medRxiv preprint doi: https://doi.org/10.1101/2022.06.24.22276889; this version posted June 27, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.

Modeling the USA Winter 2021 Update and Spring 2022 CoVID-19 Resurgence

Genghmun Eng

PhD Physics 1978, University of Illinois at Urbana-Champaign

June 24, 2022

Abstract

Every USA wave, including this latest Spring 2022 Resurgence has been successfully modeled using:

 $N(t) \approx \max[N_o \exp\{+(t / [t_R(1 + \alpha_S t)]) \exp(-\delta_o t)\}],$

with N(t) being the total number of new CoVID-19 cases above a prior baseline, and t_R setting the pandemic wave doubling time $t_{dbl} = t_R (\ln 2)$. The parameters $\{\alpha_S; \delta_o\}$ measure mitigation efforts among the uninfected population. Here, $\{\alpha_S > 0\}$ is associated with Social Distancing and vaccinations; while $\{\delta_o > 0\}$ is associated with maskwearing, which results in faster $\frac{d}{dt}N(t)$ post-peak drop-offs. The predicted pandemic wave end is when the calculated N(t) stops increasing.

The USA Winter 2021 Resurgence resulted in fewer Omicron CoVID-19 cases than calculated in our prior medrxiv.org preprint^{*}, due to an increased δ_o component, which gives 3/11/22 as the predicted wave end. A relatively quiet CoVID-19 period ensued until 4/16/22, when a new Omicron variant caused the present Spring 2022 CoVID-19 resurgence.

The recent CoVID-19 waves have decreasing t_R values, with the Spring 2022 $t_R \approx 3.55 \, days ~(t_{dbl} \approx 2.46 \, days)$ value being the shortest since the initial 2020 pandemic, indicating increasingly infectious variants. The Winter 2021 and the present Spring 2022 CoVID-19 resurgences have identical $\alpha_S \approx 0.043 / day$ values, but the $\delta_o > 0 \, mask$ -wearing parameter decreased from $\delta_o \approx 3.14 \times 10^{-3} / day$ to $\delta_o \approx 1.145 \times 10^{-3} / day$, giving the Spring 2022 wave a longer tail, and an expected end date of 8/25/22, with these wave totals:

$$\begin{split} N_o(t &= [4/16/22]) = 61,950 \ ; \ N(t = [8/25/22]) \approx 7,440,800 \, . \\ \text{When all the USA CoVID-19 waves are combined, it gives:} \\ N_{tot}(t &= [6/19/22]) \approx 86,055,800 \ \text{vs} \ N_{data} = 86,230,982 \ ; \\ N_{tot}(t &= [8/25/22]) \approx 88,138,600 \ ; \\ \text{assuming no future CoVID-19 Resurgences (with 5 Figures).} \\ ^*(10.1101 \ 2022.02.04.22270491) \end{split}$$

Email: geng001@socal.rr.com

medRxiv preprint doi: https://doi.org/10.1101/2022.06.24.22276889; this version posted June 27, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.

1 Introduction

Each USA CoVID-19 wave¹⁻⁸, from the pandemic start (3/21/20) to the present day (6/19/22), has been successfully modeled using the following basic N(t) function for the total number of new CoVID-19 cases above a prior baseline:

 $N(t) \approx \max[N_o \exp\{+(t / [t_R(1 + \alpha_S t)]) \exp(-\delta_o t)\}], \qquad [1.1]$

with t_R setting the pandemic doubling time $t_{dbl} = t_R (\ln 2)$, as in standard **SEIR** (Susceptible, Exposed, Infected, Recovered or Removed) epidemiology models. Mitigation efforts among the uninfected population in Eq. [1.1] has $\alpha_S > 0$ associated with Social Distancing and vaccinations; and $\delta_o > 0$ associated with mask-wearing, which results in a faster $\frac{d}{dt}N(t)$ post-peak drop-off. The predicted pandemic wave end is when the calculated N(t) stops increasing.

