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Abstract  88 
Objectives: Urinary biochemistry is used to detect and monitor conditions associated with 89 
recurrent kidney stones. There are no predictive machine learning (ML) tools for kidney 90 
stone type or recurrence. We therefore aimed to build and validate ML models for these 91 
outcomes using age, gender, 24-hour urine biochemistry and stone composition. 92 
Materials and Methods: Data from 3 cohorts were used, Southampton, UK (n=3013), 93 
Newcastle, UK (n=5984) and Bern, Switzerland (n=794). Of these 3130 had available 24-hour 94 
urine biochemistry measurements (calcium, oxalate, urate, pH, volume), and 1684 had 95 
clinical data on kidney stone recurrence. Two predictive models were constructed (UK and 96 
Swiss) using two ML techniques (Partitioning and Random Forests [RF]) and validated 97 
internally with a subset of the same dataset (e.g UK model/UK test set), and externally with 98 
the other dataset (UK model/Swiss test set). 99 
Results and Limitations: For kidney stone type, on external validation accuracy of UK RF 100 
model=0.79 (95% CI: 0.73-0.84), sensitivity: calcium oxalate=0.99 and calcium 101 
phosphate/urate=0.00. Specificity: calcium oxalate=0.00 and calcium 102 
phosphate/urate=0.99. For the Swiss RF model accuracy=0.87 (95% CI: 0.83-0.89), 103 
sensitivity: calcium oxalate=0.99 and calcium phosphate/urate=0.00. Specificity: calcium 104 
oxalate=0.00, calcium phosphate=0.00 and urate=1.00. 105 
 For stone recurrence, on external validation accuracy of UK RF model=0.22 (95% CI: 106 
0.19-0.25), sensitivity=0.93 and specificity=0.09. Swiss RF model accuracy=0.42 (95% CI: 107 
0.39-0.47), sensitivity=0.03 and specificity=0.97. 108 
Conclusions: Neither kidney stone type nor kidney stone recurrence can be accurately 109 
predicted using modelling tools built using specific 24-hour urinary biochemistry values 110 
alone. Further studies to delineate accurate predictive tools should be undertaken using 111 
both known and novel risk factors.  112 
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Introduction 113 
 Kidney stones are prevalent

1
, costly

2
 and debilitating, with a recurrence rate of 114 

around 40-50% at 10 years
3
. Although there are rare well described forms of kidney stones 115 

such as cystinuria leading to cystine stones, the pathophysiology underlying the most 116 
common types of kidney stones (calcium stones and urate) have not been satisfactorily 117 
described. Given the rising prevalence and cost of surgical treatment, tools are needed to 118 
accurately predict kidney stone type and more importantly, risk of recurrence so that 119 
preventative measures can be more focused and beneficial.  120 
 Kidney stone composition may not always be investigated, but remains vital for the 121 
identification of rarer stone types that require further management. There has previously 122 
been only one machine learning (ML) study that looked at prediction of kidney stone type

4
. 123 

Several types of ML models were constructed for kidney stone type prediction, achieving 124 
high accuracy (area under the curve (AUC)=0.99), although it was neither internally nor 125 
externally validated. They did not use urinary biochemistry, instead utilising demographics 126 
and basic medical history. Another study applied logistic regression to 24-hour urinary 127 
biochemistries to predict stone type, but this demonstrated poor predictive value

5
. 128 

Regression models are not as powerful as more modern ML techniques
6
. 129 

 The Recurrence of Kidney Stone (ROKS) nomogram was created to predict kidney 130 
stone recurrence and is largely based on non-biochemical risk factors and radiologic 131 
appearances, rather than biochemistry

7
. It had a moderate predictive value (AUC=0.65) for 132 

kidney stone recurrence at 2-years on external validation
8
. Until accuracy improves, this 133 

predictive model is not useful for influencing clinical practice. 134 
Twenty four hour urine samples are often taken from high-risk stone formers

9
 to 135 

identify stone forming risk factors such as hyperoxaluria, hypercalciuria, hyperuricosuria etc. 136 
Although the benefit of urinary biochemistry for managing kidney stone patients has not 137 
been fully established

10
, there is evidence from randomized controlled trials that 138 

medications used in specific, limited circumstances reduce the number and increase the 139 
time to, recurrence

11
. A systematic review by Hsi et al. delineates the limitations of 24-hour 140 

urine collection, none of the included studies demonstrate any predictive value for 141 
recurrence

10
. 142 

To date there have been no predictive ML models for kidney stone type or 143 
recurrence based on 24-hour urinary biochemistry. We therefore aimed to construct 144 
predictive ML models for these outcomes using clinical and biochemical data from kidney 145 
stone patients to assess the predictive value of 24-hour urinary biochemistry. 146 

 147 
Methods  148 

Data Collection across all Cohorts 149 
Age, sex, kidney stone recurrence, stone type and 24-hour urinary biochemistry 150 

