The Analgesic Efficacy of Different Techniques Surrounding Regional Anesthesia of the Lumbar Plexus and its Terminal Branches for Hip Fracture Surgeries

Abnoos Mosleh-Shirazi¹, Brian O’Donnell²

From the
¹Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON
²Department of Anesthesia and Intensive Care Unit, Cork University Hospital, Cork, Ireland

Address correspondence to:
Abnoos Mosleh-Shirazi, MBBChBAO, Department of Anesthesiology and Pain Medicine, University of Toronto, 27 King’s College Cir, Toronto, ON M5S 1A1(e-mail: abnoosmoslehshirazi@gmail.com).

Conflicts of Interest:
The authors declare no conflicts of interest [or state specific conflicts].

Funding:
The authors have no sources of funding to declare for this manuscript [or declare funding].

Running Head:
The Analgesic Efficacy of Different Techniques Surrounding Regional Anesthesia of the Lumbar Plexus and its Terminal Branches for Hip Fracture Surgeries

Word Count excluding title page, abstract, references, figures and tables: 3188

Key words: Regional anesthesia, analgesia, hip fractures, nerve block, Femoral nerve block, Fascia iliaca compartment block, Psoas compartment block, Lumbar plexus block, Pericapsular nerve group PENG block

Date of Search: 12 October 2020

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Background
Research is limited in comparing the analgesic efficacy of the various types of blocks with one another for hip fracture surgeries. Due to the rapid pace in the development of these new techniques in blocking the lumbar plexus and its terminal branches, uncertainty exists in literature and in practice regarding the definition and efficacy of one technique in comparison to another.

Objectives
(1) To write a narrative description of regional anesthesia approaches to the lumbar plexus and associated terminal branches; (2) To do a systematic review and meta-analysis of published articles regarding the analgesic efficacy of regional anesthesia in the context of hip fracture and hip fracture surgery.

Questions
(1) Does regional anesthesia of the lumbar plexus and its terminal branches enhance analgesic outcomes following hip fracture and hip fracture surgery? (2) Does the evidence point toward one technique's superiority over another? (3) Does evidence show a necessity for a nerve block over the use of opioid analgesics?

Search methods
Six databases: EMBASE, PUBMED, SCOPUS, EBSCO (CINAHL and MEDLINE), WEB OF SCIENCE, COCHRANE LIBRARY were searched on October 12th, 2020.

Search criteria
Studies were selected based on inclusion of: Study Design: Prospective Randomized Controlled Trials (RCT), Population: Adults (18+ years) undergoing hip fracture surgery, Intervention: FNB, FICB, PCB and/or PENG block, Comparison: Another intervention of interest, Placebo, Non-intervention, Systemic analgesics (Opioids, NSAIDs, Paracetamol), Outcome: Analgesic efficacy (Pain scores measured by Numeric Pain Rating Scale (NRS) or Visual Analogue Scale (VAS)). Studies were excluded if: Unavailable in full-text, non-human studies, Not RCT, Surgery unrelated to hip fracture.

Data collection and analysis
Two reviewers extracted all relevant data from the full text versions of eligible studies using a predefined data extraction form. Study characteristics included: author, publication year, study design, sample size, inclusion and exclusion criteria, type of intervention and control, statistical analysis, outcome data, and authors' main conclusions.

Risk of bias in individual studies assessed by two reviewers based on criteria adapted from the Cochrane ‘Risk of Bias’ assessment tool. High-risk studies were excluded.

Main results
1. FICB vs Opioid: pain scores at rest at 24h were lower in the FICB group (-0.79 [-1.34, -0.24], P= 0.005). Pain scores on movement at 12h were lower in the FICB group (-1.91 [-2.5, -1.3], P<0.00001). No difference between groups in other times. 2. FNB vs Opioid: Initial pain scores at rest were lower in FNB (-0.58 [-0.104, -0.12], P=0.01). 3. FICB vs FNB: No difference between groups at rest. Pain scores on movement: initial scores following block, and at 24 hours were lower in the FNB group (initial: 0.53 [0.21, 0.86], P=0.001, 24 h: 0.61 [0.29, 0.94], P=0.0002, results not estimable for 12h (not enough data)).
Authors’ conclusions
Both femoral nerve block and fascia iliaca compartment block enhance analgesic outcomes following hip fracture and hip fracture surgery, superior to the use of systemic analgesics such as opioids. FNB may be more efficacious at reducing pain following hip fracture surgery when compared to FICB.