Given a total population of N_{ALL} , the uninfected population U(t) is:

 $U(t) = [N_{ALL} - N(t)].$ [1.2]

Using Eq. [1.1] assumes $N(t) \ll N_{ALL}$, so that pandemic saturation effects can be ignored. Also, **SEIR** models do not generally include what the U(t)uninfected population is doing in response to the pandemic. In contrast, Eq. [1.1] was developed as a non-local extension of **SEIR** models, to account for how the uninfected population, as a whole, is mitigating the pandemic spread.

Each new USA CoVID-19 wave starts with a sharp rise in the total number N(t) of new cases, with the t = 0 point for each wave being determined by when the resurgence is first easily identified, where $N(t = 0) = N_o$ is the number of cases above baseline at that time. Although Eq. [1.1] does not predict when each new CoVID-19 wave starts, or what conditions are causing the new wave, once the CoVID-19 wave becomes established, Eq. [1.1] appears to successfully predict its time evolution.

The fact that the same few parameters in Eq. [1.1] have successfully modeled the time evolution of each USA CoVID-19 wave¹⁻⁸, shows that the **response** of the U(t) uninfected population has been similar for each wave, even though different factors may have been driving each CoVID-19 resurgence. All CoVID-19 data used here came from the open-source bing.com CoVID-Tracker⁹ database.

2 Winter 2021 / Spring 2022 CoVID-19 Update

Our prior medrxiv.org preprint⁸ for the Winter 2021 resurgence showed an initial stage (11/15/21-12/25/21) which had practically no mask-wearing effects [$\delta_o < 0.001 \times 10^{-3}/day$], likely due to the Omicron variant infecting vaccinated people who thought they were protected. It was followed by a latter post-Christmas stage (12/25/21-1/31/22), having these parameter values:

$N_o(12/25/21 - 1/31/22) \approx 3,121,000;$	[2.1a]
$t_R(12/25/21 - 1/31/22) \approx 7.636 days;$	[2.1b]
$t_{dbl}(12/25/21 - 1/31/22) \approx 5.293 days$;	[2.1c]
$\alpha_S(12/25/21 - 1/31/22) \approx 0.03168 / day;$	[2.1d]
$\delta_o(12/25/21 - 1/31/22) \approx 0.96 \times 10^{-3} / day$.	[2.1e]

medRxiv preprint doi: https://doi.org/10.1101/2022.06.24.22276889; this version posted June 27, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.

The $N_o(12/25/21) = 3,121,000$ starting point for a behavior change in N(t) was similar to the *latter* stage of the Summer 2021 Resurgence⁶, which also showed a behavior change in N(t) starting at $N_o(8/13/21) = 3,200,000$. This commonality shows that the *uninfected population* altered its behavior at similar points, which is likely when people realized that some hospitals would be overwhelmed.

A further update for the US Winter 2021 CoVID-19 Resurgence is presented here in *Figs. 1-2*, which shows that a significant increase in *mask-wearing* in early 2022 likely helped to curtail this CoVID-19 resurgence, making it less pernicious than Eqs. [2.1a]-[2.1e] initially indicated. The final fit for this *latter* part of the Winter 2021 resurgence has these updated values:

$N_o(12/25/21 - 3/11/22) \approx 3,000,000;$	[2.2a]
$t_R(12/25/21 - 3/11/22) \approx 6.14 days;$	[2.2c]
$t_{dbl}(12/25/21 - 3/11/22) \approx 4.256 days$;	[2.2c]
$\alpha_S(12/25/21 - 3/11/22) \approx 0.043 / day;$	[2.2d]
5(10,100,101,0,0,11,100) $0.11,100,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,$	

$\delta_o(12/25/$	21 - 3/11/22	$) \approx 3.14$	$\times 10$	o / day .			[2.2e]
• 1		1	1.1	C 1 1 ·	• • • • •	• • • •	7

The major change was a more than three-fold increase in the critical maskwearing δ_o -parameter. This updated data and model for the US Winter 2021 CoVID-19 Resurgence also provides a better baseline for follow-on resurgences. While Fig. 2 only presents the modeling results of Eq. [2.2a]-[2.2e] through 3/11/2022, it also includes data up through 6/19/2022. Those data show that the US is now in the midst of a US Spring 2022 CoVID-19 Resurgence, as new CoVID-19 variants continue to infect both vaccinated and unvaccinated people.