(free-choice diet).  151 
Urinary biochemistry obtained: calcium (mmol/24 hour), oxalate (mmol/24 hour), 152 

urate (mmol/24 hour), urine volume (L) and pH. Citrate (mmol/24 hour) was obtained from 153 
the Newcastle and Bern cohorts. 154 
 Stone type was ascertained using Fourier Transform IR spectroscopy in all cohorts. 155 
Differentiation between calcium oxalate types (monohydrate/dihydrate) was not available 156 
in the Southampton/Newcastle cohorts and therefore not included in analysis.  157 
 158 
 159 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 26, 2022. ; https://doi.org/10.1101/2022.06.24.22276866doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.24.22276866


 
 

5

 160 
 Southampton, UK 161 
Study Population 162 
 The cohort consisted of patients with kidney stone disease presenting to University 163 
Hospital Southampton, UK (tertiary referral hospital) referred for metabolic assessment 164 
between 1990-2007. The initial cross-sectional study (n=2801)

12
 and subsequent cohort 165 

subset
2
 have been described. During this period, stone formers were routinely referred 166 

from across Hampshire, Isle of Wight and Dorset. The subset includes 1000 patients with 167 
further information ascertained retrospectively using hospital/general practice electronic 168 
records.  169 
 Patients who had no documentation (i.e no evidence of subsequent follow-170 
up/consultation, lived outside/have left Hampshire or no documentation on CHIE) were 171 
excluded [see fig. 1]. 172 
 173 
Ethical Approval 174 
 Ethical approval for this arm of the study was granted by the NHS Bristol Research 175 
Ethics Committee (Rec ref: 18/SW/0185; IRAS ID: 240061).  176 

 177 
Newcastle upon Tyne, UK  178 

Study Population 179 
 The cohort consisted of patients with kidney stone disease presenting to hospitals in 180 
the north of England between 2013 and 2018 [Appendix 1]. These include: The Newcastle 181 
upon Tyne Hospitals NHS Foundation Trust (Newcastle-upon-Tyne), James Cook University 182 
Hospital (Middlesbrough), Sunderland Royal Hospital, Durham University Hospital, Queen 183 
Elizabeth Hospital (Gateshead), Darlington Memorial Hospital, Cumberland Infirmary 184 
(Carlisle) and Northumbria Hospitals Trust (Wansbeck, Hexham, Cramlington).  185 

Data ascertained retrospectively using electronic hospital records. Urinary biochemistry 186 
and stone type were obtained from the regional renal calculi processing unit (Queen Elizabeth 187 
Hospital, Gateshead).  188 
 189 
Ethical Approval 190 
 This arm was registered as an audit (current patients of authors) with Newcastle-191 
upon-Tyne Hospitals NHS Foundation Trust (audit number: 10337).  192 

 193 
Bern, Switzerland 194 

Study Population 195 
Patients enrolled in the Bern Kidney Stone Registry (BKSR) were referred to the 196 

Department of Nephrology and Hypertension, Inselspital, Bern University Hospital and 197 
included kidney stone formers suffering at least one stone episode. This population has 198 
previously been described in the literature

13
. Those <18 years were excluded. 199 

 200 
Ethical Approval 201 
 The BKSR adheres to the Declaration of Helsinki, was approved by the Ethical 202 
Committee of the Kanton Bern (#95/06) and all patients provided written informed consent. 203 
 204 

Definitions 205 
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Stone recurrence was defined as subsequent stone surgery or acute presentation 206 
following previous treatment/spontaneous passage. Presence of asymptomatic recurrence 207 
on imaging was not available. 208 
 Low urine volume was defined as <1.5L/24 hour. Acid urine was defined as pH <5.5. 209 
 Biochemical abnormalities were defined as follows, as per local laboratory values: 210 
hypercalciuria in women >6.2 mmol/24 hour and men >7.5 mmol/24 hour; hyperoxaluria in 211 
women >0.32 mmol/24 hour, men >0.49 mmol/24 hour; hyperuricosuria as >4.46 mmol/24 212 
hour and hypocitraturia as <0.6 mmol/24 hour. 213 
 Primary kidney stone type was defined as >50% of particular type.  214 
  215 

Statistical Analysis 216 
 Analysis was performed in R (version no.4.0.2). For robustness, two machine learning 217 
models were used: Partitioning (rpart[19]) and Random Forests (randomForest[20] and 218 
missForest[21]) for both Stone Type and Recurrence. Missing data was accounted for with 219 
values imputed from existing data (missForest). Variables included in both analyses: age, 220 
sex, raw 24-hour urinary values (calcium, oxalate, urate, volume), pH and number of 221 
biochemical abnormalities. Urinary citrate was excluded due to low numbers with 222 
documented citrate. To investigate whether unbalanced data was driving discrimination, up-223 
sampling of training data was used to create balanced training data sets using caret[22], 224 
which were run through subsequent analyses. 225 