INTRODUCTION
Description of the condition
Hip fractures are a common occurrence in elderly patients with multiple comorbidities such as hypertension, diabetes mellitus, cardiovascular disease, and more. Consequently, elderly patients are usually on long-term medications, which result in hemodynamic instability that complicates the perioperative management of hip-fracture patients. Unfortunately, there is high morbidity and mortality among these patients, and they are often undertreated for pain. Due to physiological frailty, medical comorbidities and cognitive impairment interfering with pain assessment and treatment, pain management in the elderly is challenging[1].

Description of the intervention
Opioids, along with other multimodal techniques, are commonly used to address pain. However due to altered pharmacodynamics and coexisting medical conditions, elderly patients are vulnerable to the side effects of opioids such as respiratory depression[2].

The use of peripheral nerve blockade for pain management may resolve some of the issues surrounding the use of opioid analgesics in the elderly. Targeted somatic nerve block via regional anesthesia provides rapid-onset, site specific analgesia while preventing dispensable sympathetic block even in CVS compromised patients[3].

In 1884, the first clinical locoregional anesthetic technique was introduced,[4] followed by the first central neuraxis block just 5 years later. After another 7 decades, the first proximal lower extremity peripheral nerve block was described in 1973 called the “3-in-1 block,”[4]. Since then, many techniques for regional anesthesia of the lumbar plexus and its terminal branches have evolved; including psoas compartment block (PCB) (posterior lumbar plexus block), Fascia iliaca compartment block (FICB), 3-in-1 femoral nerve block (FNB) (anterior lumbar plexus block), PENG (pericapsular nerve group) block, etc. These techniques are frequently used for hip fracture patients due to the opioid-sparing effects,[5].

How the intervention might work
The lumbar plexus is formed by lumbar nerves L1-L4 and is the origin of the ilioinguinal and iliohypogastric nerves, as well as the 4 major nerves that supply the lower limb: femoral, lateral femoral cutaneous, obturator, and genitofemoral. The plexus is formed lateral to the intervertebral foramina and passes through psoas major. The nerves of the lumbar plexus pass in front of the hip joint and mainly support the anterior part of the thigh[7].

Regional anaesthesia provides analgesia by pharmacologic disruption of nociceptive transmission, neuroanatomy of the injury, anatomical target sites. Analgesia of large parts of the leg can be achieved by blocking the lumbar plexus and its associated terminal branches. Thus, it is principally used for post-operative analgesia for hip surgeries[8] and provide opioid-sparing effects[9].
A timeline and description of regional anaesthesia approaches to the lumbar plexus and associated terminal branches is provided in Appendix A.

Why it is important to do this review
Early surgery within 48 hours of the hip fracture has shown to decrease complication and mortality rates[6]. This gives an opportunity for anesthesiologists to offer regional analgesia for effective pain control. However, due to the rapid pace in the development of these new techniques in blocking the lumbar plexus and its terminal branches, confusion exists in literature and in practice regarding the definition and efficacy of one technique in comparison to another.

Objectives
(1) To write a narrative description of regional anesthesia approaches to the lumbar plexus and associated terminal branches; (2) To do a systematic review and meta-analysis of published articles regarding the analgesic efficacy of regional anesthesia in the context of hip fracture and hip fracture surgery, to answer the following questions: (1) Does regional anesthesia of the lumbar plexus and its terminal branches enhance analgesic outcomes following hip fracture and hip fracture surgery? (2) Does the evidence point toward one techniques superiority over another? (3) Does evidence show a necessity for a nerve block over the use of opioid analgesics?

METHODS

Criteria for considering studies for this review

Types of studies
Only prospective RCTs were included in this study, including no blinding, single-blinded and double-blinded studies.

Types of participants
Adults (18+ years) undergoing hip fracture surgery.

Outcome: Analgesic efficacy (Pain scores measured by Visual analogue scale (VAS) or Numerical rating scale (NRS)). Studies were excluded if: Unavailable in full-text, non-human studies, Not RCT, Surgery unrelated to hip fracture.