Using *Fig.* 2 and Eqs. [2.2a]-[2.2e] as a new baseline then determines these parameters for the US Spring 2022 CoVID-19 Resurgence:

$N_o(4/16/22 - 6/19/22) \approx 61,950;$	[2.3a]
$t_R(4/16/22 - 6/19/22) \approx 3.55 days;$	[2.3c]
$t_{dbl}(4/16/22 - 6/19/22) \approx 2.461 days$;	[2.3c]
$\alpha_S(4/16/22 - 6/19/22) \approx 0.043 / day;$	[2.3d]

$$\delta_o(4/16/22 - 6/19/22) \approx 1.145 \times 10^{-3} / day.$$
 [2.3e]

Figure 3 compares the Eq. [2.3a]-[2.3e] predictions for the Spring 2022 resurgence to the data above baseline. The combined model for all the US CoVID-19 waves is shown in Fig. 4, going back to March 2020.

While Eq. [1.1] captures the overall structure of each new CoVID-19 wave, it does not successfully model the lowest values for the long-term tail of the daily CoVID-19 infections. It also does not predict when the next resurgence begins, since that t = 0 point is a model-adjusted input parameter determined by when the new resurgence is first easily identified. Both these aspects are apparent in the *Fig.* 4 modeling gap between the 3/11/22 predicted end of the Winter 2021 Resurgence, and 4/16/22, when the Spring 2022 Resurgence reached its $N_o(4/16/22) \approx 61,950$ initial modeling threshold. These results also mean that the US was nearly free of CoVID-19 between these two pandemic waves.

medRxiv preprint doi: https://doi.org/10.1101/2022.06.24.22276889; this version posted June 27, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.

3 Summary

Our empirical modeling of the various USA CoVID-19 pandemic waves shows that there is a fairly consistent range of responses by the *uninfected population* to the various CoVID-19 waves, even though each wave may have had a different dominant root-cause. *Figure 5* tabulates all the model parameters that were derived for each CoVID-19 wave.

It is now generally accepted that *Omicron* evades the CoVID-19 vaccines, but that vaccination still offers protection against hospitalization. Since this variant was detected in Nov. 2021, our modeling since then (*Fig. 5: CoVID Waves 6, 6-A*, and 7) shows that each *Omicron* wave was intrinsically more infectious, with t_{dbl} values decreasing from ~5.58 days down to its most recent value of ~2.46 days, which is shorter than every wave, except for the initial March 2020 pandemic value of ~2.00 days.

Because the initial Omicron CoVID-19 wave caught the vaccinated population by surprise, it had a low $\alpha_S \approx 0.011 / day$ value, with virtually no maskwearing effects ($\delta_o \leq 0.001 \times 10^{-3} / day$). However, the post-Christmas data showed a significant increase in Social Distancing, which gave $\alpha_S \approx 0.043 / day$ for both the latter part of the Winter 2021 Resurgence, and for the present followon Spring 2022 Resurgence. The δ_o change from a post-Christmas value of $\delta_o \approx 3.14 \times 10^{-3} / day$, to the present Spring 2022 lower value of $\delta_o \approx 1.145 \times 10^{-3} / day$, means that this latest wave has a relatively long-tail for the CoVID-19 daily cases, which is also apparent in Fig. 4.

These analyses give the following updated USA CoVID-19 projections for the total number of USA CoVID-19 cases:

$$N_{tot}(t = [6/19/22]) \approx 86,055,800 \text{ vs } N_{data} = 86,230,982 ; \qquad [3.1a]$$

$$N_{tot}(t = [8/25/22]) \approx 88,138,600 . \qquad [3.1b]$$

Unfortunately, the latest international CoVID-19 pandemic data indicates that newer vaccine-evading *Omicron* variants, which are not included in this model, are coming to the USA. Vigilance, *Social Distancing*, and *mask-wearing* will continue to be needed.