Recurrence rate was excluded in stone type models as this would be unknown at 226 
point of presentation. Stone type was included in the recurrence models. Those with 227 
unclear stone type were excluded from the Stone Type models. Data was partitioned into 228 
training (70% of total) and test (30%) datasets. Diagnostic accuracy statistics are presented 229 
in the results section. Sample sizes were not calculated as an effect size was not being 230 
calculated. For robustness, two models were used for each measure, and models were 231 
constructed from two cohorts. Sensitivity analysis is represented by the second model 232 
(random forests), and by the second dataset (Bern).  233 

 234 
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235 
Figure 1. Flow diagram of patient selection/Inclusion. ML=Machine Learning, ST=Stone type, 236 
Re=Recurrence.  237 
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Results 238 
 Patient and Biochemistry Demographics 239 
 There were 3013 kidney stone patients in the Southampton/Newcastle combined 240 
dataset [see table 1]. There were 2074 men (mean age 49±15 years) and 939 women (mean 241 
age 49±17 years). Stone types were as follows: calcium oxalate (n=1476, 49%), calcium 242 
phosphate (n=119, 4%), urate (n=89, n=3%), cystine (n=5, 0.2%), struvite (magnesium 243 
ammonium phosphate) (n=3, 0.1%) and no data (n=1321, 44%). Those with no data are 244 
likely to have passed their stone/post treatment fragments (e.g. shockwave lithotripsy) 245 
spontaneously. The stone was then not available for analysis. Of these 3013, 890 had 246 
information on whether or not the patient had a kidney stone recurrence. Of these, 374 had 247 
a recurrence (39%).  The low numbers of patients with follow-up information are likely due 248 
to the patient not accessing medical services following the initial stone episode, moving 249 
away or dying. 250 
 There were 794 kidney stone patients in the Bern dataset, with 204 women (mean 251 
age 45±15 years) and 590 men (mean age 48±13 years). Stone types were as follows: 252 
calcium oxalate (n=598, 76%), calcium phosphate (n=81, 10%), urate (n=47, n=6%), cystine 253 
(n=16, 2%), struvite (n=6, 0.8%) and no data (n=40, 5.1%) [see fig 2]. All had follow-up data 254 
available for stone recurrence. There were 676 recurrences (85%). 255 
 Across all 3 datasets, 3130 patients had full data on urinary biochemistry. There 256 
were 631 (20.1%) patients who had no biochemical diagnoses, 1331 (42.5%) patients with a 257 
single diagnosis and 1668 (37.3%) with a combination of biochemical abnormalities.  258 

 259 
Figure 2. Graphical representation of differences between cohorts and sexes. On top row, 260 
from left to right: bar chart of number of patients in each sex, in each cohort by stone type; 261 
boxplot of age for each sex per stone type; boxplot of 24-hour urinary calcium (mmol/24 262 
hour) for each sex per stone type. Bottom row, from left to right: boxplot of urinary pH for 263 
each sex per stone type; boxplot of 24-hour urinary oxalate (mmol/24 hour) for each sex per 264 
stone type; boxplot of 24 hour urinary uric acid (mmol/24 hour) for each sex per stone type. 265 
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Of those with full data on urinary biochemistry, 1002 patients had data on kidney 266 
stone recurrence. In total 688 (68.7%) had a recurrence. There were 272 (74.7%) 267 
recurrences in those with no biochemical diagnosis, 258 (67.0%) with a single biochemical 268 
risk factor and 163 (64.4%) in those with a combination [see appendices 2 & 3]. 269 
 The Southampton dataset did not contain 24-hour urinary citrate measurements. In 270 
the Newcastle & Bern datasets there were 45 and 121 patients, respectively, with 271 
hypocitraturia. Recurrence data was available in 144 patients, with recurrence in 11/23 272 
(Newcastle, 47.8%) and 109/121 (Bern, 90.0%), respectively. 273 
 Discordant primary kidney stone type and 24-hour urine biochemistry was seen in 274 
103 patients (5% of known stone type). Cystine stones (n=21) and struvite stones (n=9) were 275 
not included in the appendices given their low numbers and alternative aetiologies.  276 
 Data on subsequent primary stone type was available in the Bern dataset for a 277 
subset of those with a stone recurrence (n=188). Change in primary stone type from initial 278 
episode was seen in 42 patients (22%): calcium oxalate (n=26, 18%), calcium phosphate 279 
(n=10, 37%), urate (n=5, 38%), cystine (n=0, 0%), struvite (n=1, 100%) [Figure 3]. 280 

 281 
Figure 3. Bar chart showing percentage of subsequent stone type for each first stone type, 282 
data from the Bern Cohort. CaOx=Calcium Oxalate, CaPo=Calcium Phosphate, Ur=Urate, 283 
Cys=Cystine, Stru=Struvite   284 
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 285 

Southampton Newcastle 

Combined 

Southampton & 

Newcastle Bern 

Total, n 2801 212 3013 794 

Sex 

Female, n 818 (29%) 91 (43%) 939 (31%) 204 (26%) 