Types of interventions
FNB, FICB, PCB and/or PENG block compared to another intervention of interest, placebo, non-intervention, or systemic analgesics (opioids, NSAIDs, paracetamol). Any dose or form of local anesthetic to accompany technique (including continuous catheter infusion or single dose) were included.

Types of outcome measures

Primary outcomes
Analgesic efficacy of the intervention using VAS or NRS scales.

Secondary outcomes
Other outcomes were accounted for but not included in the meta-analysis, such as: pre-operative and/or post-operative need for analgesia, time to first request for additional analgesia, adverse effects, allergic reactions, length of hospital stay, mortality.

Search methods for identification of studies
Electronic searches
Both electronic and hand-searching techniques were used to identify studies. Six databases: EMBASE, PUBMED, SCOPUS, EBSCO (CINAHL and MEDLINE), WEB OF SCIENCE, COCHRANE LIBRARY were searched on October 12th, 2020.
Searches were limited based on inclusion criteria:
Type of block: Femoral nerve block, Fascia iliaca compartment block, Psoas compartment block, Lumbar plexus block, Pericapsular nerve group PENG block
Type of study: Randomized controlled trial, Human study, Available in English
Age: Adult (18+)
Search words for each database are summarized in Appendix B.

Searching other resources
Manual searches were then conducted for all eligible articles via their reference list and related articles suggested by PubMed.

Data collection and analysis
Two reviewers extracted all relevant data from the full text versions of eligible studies using a predefined data extraction form. Study characteristics included: author, publication year, study design, sample size, inclusion and exclusion criteria, type of intervention and control, statistical analysis, outcome data, and authors' main conclusions.

Selection of studies
The abstract of each study was reviewed for eligibility by one reviewer (A.M.S). Potential studies underwent full text review by the same author. Studies were excluded if they did not meet the inclusion criteria. The inclusion and exclusion criteria are outlined in Appendix C.

Assessment of risk of bias in included studies
Risk of bias in individual studies assessed by two reviewers based on criteria adapted from the Cochrane ‘Risk of Bias’ assessment tool (RoB 2). A study was rated overall as Low risk, Some concerns, or High risk for bias based on five domains: (1) Randomisation process, (2) Deviations from intended interventions, (3) Missing outcome data, (4) Measurement of the outcome, (5) Selection of the reported result. High risk of bias determined by important imbalances at baseline, improper randomisation, failure of blinding of outcome assessors and significant (>15%) loss to follow-up. High-risk studies were excluded.

Unit of analysis issues
The Hozo equation (Hozo) was used to derive mean and standard deviation from median and inter-quantile ranges. For sample sizes greater than 25, the sample’s median was set to equal to mean as recommended by Hozo et al. Also, for sample sizes of 15 through 70, range was divided by 4 as the best estimate of the sample’s standard deviation as recommended by Hozo et al. The 11-point NRS, and 100-mm VAS scores divided by 10 were considered equal to the 10-cm VAS scale. Point estimates and 95% confidence intervals (CIs) of individual included studies and results were shown via forest plots. Data analyses abided by the guidelines set out by the Cochrane Collaboration regarding statistical methods. two-tailed P-values <0.05 were considered significant in all instances. Relative risks and the standardised mean difference (SMD) for continuous outcomes were also calculated.

Dealing with missing data
Authors of included studies were individually contacted for missing data.
Assessment of heterogeneity
Chi-squared statistic was used to assess heterogeneity, where values >50% are consistent with large heterogeneity, and using heterogeneity P-value, where values <10% are consistent with large heterogeneity.

Assessment of reporting biases
Funnel plots were conducted to detect publication bias.

Subgroup analysis and investigation of heterogeneity
Since heterogeneity was expected across studies, an inverse variance random-effects model was used to evaluate outcomes. Heterogeneous control interventions and data collection points were investigated via subgroup analyses. Intervention types were pooled into the following subgroups; (1) Fascia-iliaca compartment block vs. intra-articular hip injection (2) Fascia-iliaca compartment block vs. Placebo (sham block) (3) Fascia iliaca compartment block vs. Femoral nerve block (4) Fascia iliaca compartment block vs. opioid or other analgesic (5) Femoral nerve block vs. Placebo (sham block) (6) Femoral nerve block vs. opioid or other analgesic.

Sensitivity analysis
All analyses were conducted using Review Manager (RevMan; version 5.4).