4 List of Figures

Fig. 1: Final Fit, USA Winter 2021 Omicron CoVID-19 Wave by Itself

Fig. 2: USA CoVID-19 Totals w/ Data Fitting 3/21/2020 - 3/11/2022

Fig. 3: USA CoVID-19 Spring 2022 Resurgence By Itself

Fig. 4: USA CoVID-19 Daily and Total, w/ Spring 2022 Resurgence

Fig. 5: Summary of CoVID-19 Model and Parameter Values

5 References

- 1. https://medrxiv.org/cgi/content/short/2020.05.04.20091207v1 "Initial Model for the Impact of Social Distancing on CoVID-19 Spread"
- **2**. https://medrxiv.org/cgi/content/short/2020.06.30.20143149v1

medRxiv preprint doi: https://doi.org/10.1101/2022.06.24.22276889; this version posted June 27, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.

"Orthogonal Functions for Evaluating

Social Distancing Impact on CoVID-19 Spread"

- https: //medrxiv.org/cgi/content/short/2020.08.07.20169904
 "Model to Describe Fast Shutoff of CoVID-19 Pandemic Spread"
- 4. https: //medrxiv.org/cgi/content/short/2020.09.16.20196063 "Initial Model for USA CoVID-19 Resurgence"

5. https: //medrxiv.org/cgi/content/short/2021.08.16.21262150

"The *IHME* vs Me: Modeling USA CoVID-19 Spread, Early Data to the *Fifth Wave*"

6. https: //medrxiv.org/cgi/content/short/2021.10.15.21265078
"Updated Model for the USA Summer 2021 CoVID-19 Resurgence"

7. https://medrxiv.org/cgi/content/short/2022.01.06.22268868 "Modeling the USA Winter 2021 CoVID-19 Resurgence"

- https: //medrxiv.org/cgi/content/short/2022.02.04.22270491
 "USA Winter 2021 CoVID-19 Resurgence Post-Christmas Update"
- **9**. www.bing.com/covid/local/unitedstates?form=COVD07

Fig. 1: Final USA Winter 2021 Omicron CoVID-19 Wave By Itself

Fig. 2: USA CoVID-19 Totals w/ Data Fitting 3/21/2020 - 3/11/2022

per day #of New CoVID-19 Cases USATota

Fig. 3: USA CoVID-19 Spring 2022 Resurgence By Itself

Fig. 4: USA CoVID-19 Daily and Total, w/ Spring 2022 Resurgence Data Fits: 3/21/2020- 6/19/2022

fotal #of NewCoVID-19 Daily Cases per day

Fig. 5: Summary of CoVID-19 Model and Parameter Values

CoVID Wave	U.S.A. CoVID-19 Stage	<mark>No</mark> , (Initial t=0 Value)	t=0 Date	t/dbl\ days, at t=0	t _R value	$lpha_{_{\!S}}$ value	δ_{g} value
1	lni.Model 6/7/20 Update	23,710	03/21/20	1.997	2.88044	0.06618	0.00000
2	1 st Resurgence Summer 2020 =>	15,650	06/07/20	2.880	4.15496	0.058	0.0108_
3	Winter 2020 Resurgence =>	88,900	09/25/20	5,580	8.05	0.011	0.001748
4	Small Spring 2021 Resurgence =>	146,000	03/19/21	5,580	8.05	0.00128	0.01365
5	Inital Portion, Summer 2021 Resurgence =>	41,000	06/07/21	9.089	13.113_	0.0030_	0.00000
5 - A	LAT TER Portion, Summer 2021 Resurgence =>	3,200,000	08/13/21	14.443	20.8374	0.019999	0.000489
6	Initial Portion, <i>Omicron</i> Winter 2021 Resurgence =>	107,000	11/15/21	5.580	8.05	0.011	0.000001
6-A	LATTER Portion, Omicron Winter 2021 Resurgence =>	3,000,000	12/25/21	4.256	6.14	0.043	0.00314_
7	<i>Omicron</i> Spring 2022 Resurgence =>	61,950	04/16/22	2.461	3.55	0.043	0.001145