Female, 

Age±SD 49±16 50±19 49±17 45±15 

Male, n 1984 (71%) 121 (57%) 2073 (69%) 590 (74%) 

Male, 

Age±SD 49±14 48±16 49±15 48±13 

Stone 

Type 

Calcium 

Oxalate, n 

(%) 1393 (50%) 83 (39%) 1476 (49%) 598 (75.9%) 

Calcium 

Phosphate, 

n (%) 59 (2%) 60 (28%) 119 (4.0%) 81 (10.3%) 

Urate, n 

(%) 55 (2%) 34 (16%) 89 (3.0%) 47 (6.0%) 

Cystine, n 

(%) 5 (0.2%) 0 5 (0.2%) 16 (2.0%) 

Struvite, n 

(%) 1 (0.04%) 2 (1%) 3 (0.1%) 6 (0.8%) 

No data, n 

(%) 1288 (46%) 33 (16%) 1321 (44%) 40 (5.1%) 

Recurrence, n/total 

with data (%) 

325/855 

(38%) 49/111 (44%) 374/890 (39%) 

676/794 

(85.1%) 

Table 1. Patient and Kidney Stone Demographics. Age in years.  286 

 Machine Learning Models: 287 
Stone Type 288 
The training group had n=3092 patients, n=2360 of which had immediate clearance on 289 
fluoroscopy. On internal validation (test set: n with outcome/total; n=1015/1326), the 290 
diagnostic accuracy statistics were: Random forests (RF) AUC=0.73, accuracy= 0.77 (95% 291 
CI:0.74-0.79), sensitivity=0.27, specificity=0.94; Partitioning AUC=0.63, accuracy=0.71(95% 292 
CI:0.69-0.74), sensitivity=0.22, specificity=0.89; Extreme Gradient Boosting (XGBoost) 293 
AUC=0.75, accuracy=0.77 (95% CI:0.75-0.80), sensitivity=0.27, specificity=0.94; Logistic 294 
Regression (LR) AUC=0.63, accuracy=0.76 (95% CI:0.73-0.78), sensitivity=0.12, 295 
specificity=0.97; Classical Neural Network (NN) AUC=0.74, accuracy=0.75 (95% CI:0.73-0.78), 296 
sensitivity=0.23, specificity=0.94; Bayesian GeneralisedLinear Model (BGLM) 297 
AUC=0.75, accuracy=0.77 (95% CI:0.75-0.80), sensitivity=0.29, specificity=0.94; Deep Neural 298 
Network (DNN) Single-outcome model AUC=0.59, accuracy=0.77 (95% CI:0.75-0.79), 299 
sensitivity=0.57, specificity=0.79; DNN Multiple-outcome model AUC=0.53, 300 
accuracy=0.77 (95% CI:0.75-0.79), sensitivity=0.60, specificity=0.78 [see figure 2 301 
and supplementary table 2]. 302 
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 303 
 Two models were built to predict kidney stone type, partitioning and Random 304 
Forests (RF). Both models used all available 24 hour urinary biochemical data (volume, 305 
calcium, oxalate, urate and pH), age and sex. Citrate was excluded as the Southampton data 306 
did not have this. Due to missing values (as detailed above), some biochemical values were 307 
imputed. Up-sampling of rare stone data, while marginally improving classification into rare 308 
stone types, overall gave inferior classification, therefore simple training sets are reported.  309 

For the internally validated Southampton/Newcastle models, the partitioning model 310 
accuracy was 0.89 (95% CI: 0.85-0.91) and RF model accuracy was 0.90 (95% CI: 0.87-0.92) 311 
[see table 3].  312 

For the internally validated Bern models, the partitioning model accuracy was 0.75 313 
(95% CI: 0.69-0.81) and RF model was 0.81 (95% CI: 0.78-0.84).  314 

None of the models were able to predict cystine/struvite stones. 315 
 316 
 Each RF model was externally validated using the other dataset. For the 317 
Southampton/Newcastle model, validated with Bern data, the accuracy was 0.79 (95% CI: 318 
0.73-0.84). The sensitivity for: calcium oxalate=0.99, calcium phosphate/urate=0.00. The 319 
specificity for: calcium oxalate=0.00 and calcium phosphate/urate=0.99. 320 
 For the Bern model, validated with Southampton/Newcastle data, the accuracy was 321 
0.87 (95% CI: 0.83-0.89). The sensitivity for: calcium oxalate=0.99, calcium phosphate=0.00 322 
and urate=0.04. The specificity for: calcium oxalate=0.02, calcium phosphate=0.99 and 323 
urate=1.00. 324 
 Addition of citrate into the models with the Newcastle and Bern datasets did not 325 
demonstrate any difference in accuracy, sensitivity or specificity for stone type. Increasing 326 
the predominant stone type threshold for calcium phosphate stones to 90% did not increase 327 
accuracy, sensitivity or specificity.   328 
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Recurrence 329 
 Two models were used to predict recurrence (Partitioning and RF). Both models used 330 
all biochemistry previously described, age and sex. Biochemical value imputation as above. 331 

