 

machine learning, all samples from the Penn State University, CBTTC, and the University of Michigan 

were labeled as validation samples. The remaining Johns Hopkins samples not evaluated in the initial 

batch of samples were included in the validation set.  

DNA purification 

CSF was frozen in its entirety at -80
 �

C until DNA purification, and the entire volume of CSF (cells plus 

fluid) was used for DNA purification. The amount of CSF used for purification ranged from 0.5 to 1 mL. 

CSF and plasma DNA (from 1 mL of plasma) was purified from healthy individuals and patients using 

Biochain reagents according to the manufacturer’s instructions (catalog #K5011625MA).   

Real-CSF  

A single primer pair was used to amplify ~350,000 short interspersed nuclear elements (SINEs) spread 

throughout the genome 
31

.PCR was performed in 25 uL reactions containing 7.25 uL of water, 0.125 uL 

of each primer, 12.5 uL of 

NEBNext Ultra II Q5 Master Mix (New England Biolabs cat # M0544S), and 5 uL of DNA. The cycling 

conditions were: one cycle of 98°C for 120 s, then 15 cycles of 98°C for 10 s, 57°C for 120 s, and 72°C for 



120 s. Each sample was assessed in eight independent reactions, and the amount of DNA 

per reaction varied from ~0.1 ng to 0.25 ng. A second round of PCR was then performed to add dual 

indexes (barcodes) to each PCR product prior to sequencing. The second round of PCR was performed in 

25 uL reactions containing 7.25 uL of water, 0.125 uL of each primer, 12.5 uL of NEBNext Ultra II Q5 

Master Mix (New England Biolabs cat # M0544S), and 5 uL of DNA containing 5% of the PCR product 

from the first round. The cycling conditions were: one cycle of 98°C for 120 s, then 15 cycles of 98°C for 

10 s, 65°C for 15 s, and 72°C for 120 s. Amplification products from the second round were purified with 

AMPure XP beads (Beckman cat # a63880), as per the manufacturer's instructions, prior to sequencing.    

Sequencing was performed on an Illumina HiSeq 4000. The sequencing reads from the 8 replicates of 

each sample were summed for bioinformatic analysis. The average number of the summed, uniquely 

aligned reads was 10.5 million (interquartile range, 8.0-12.7 million). Samples with < 2.5M reads were 

excluded on the basis of previously described metrics 
31

. The bioinformatic methods and pipeline used 

to process the raw sequencing data are available at 

(https://zenodo.org/record/3656943#.YaZZCdDMKUk).  

 

  Chromosome Copy Number Alterations CSF 

The copy number alterations for CSF samples were calculated using in the following protocol: 

1. Generate a euploid reference panel using 15 non-cancer CSF samples from the pre-defined 

training set. 

2. Aggregate and sum the read depth into 5,344 non-overlapping autosomal 500-kb intervals. 

3. Perform PCA normalization on the 500-kb intervals. PCA normalization mitigates the impacts of 

highly correlated outlier chromosome regions that arise from NGS artifacts like GC bias. A full 

detailed step by step mathematical description and pseudocode can be found in the 

Supplementary Text of Douville et al. 2020 
31

.  

4. Segment the chromosome arm using the circular binary segmentation algorithm (CBS) 
32

 

5. Aggregate the 500-kb intervals across the chromosome arm and calculate the statistical 

significance across the length of the chromosome arm (Zw). 

6. Repeat this protocol for all chromosome arms. 

7. Train a supervised machine learning algorithm that generates a Global Aneuploidy Score (GAS) 

to discriminate between aneuploid and euploid samples. The predictive features of the model 

are the 39 chromosome arms (Zw). The training examples were 3,999previously published 

plasma samples. The negative class of 1348 presumably euploid samples were taken from 

individuals without cancer. The positive class was taken from 2651 aneuploid samples across 8 

different cancer types. We specifically built a support vector machine (SVM) and trained the 

model with the e1071 package in R, using a radial basis kernel and default parameters. 

8. Score the test sample using the supervised-machine learning model from Step 7.  

9. The full bioinformatic pipeline is available at: 

https://zenodo.org/record/3656943#.YaZZCdDMKUk.   

Chromosome Copy Number Alterations Plasma 

In order to identify copy number alterations in plasma we repeated the steps from above but made one 

key change. We reconstructed the euploid reference panel using a set of 1,500 euploid plasma samples. 

We then repeated the step-by-step protocol as above to calculate the statistical significances for each 

arm and generate Global Aneuploidy Scores. 