A flow chart demonstrating an overview of the research protocol and study selection process can be found in Appendix D.

RESULTS
Description of the studies
Results of the search
The database search yielded 439 studies. A total of 316 abstracts were screened after removal of duplicates. After screening, 70 full text articles were assessed for eligibility.

Included studies
In total, twenty-five studies met the inclusion criteria[12, 14, 16, 20, 23, 27, 28, 33, 34, 38, 47, 51, 59, 60, 62, 65, 74, 77, 80, 82, 83, 85, 86]. Included studies date from 2007 to 2019.

Five articles were removed due to high risk of bias[27, 33, 51, 74, 80], leaving twenty studies for the meta-analysis. The twenty studies yielded 1871 patients in total, with 937 total patients in the intervention groups, and 934 total patients in the control groups.

Excluded studies
Eight studies were removed because the research was not yet complete[17, 18, 53-58], 20 studies were removed because they were irrelevant to hip fracture[10, 13, 15, 22, 24, 26, 29-32, 39, 41, 43, 45, 63, 68, 69-71, 73], six studies were removed because their outcomes did not focus on analgesic efficacy[11, 40, 52, 64, 78, 79], two studies were unavailable in full text (19, 75), and lastly, 9 articles were removed due to inappropriate study design[25, 35, 36, 42, 44, 49, 50, 67, 84]. The reference lists of all articles examined by full text and similar reviews were hand searched, but yielded no additional articles.

Study characteristics
Table 1 presents highlighted study features. All twenty studies were randomised controlled trials. Seven studies compared FICB with opioids[28, 47, 60, 62, 82, 83, 85]. Seven studies compared FNB with opioids[14, 16, 34, 38, 66, 72, 77]. Five studies compared FNB with FICB [20, 23, 59, 65, 86]. One study compared FICB with intra-articular hip injection[12]. See Table 1.
Table 1 Study characteristics for all included studies in this review. (FICB, fascia iliaca compartment block; FNB, femoral nerve block; NRS, numeric rating scale; VAS, visual analogue scale; RCT, randomized controlled trial; US, ultrasound).