For the internally validated Southampton/Newcastle models, the partitioning model  332 
accuracy was 0.52 (95% CI: 0.45-0.60), correctly predicting 25/72 recurrences and 70/109 333 
without. The RF model accuracy was 0.55 (95% CI: 0.48-0.63), correctly predicting 25/72 334 
recurrences and 75/109 without [see Table 4]. 335 

For the internally validated Bern models, the partitioning model accuracy was 0.85 336 
(95% CI: 0.80-0.89), correctly predicting 201/212 recurrences, and 2/27 without. The RF 337 
model accuracy was 0.89 (95% CI: 0.84-0.93), correctly predicting 163/165 recurrences, and 338 
1/19 without. 339 

Recurrence Southampton/Newcastle 

Model 

Bern Model 

 Partitioning Random 

Forests 

Partitioning Random 

Forests 

Accuracy 

(95% CI) 

0.52 (0.45-

0.60) 

0.55 (0.48-

0.63) 

0.85 (0.80-

0.89) 

0.89 (0.84-

0.93) 

Sensitivity 0.64 0.69 0.07 0.05 

Specificity 0.35 0.35 0.95 0.99 

PPV 0.60 0.61 0.15 0.33 

NPV 0.40 0.42 0.89 0.90 

Detection 

Rate 
0.39 0.41 

0.008 0.005 

Table 2. Descriptive statistics for Partitioning and Random Forests models predicting 340 
recurrence. PPV=positive predictive value, NPV=negative predictive value. Test set=30% of 341 
same cohort 342 

Each RF model was externally validated as above. The Southampton/Newcastle 343 
model, validated with Bern data, accuracy was 0.22 (95% CI: 0.19-0.25), sensitivity=0.93, 344 
specificity=0.09, correctly predicting 55/632 recurrences and 108/116 without. 345 

The Bern model, validated with Southampton/Newcastle data, accuracy was 0.42 346 
(95% CI: 0.39-0.47), sensitivity=0.03, specificity=0.97, correctly predicting 235/242 347 
recurrences and 11/332 without. 348 

Addition of citrate into the models with the Newcastle and Bern datasets did not 349 
demonstrate any difference in accuracy, sensitivity or specificity for stone type. Increasing 350 
the predominant stone type threshold for calcium phosphate stones to 90% did not increase 351 
accuracy, sensitivity or specificity.  352 

 353 
Discussion 354 
 This study utilised 24-hour urinary biochemistry data from kidney stone patients 355 
attending three European tertiary referral centres to make two cohorts 356 
(Southampton/Newcastle and Bern), used to construct internally validated machine learning 357 
(ML) models for both kidney stone type and kidney stone recurrence. These models were 358 
then externally validated on the other cohort. The recurrence models had very poor 359 
accuracy, whilst the kidney stone type models demonstrated high overall accuracy. However 360 
this is likely due to the high number of calcium oxalate kidney stones in our datasets 361 
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(reflected in the literature [23]), the diagnostic statistics demonstrate very poor predictive 362 
value for other stone types. In essence the models predict every stone as calcium oxalate. 363 

The poor predictive value for both outcomes are important negative findings. The 364 
composition of most kidney stones is unknown (36% in this study and ≤85% in the 365 
literature[24]), and 24-hour urine collection is used to identify recurrent/high-risk stone 366 
formers who could be started on prophylaxis [11,12]. 367 
 The main strengths of this study are the large cohort sizes, internal & external 368 
validation[19,20], multiple ML models (superior to regression analyses[8]) showing similar 369 
outcomes and consistent outcomes across both datasets.  370 
 There are several weaknesses with this study. Few of the Newcastle kidney stone 371 
patient cohort had 24-hour urinary biochemical analysis available, and fewer (in both 372 
datasets) had data on recurrence. This was addressed with imputation of missing data[21]. 373 
Unfortunately, 24-hour urinary citrate was not available in the Southampton dataset, which 374 
may bias our main results as hypocitraturia is an important risk factor for calcium-containing 375 
kidney stones[25]. To investigate this both models were repeated with citrate included for 376 
the Bern/Newcastle datasets, this did not demonstrate any improvement in diagnostic 377 
statistics. The datasets did not include 24-hour urinary phosphate or sodium, both of which 378 
influence the risk of stone formation[26]. Therefore, predictive value may be improved with 379 
the addition of these variables. The stone type models could not predict struvite or cystine 380 
stones. This is likely due to minimal numbers of these stones, thus underpowering the 381 
model, and their alternative pathophysiology[27,28]. Although it is accepted that those with 382 
cystinuria, are at high risk of recurrence[28]. 383 
 The datasets differ in terms of stone types proportions, notably uric acid and calcium 384 
phosphate stones. For instance, in the Southampton and Bern cohorts uric acid stones 385 
represent 3.6% and 6% respectively, whilst in the Newcastle dataset 19% have these (10% of 386 
total 5984 patients). Uric acid stones are associated with obesity/metabolic syndrome[29], 387 
and this observation may represent rising levels in Newcastle compared to an historic 388 
population (Southampton), or a contemporary European population (Bern). This could also 389 
represent referral bias, e.g. in the Bern cohort referral rates for urate stones were 390 
historically lower than present. As information on BMI or diabetes mellitus was not available 391 
this limits the predictive value of the models to predict stone type.  392 