Focal Amplifications 

We chose a set of genes for evaluation of  focal amplifications based on data reported in CNS cancers 

from The Cancer Genome Atlas (TCGA) 
33

.  The four genes chosen were MDM4, EGFR, CDK4, and HER2 

(genomic coordinates in Table S2).  RealSeqS amplicons overlapping these five genes plus an additional 1 

MB flanking each side of the gene were identified. The summed read counts (Observedgene) across these 

amplicons was then determined for each sample.   

The protocol to calculate the Z score for each gene was calculated as such: 

For the euploid reference panel: 

1. For all samples in the reference panel, normalize each locus by dividing by the total autosomal 

sequencing depth. This enables samples with varying amounts of coverage to be directly 

comparable. 

2. Aggregate the read depth across the gene of interest for each sample. 

3. Estimate the average read depth across the euploid reference panel (µgene).  

For each test sample: 

4. Calculate the total autosomal sequencing depth (Coverage) 

5. Multiply (µgene) by the observed coverage to estimate the expected number of reads across the 

gene of interest (λgene) given the coverage. We assume count data follow a Poisson distribution. 

6. Aggregate the read depth across the gene of interest (Observedgene) 

7. Calculate the statistical significance  
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This protocol was followed for both CSF and plasma samples. The only difference between CSF and 

plasma was the euploid reference panel used to generate the expected depth for each gene. We listed 

these estimates for both CSF and plasma in Table S2. 

Apparent Somatic Mutations 

Adapters were trimmed using cutadapt2 and aligned to the genome using Bowtie2 
34

. Potential somatic 

mutations were identified using Mutect2 default parameters 
35

. Multi-allelic, poor mapping quality, poor 

base-quality, and clustered variants were discarded. Only autosomal chromosomes were considered and 

an allele frequency cutoff of <0.35 was used to exclude germline variants because we assumed that 

neoplastic cells contributed <20% of the DNA to the entire DNA purified from CSF samples.  Samples in 

which the Q30 <75 (all cycles) were excluded for mutation analysis because of the increased likelihood 

of base-calling errors.   All samples were quantified with qPCR and samples with <0.03 ng/uL of purified 

DNA were not used for mutation analysis, also because of the increased likelihood of artifactual 

mutations in such samples 
36

.   We then counted the total number of single base substitution mutations 

observed in RealSeqS data for each sample.  

  



Figure 1: Overview of the Real-CSF approach: Using a single PCR primer to concomitantly amplify 

~350,000 Alu SINE elements spread throughout the genome, Real-CSF uses supervised machine learning 

to combine large scale chromosome aneuploidies with known focal changes in cancer of the Central 

Nervous System and mutation burden to detect the presence of cancer. 

Figure 2: Real-CSF is a multi-analyte test. We illustrate the distribution of all analyte values for each 

cancer type in both the training and validation cohorts. The threshold for positivity is illustrated by a 

red horizontal line.  

A) Global Aneuploidy Score (GAS)  

B) MDM4 Z Score (Focal Panel)  

C) EGFR Z Score (Focal Panel)  

D) CDK4 Z Score (Focal Panel)  

E) ERBB2 (Z Score) and  

F) Apparent Somatic Mutations 

Figure 3: Representative Focal Changes used in Real-CSF. The Real-CSF Focal panel calls focal changes 

surrounding the following genes:  

A) 1.5M focal amplification of MDM4 at 1q32.1 (chr1: 203,800,000-205,300,000 hg19)  

B) 3.5 MB focal amplification of CDK4 at 12q14.1 (chr12: 57,600,000-61,100,000 hg19) 

C) 1.5 MB focal amplification of EGFR at 7p11.2 (chr7: 54,200,000-55,700,000 hg19) 

D) 2.5 MB focal amplification of ERBB2 17q12 (chr17: 35,300,000-37,800,000 hg19) 

Figure 4: Evaluation of Real-CSF: A) Comparison of performance of Real-CSF in the Training and 

Validation Partitions. Medulloblastoma is not illustrated because it was not included in the training set, 

C) Comparison of Performance of Real-CSF to Cytology, Comparison of Performance of Real-CSF in CSF 

and Plasma.  

Figure S1: Progression free (A) and overall survival (B) in subjects with GBM treated at one of the 

institutions. 

Figure S2: A ) MRI scan CGLIA 303 B) MRI scan CGLIA 303 (6.x4 mm) C) MRI scan CGLIA 303 (6.x 2 mm) D) 

MRI scan CGLIA 303 (negative) 

Figure S3: A) CGLIA 301  – No evidence of LMD from breast cancer B) CGLIA 301– Positive LMD from 

breast cancer 

Figure S4: A) GLIA 566 post-contrast MRI scan demonstrating enhancement that increased over time B) 

raising the question of tumor recurrence versus treatment effect.  
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