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Research design</th>
<th>Total # of participants</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Intervention</th>
<th>Intervention group # of participants</th>
<th>Control</th>
<th>Control group # of participants</th>
<th>Primary Outcomes assessed</th>
<th>Secondary Outcomes assessed</th>
<th>Statistical analysis</th>
<th>Results</th>
<th>Main conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aprato et al., 2018</td>
<td>Single-Blinded RCT</td>
<td>120</td>
<td>Age > 65 years, Intra-articular hip fracture</td>
<td>Allergy to local anaesthetics, Recent procedure, Anaesthetic abnormalities, Infection at injection site, INR > 3, NRS > 2 on movement, Analgesic prior to admission</td>
<td>FICB</td>
<td>50</td>
<td>NRS pain score at 20 min, 12h, 24h, 48h post block</td>
<td>NRS pain score at 48h</td>
<td>Analgesic consumption from admission to 48h</td>
<td>Normality of data: Shapiro-Wilk test, Categorical data: Chi-squared test, Continuous data: Student’s t-test and Mann-Whitney test</td>
<td>20 min: FICB 1.26 +/- 1.80 and IAH 0.98 +/- 1.46 at rest (p = 0.757) at rest, and FICB 3.14 +/- 2.17 and IAH 1.01 +/- 1.23 (p = 0.435), and was FICB 4.96 +/- 2.71 and IAH 2.34 +/- 1.79 during leg rotation (p < 0.001). 24h: pain at rest was FICB 1.49 +/- 1.79 and IAH 0.44 +/- 1.23 (p = 0.38), and FICB 4.56 +/- 2.63 and IAH 2.42 +/- 1.66 during leg rotation (p < 0.001). 48h: pain at rest was FICB 2.08 +/- 3.19 and IAH 1.32 +/- 1.56 (p = 0.715), and FICB 4.29 +/- 2.69 and IAH 2.54 +/- 1.66 during leg rotation</td>
<td>Favour FICB over IAH for pre-operative hip fracture pain management</td>
<td></td>
</tr>
<tr>
<td>Branden et al., 2013</td>
<td>Single-Blinded RCT</td>
<td>36</td>
<td>Age 55-75 years, Hip fracture, Moderate to severe pain</td>
<td>Known INR > 3.0, Prior femoral artery vascular surgery on fracture side, Significant trauma, Hypotension, Allergy to local anaesthetics or morphine</td>
<td>US-Guided 3-in-1 FNB</td>
<td>18</td>
<td>Placebo (Sham injection, saline)</td>
<td>Placebo</td>
<td>NRS pain scores at 15 min, 30 min, 60 min post-op. Calculated as sum of pain intensity difference SPID over 4h.</td>
<td>Opened Consumption: Amount of rescue analgesia, Adverse events</td>
<td>Continous variables: Analysis of variance, Categorical data: Fisher’s exact test</td>
<td>NRS scores at 4 hours were significantly lower in the FNB group (p < 0.001). Over the 4 hour study period, patients in the FNB group experienced significantly greater overall pain relief than those in the SC group, with a median SPID of 11.0 (interquartile range [IQR] = 4.0 to 21.8) in the FNB group versus 4.0 (IQR = −2.0 to 5.8) in the SC group (p = 0.001). No patient in the SC group achieved a clinically significant reduction in pain.</td>
<td>US-guided FNB resulted in significantly reduced pain intensity over 4 hours compared to sham injection</td>
</tr>
<tr>
<td>Chaudet et al., 2015</td>
<td>Double-Blinded RCT</td>
<td>35</td>
<td>Hip fracture, Admitted to emergency department</td>
<td>Patient refusal, Contraindications for regional anaesthesia, Allergy to local anaesthetics, Severe renal or hepatic failure, Regular narcotic use, Use of Class III antiarrhythmic drugs</td>
<td>US-Guided 3-in-1 FNB</td>
<td>26</td>
<td>Placebo (Sham injection, saline)</td>
<td>Placebo</td>
<td>NRS pain scores at same time period.</td>
<td>Opened Consumption: Amount of rescue analgesia, Adverse events</td>
<td>Continous variables: Mann-Whitney test, Categorical data: Fisher’s exact test</td>
<td>Pain scores were similar (mean ± SD: VAS 29 ± 15/100 versus 33 ± 13, P = 0.13)</td>
<td>No difference between CFNB and placebo in analgesic efficacy.</td>
</tr>
<tr>
<td>Cooper et al., 2019</td>
<td>Double-Blinded RCT</td>
<td>100</td>
<td>Age 18-70 years, Proximal or femoral neck fracture, Present to ED with no local anaesthetic block prior to arrival</td>
<td>Spinal or epidural anaesthesia, ASA IV+, Weight > 40 kg or > 125 kg, Inguinal or femoral hernia, Allergy to local anaesthetics, Peripheral neuropathy, Neurologic deficit, Abnormal coagulation prolife, Mental retardation, Dementia, Insufficient understanding of pain scoring system and PCA device</td>
<td>FNB</td>
<td>48</td>
<td>FICB</td>
<td>FICB</td>
<td>VAS pain score at 0h, 2h, 4h, 24h post-op.</td>
<td>Distribution of data: One-sample Kolmogorov-Smirnov test, Demographic data: Mann-Whitney U and Chi-square analysis, Repetitive measurements evaluation: ANOVA variance analysis with Bonferroni correction and Mann-Whitney U</td>
<td>Difference between FICB and 3-in-1 blocks was greater compared to control group when VAS values were compared only at 0h and 2h and 2nd hour (p = 0.05). No difference between FICB group and 3-in-1 block group (p = 0.05). No difference was found between each group about VAS values at 4h, 24h and 24h (p > 0.05)</td>
<td>No difference between groups</td>
<td></td>
</tr>
<tr>
<td>Deleo et al., 2014</td>
<td>RCT</td>
<td>60</td>
<td>Age 20-80 years, Elective hip prosthesis surgery</td>
<td>Spinal or epidural anaesthesia, ASA IV+, Weight > 40 kg or > 125 kg, Inguinal or femoral hernia, Allergy to local anaesthetics, Peripheral neuropathy, Neurologic deficit, Abnormal coagulation prolife, Mental retardation, Dementia, Insufficient understanding of pain scoring system and PCA device</td>
<td>A: US-Guided FICB; B: US-Guided 3-in-1 FNB</td>
<td>A: 20, B: 20</td>
<td>No block</td>
<td>A: VAS pain score 0h, 2h, 4h, 24h post-op.</td>
<td>Distribution of data: One-sample Kolmogorov-Smirnov test, Demographic data: Mann-Whitney U and Chi-square analysis, Repetitive measurements evaluation: ANOVA variance analysis with Bonferroni correction and Mann-Whitney U</td>
<td>Difference between FICB and 3 in 1 blocks was greater compared to control group when VAS values were compared only at 0h and 2h and 2nd hour (p = 0.05). No difference between FICB group and 3-in-1 block group (p = 0.05). No difference was found between each group about VAS values at 4h, 24h and 24h (p > 0.05)</td>
<td>No difference between groups</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vas et al., 2007 Double-Blinded RCT 46 Hip fracture confirmed on x-ray, intact cognitive status on admission, Ability to provide written informed consent Refrain to participate. Previous hip surgery on affected side, Opioid or psychoactive therapy (regular, pre-fracture), Alcohol or substance abuse, Infection at injection site, Morphine intolerance, Any previous opioid administration for acute pain FICB 24 Placebo (Saline) 24 VRS pain score at rest and on movement 30 min, 60 min and 180 min post-op, VRS score on repositioning patient 90° min post-op, Sensory perception lateral and anterior aspects of thigh Continuous numerical data: Mann-Whitney test, Categorical data: Chi-square test, Normally distributed categorical data: Student t-test, Repeated measures: Post hoc correction Control group median 1 (IQR, 0–2.75) in the FICB group versus 0.5 (IQR, 0–1) in the morphine group (P = 0.09), max pain relief in measured resting pain: median 2 (IQR, 0–4) in the morphine group versus 0 (IQR, 0–2) in the FICB group (P < 0.01), Movement: median 3 (IQR, 1–4) in the morphine group versus 1 (IQR, 0–2) in the FICB group (P = 0.02). Higher Continuous data: Chi-square test, Normally distributed categorical data: Student t-test, Repeated measures: Post hoc correction with Bonferroni correction 50 min: median 1 (IQR, 0–2.75) in the FICB group and 0 (IQR, 0–3) in the morphine group (P = 0.09), max pain relief in measured resting pain: median 2 (IQR, 0–4) in the morphine group versus 0 (IQR, 0–2) in the FICB group (P < 0.01), Movement: median 3 (IQR, 1–4) in the FICB group versus 1 (IQR, 0–2) in the morphine group (P = 0.02). Higher