Proportions of calcium phosphate stones are also different between datasets (2% in 393 
Southampton, whilst 28% in Newcastle). This may be due to selection bias, as large numbers 394 
of patients in the Newcastle set did not have urinary biochemistry available. This may also 395 
be due to our definition of predominant stone type (i.e >50%). Pure calcium phosphate 396 
stones (>90%) are associated with a specific phenotype (alkaline urine and hypocitraturia) 397 
[30]. Increasing the cut-off for calcium phosphate stones to >90% did not demonstrate an 398 
increase in predictive power for either stone type or recurrence. This may be due to the low 399 
numbers with this stone type (UK: from 4% to 2.8%, Bern: 10.3% to 2.6%). This touches on 400 
the wider issue of stone type interpretation. There are no guidelines on how to interpret 401 
stone composition, nor are there consistent methods within the literature. It is well known 402 
that stones can take many forms/compositions, but translation of these observations has 403 
yet to reach everyday practice. Our use of a >50% cut-off was an attempt to use standard 404 
laboratory outputs to improve model accessibility.     405 

As well as differences in stone type, recurrence data also differed between datasets, 406 
Bern had a far higher rate than the UK cohorts (which are similar to the literature[5]). This is 407 
likely due to the selection of patients going to biochemical clinic/tertiary care and will likely 408 
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skew the results as these patients are not representative of the general stone forming 409 
population. This is reflected in the recurrence models, the Bern model predict most as 410 
recurrence, whilst the Southampton/Newcastle model predict most as no recurrence.  411 

24-hour urinary biochemistry is touted as a good measure to identify urinary risk 412 
factors for stone formation[11,12]. In certain circumstances this is true[15], however there 413 
are a significant minority of recurrent kidney stone formers who have no biochemical 414 
abnormalities (20% in these cohorts and similar to rates seen in other studies[14,31]). This 415 
may be due to dietary influence on urinary biochemistry, with a random diet unpredictably 416 
influencing the results[32]. Further, a small proportion of patients have discordant urinary 417 
biochemistry and stone type (3.3% across these cohorts), which makes prediction of 418 
unknown stone type unreliable. In summary, the main challenge to model accuracy was not 419 
unbalanced data but a lack of factors that could provide effective discrimination.  420 
 There is a growing body of evidence that kidney stone disease is the common end 421 
point of a heterogenous group of disorders that include environmental[33], dietary[34,35], 422 
monogenic[36] and polygenic risk factors[37,38], whether in isolation or combination. 423 
Therefore reliance on urinary biochemistry alone as a predictive tool, as this study 424 
demonstrates, is inadvisable. This study, along with a recent study demonstrating the futility 425 
of serum biochemistry (except calcium)[39], demonstrate that current practices[11,12] to 426 
delineate risk of kidney stone recurrence do not work well. At least 15% of kidney stones 427 
have a monogenic cause[36], with a significant proportion forming calcium stones[40]. It is 428 
evident that a precision medicine approach is needed to differentiate the differing causes of 429 
KSD, which may then be treated effectively[41]. 430 
 Future studies are needed to delineate an effective kidney stone screen based on 431 
traditional risk factors in combination with kidney stone analysis, 24-hour urinary 432 
biochemistry, monogenic screen and polygenic risk scoring. 433 
Conclusion 434 
 Neither kidney stone type nor kidney stone recurrence can be accurately predicted 435 
by 24-hour urinary biochemistry. Further studies to delineate an effective stone screen 436 
should be undertaken. 437 
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Appendix 1. Study centre locations.  566 
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Southampton + 

Newcastle 

24-hour urine 

finding 

 

 

Total, n (%) 

(total n=2521) 

Stone Type, n (% of Biochemical Diagnosis) Recurrence, n/total n 

(total with data on 

Recurrence, n=391) 
Calcium 

Oxalate 

Calcium 

Phosphate 
Urate Unknown 

No abnormality 520 (20.6%) 256 (49.2%) 29 (5.6%) 7 (1.3%) 227 (43.7%) 40/95 

Low Urine 

Volume 
344 (13.6%) 166 (48.3%) 11 (3.2%) 3 (0.9%) 164 (47.7%) 21/53 

Hypercalciuria 333 (13.2%) 169 (50.8%) 7 (2.1%) 3 (0.9%) 154 (46.2%) 19/39 

Hyperoxaluria 172 (6.8%) 84 (48.8%) 4 (2.3%) 1 (0.6%) 81 (47.1%) 6/22 

Acid urine 167 (6.6%) 72 (43.1%) 2 (1.2%) 9 (5.4%) 84 (50.3%) 11/32 

Hypercalciuria 

+ Hyperoxaluria 
134 (5.3%) 66 (49.3%) 5 (3.7%) 0 63 (47.0%) 6/17 

Hypercalciuria 

+ Low Urine 

Volume 

128 (5.1%) 70 (54.7%) 2 (1.6%) 1 (0.8%) 55 (43.0%) 9/20 

Acid urine + 

Low Urine 

Volume 

121 (4.8%) 51 (42.1%) 0 11 (9.1%) 59 (48.8%) 6/16 

Hypercalciuria 

+ Acid Urine 
81 (3.2%) 35 (43.2%) 2 (2.5%) 1 (1.2%) 43 (53.1%) 1/4 

Hyperoxaluria + 

Low Urine 

Volume 

66 (2.6%) 38 (57.6%) 1 (1.5%) 0 27 (40.9%) 2/5 

Hyperoxaluria + 

Acid Urine 
47 (1.9%) 25 (53.2%) 1 (2.1%) 1 (2.1%) 20 (42.6%) 0/0 

Hyperuricosuria 46 (1.8%) 25 (54.3%) 1 (2.2%) 2 (4.3%) 18 (39.1%) 3/10 

Hypercalciuria 

+ 

Hyperuricosuria 

46 (1.8%) 32 (69.6%) 0 0 14 (30.4%) 5/10 

Hyperoxaluria + 

Acid Urine + 

Low Urine 

Volume 

33 (1.3%) 19 (57.6%) 0 2 (6.1%) 12 (36.4%) 2/7 

Hypercalciuria 

+ Hyperoxaluria 

+ 

Hyperuricosuria 

30 (1.2%) 12 (40.0%) 0 1 (3.3%) 17 (56.7%) 4/9 

Hypercalciuria 

+ Hyperoxaluria 

+ Acid Urine 

29 (1.2%) 15 (51.7%) 
0 

 
1 (3.4%) 13 (44.8%) 4/5 

Hypercalciuria 

+ Hyperoxaluria 

+ Low Urine 

Volume 

27 (1.1%) 17 (63.0%) 
0 

 
0 9 (33.3%) 1/1 

Hypercalciuria 

+ Acid Urine + 

Low Urine 

Volume 

25 (1.0%) 13 (52.0%) 
0 

 
0 12 (48.0%) 2/2 

Hyperuricosuria 

+ Low Urine 

Volume 

23 (0.9%) 8 (34.8%) 1 (4.3%) 2 (8.7%) 11 (47.8%) 1/2 

Hyperuricosuria 

+ Acid Urine 
22 (0.9%) 9 (40.9%) 0 3 (13.6%) 10 (45.5%) 4/7 

Hyperoxaluria + 

Hyperuricosuria 
21 (0.8%) 11 (52.4%) 0 2 (9.5%) 8 (38.1%) 4/9 

Hypercalciuria 

+ 

Hyperuricosuria 

+ Low Urine 

Volume 

19 (0.8%) 8 (42.1%) 0 0 11 (57.9%) 2/5 

Hypercalciuria 

+ 

Hyperuricosuria 

18 (0.7%) 10 (55.6%) 0 1 (5.6%) 7 (38.9%) 2/5 
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+ Acid Urine 

Hyperuricosuria 

+ Acid Urine + 

Low Urine 

Volume 

13 (0.4%) 6 (46.2%) 0 4 (30.8%) 3 (23.1%) 2/2 

Hypercalciuria 

+ Hyperoxaluria 

+ 

Hyperuricosuria 

+ Acid Urine 

13 (0.4%) 6 (46.2%) 0 3 (23.1%) 4 (30.8%) 6/8 

Hyperoxaluria + 

Hyperuricosuria 

+ Low Urine 

Volume 

10 (0.3%) 3 (30.0%) 1 (10.0%) 0 6 (60.0%) 1/1 

Hyperoxaluria + 

Hyperuricosuria 

+ Acid Urine 

8 (0.3%) 4 (50.0%) 0 0 4 (50.0%) 0/1 

Hypercalciuria 

+ Hyperoxaluria 

+ Acid Urine + 

Low Urine 

Volume 

7 (0.2%) 3 (42.9%) 0 0 4 (57.1%) 0/2 

Hypercalciuria 

+ 

Hyperuricosuria 

+ Acid Urine + 

Low Urine 

Volume 

7 (0.2%) 3 (42.9%) 
0 

 
1 (14.3%) 

3 

42.9%) 
2/2 

Hypercalciuria 

+ Hyperoxaluria 

+ 

Hyperuricosuria 

+ Low Urine 

Volume 

6 (0.2%) 4 (66.7%) 
0 

 