Graham et al., 2008 RCT 33 Age ≤ 75, Fractured hip (≥1 point on the Fossa score) Allergy or contraindication to morphine or bupivacaine, AMT score ≥ 9 3-in-1 FNB 15 IV-Morphine 18 VAS pain-score 30 min, 2h, 6h, 12h post-op. Immediate complications, Opioid consumption 24h post-op, Significant pre-op events. Pain scores: Wilcoxon and Mann-Whitney U tests Significant drop in pain scores for the nerve block group compared with the morphine group, there were no statistical differences between the median pain scores of the two groups at any other time.

Hwang et al., 2015 Single-Blinded RCT 131 Age ≥ 60, Radiographically proven femoral neck fracture Multiple trauma, Cancer-related fractures, Bilateral hip fractures, or previous fracture or surgery at the currently fractured side, Transferred from another hospital, Preoperating greater than 48 hours after fracture, History of substance abuse, Delirious, Not speak English, Spanish, or Russian, History of an allergy or adverse reaction to studied drugs, Blinding failures, unable to self-report their pain, Moderate cognitive impairment - score of 3 on the Callahan six item screening tool, 48 US-Guided FNB (single injection) followed by CFICB 32 Standard care (IV and Oral analgesics) 81 NRS pain at 1h, 2h post ED admission, pain at rest, transfers out of bed, walking on POD 3, distance walked in 2 mins on POD 3. Opioid consumption, Opioid related side effects, Physical therapy sessions missed or shortened, FIM locomotion scores 6 weeks after discharge Continuous variables: Student t-test, Categorical variables: Chi-square test, Two-sample t-tests, Categorical variables: Chi-square test, Tukey’s post hoc test. p Values were adjusted (q) using the Benjamini–Hochberg False Discovery Rate (FDR) procedure (Q = 0.05). Compared to controls, intervention patients had significantly less pain both at 1 hour (3.7 (95% CI 3.0, 4.5) versus 5.3 (95% CI 4.7, 6.1), p=.001, q=.003 (Figure 2) Pain scores on POD 3 also favored the intervention (Figure 3). Compared to control patients, patients in the intervention arm had significantly less pain at rest (1.8 (95% CI .9,1.9) versus 2.9 (95% CI 2.3, 3.6), p=.005, q=.003), with transfers (4.7 (95% CI 4.1, 5.3) versus 5.9 (95% CI 5.2, 6.6), p=.005, q=.003), and with walking (4.1 (95% CI 3.5, 4.8) versus 5.6 (95% CI 4.8, 6.4), p=.002, q=.002).