0 

 
2 (33.3%) 0/1 

Hyperoxaluria + 

Hyperuricosuria 

+ Acid Urine + 

Low Urine 

Volume 

4 (0.1%) 3 (75.0%) 
0 

 
0 1 (25.0%) 0/1 

Hypercalciuria 

+ Hyperoxaluria 

+ 

Hyperuricosuria 

+ Acid Urine + 

Low Urine 

Volume 

1 (0.0%) 1 (100.0%) 
0 

 
0 0 0/0 

 567 
Appendix 2. Biochemistry diagnoses and recurrences for Newcastle/Southampton dataset. 568 
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Bern 

24-hour urine finding 

 

 

Total, n 

(%) 

(total 

n=609) 

Stone Type, n (% of Biochemical Diagnosis) Recurrence, 

n/total n (total 

with data on 

Recurrence, 

n=609) 

Calcium Oxalate 
Calcium 

Phosphate 
Urate Unknown 

No abnormality 
111 

(18.2%) 
85 13 3 3 97/111 

Low Urine Volume 
80 

(13.1%) 
65 5 3 4 66/80 

Hypercalciuria 
53 

(8.7%) 
43 7 0 2 46/53 

Hyperoxaluria 
78 

(12.8%) 
50 13 6 4 71/78 

Acid urine 
50 

(8.2%) 
36 2 6 4 41/50 

Hypercalciuria + 

Hyperoxaluria 

24 

(3.9%) 
19 4 0 1 23/24 

Hypercalciuria + Low 

Urine Volume 

12 

(2.0%) 
11 0 0 1 11/12 

Acid urine + Low Urine 

Volume 

31 

(7.1%) 
24 0 5 2 26/31 

Hypercalciuria + Acid 

Urine 
5 (0.8%) 5 0 0 0 4/5 

Hyperoxaluria + Low Urine 

Volume 

15 

(2.5%) 
12 0 1 2 11/15 

Hyperoxaluria + Acid 

Urine 

32 

(5.3%) 
26 3 1 2 25/32 

Hyperuricosuria 8 (1.3%) 6 1 1 0 8/8 

Hypercalciuria + 

Hyperuricosuria 

15 

(2.5%) 
12 2 0 1 13/15 

Hyperoxaluria + Acid 

Urine + Low Urine Volume 

11 

(1.8%) 
8 0 3 0 11/11 

Hypercalciuria + 

Hyperoxaluria + 

Hyperuricosuria 

15 

(2.5%) 
11 2 0 2 14/15 

Hypercalciuria + 

Hyperoxaluria + Acid 

Urine 

9 (1.5%) 7 0 1 1 8/9 

Hypercalciuria + 

Hyperoxaluria + Low Urine 

Volume 

2 (0.3%) 2 0 0 0 2/2 

Hypercalciuria + Acid 

Urine + Low Urine Volume 
6 (1.0%) 5 0 1 0 5/6 

Hyperuricosuria + Low 

Urine Volume 
4 (0.7%) 4 0 0 0 3/4 

Hyperuricosuria + Acid 

Urine 
7 (1.1%) 5 2 0 0 5/7 

Hyperoxaluria + 

Hyperuricosuria 

11 

(1.8%) 
8 0 0 1 10/11 

Hypercalciuria + 

Hyperuricosuria + Low 

Urine Volume 

2 (0.3%) 1 1 0 0 2/2 

Hypercalciuria + 

Hyperuricosuria + Acid 

Urine 

7 (1.1%) 5 2 0 0 7/7 

Hyperuricosuria + Acid 

Urine + Low Urine Volume 
2 (0.3%) 2 0 0 0 2/2 

Hypercalciuria + 

Hyperoxaluria + 

Hyperuricosuria + Acid 

Urine 

5 (0.8%) 4 1 0 0 4/5 

Hyperoxaluria + 

Hyperuricosuria + Low 

Urine Volume 

1 (0.2%) 1 (100%) 0 0 0 1/1 
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Hyperoxaluria + 

Hyperuricosuria + Acid 

Urine 

4 (0.7%) 3 (75%) 0 1 (25%) 0 4/4 

Hypercalciuria + 

Hyperoxaluria + Acid 

Urine + Low Urine Volume 

4 (0.7%) 3 (75%) 0 1 (25%) 0 4/4 

Hypercalciuria + 

Hyperuricosuria + Acid 

Urine + Low Urine Volume 

2 (0.3%) 1 (50%) 0 1 (50%) 0 1/2 

Hypercalciuria + 

Hyperoxaluria + 

Hyperuricosuria + Low 

Urine Volume 

1 (0.2%) 1 (100%) 0 0 0 1/1 

Hyperoxaluria + 

Hyperuricosuria + Acid 

Urine + Low Urine Volume 

1 (0.2%) 1 (100%) 0 0 0 1/1 

Hypercalciuria + 

Hyperoxaluria + 

Hyperuricosuria + Acid 

Urine + Low Urine Volume 

1 (0.2%) 1 (100%) 0 0 0 1/1 
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