Ma et al., 2018 Single-Blinded RCT 88 Hip fracture diagnosed by x-ray, Age ≥ 65, Complication by at least one (CVS, Neurological, Pulmonary disease), ASA III-IV More than one fracture, Allergy to drugs used in study, Infection at FICB puncture site, Peripheral neuropathy, Contraindication of intraspinal block, Renal insufficiency, Dementia, Pre-op waiting time 5+ days, Refused to participate in study FICB 44 Traditional Analgesia (Tramadol and Paracetamol) 44 VAS pain pre-op - 4h post-op. Adverse effects, Complications: CVS, pulmonary, Adverse effects waiting time, LOS, Mortality during hospitalization Continuous variables: Student t-test, Categorical variables: Chi-square test, Inter-group differences in VAS scores: two-way repeated ANOVA with Bonferroni post hoc test VAS pain at rest scores were lower in the study group compared with the control group. (P=0.023) in the morning of surgery, l/h following analgesia at time of admission (p<0.05), and morning of surgery (p=0.05). Patient satisfaction with analgesia:

Newman et al., 2013 RCT 107 Isolated femoral neck fracture, Min on-op score 3 score ≤ 10 Patient refusal, Complication disorders, Allergy to studied drugs, Previous femoral vascular surgery FNB 51 FICB 56 VAS pain immediately before and 2h after block VAS pain immediately before and 2h after block Comparison between groups: Independent samples t-test. Multiple regression Reduction in the mean VAS pain score was 0.9 (95% CI 0.1–1.8) greater in the FNB group compared with the FICB group (p=0.047).

Favours FNB - analgesic efficacy over placebo

Favours FNB for analgesia
Nie et al., 2015

| RCT | 104 | Hip fracture surgery | Neuropathy of lower extremities, bladder dysfunction, Cough apathy, Allergy to drugs used, Uncooperative, Psychological disorder, Cognitive disorder | PCB | 51 | IV-fentanyl (patient-controlled) | 55 | NRS pain score at 2, 4, 6, 8, 12, 24 h and 48 h after analgesia was started. Delirium, postoperative nausea and vomiting (PONV), and pruritus | ANOVA: Chi-square test, post hoc test: Newman-Keuls test, P<0.05 | Patients in the PCB group reported less pain than those in the PCA group (P<0.05; d=0.3). The change in pain scores over time was similar between the two groups | Favour PCB for analgesia |

Flaschi et al., 2019

| Double-Blinded RCT | 30 | Age >70, admitted to emergency with hip fracture | Femoral fracture, Polyneuropathy, Weight <40 kg, Chronic pain condition, Chemotherapy, infection at injection site, Allergy to local anesthetics, Cognitive disorder | PCB | 15 | Placebo (Sham injection, saline) | 15 | NRS pain score at rest within 45 minutes post-op. NRS pain score on movement 4h, 8h, 12h, and 24h post-op. Total opioid (morphine) consumption at 24h post-op | ANOVA, Chi-square test, post hoc test: Newman-Keuls test, P<0.05 | Continuous variables: Wilcoxon-Mann-Whitney rank sum test, Discrete variables: Pearson’s chi-squared test, NRS analysed using linear mixed models with a random effect, Difference between groups: Wald test, p<0.05 | FICB had lower mean pain score at rest than control group (difference: μ=−2.9, 95%CI [−2.4, 0.5]), p<0.05 | No statistically significant difference between groups |

Rowlands et al, 2018

| RCT | 111 | participants aged 70 years and over admitted directly to the Emergency Department (ED) of Queen’s Medical Centre, Nottingham University Hospitals NHS Trust, UK | >18 Xray confirmed hip fracture | Femoral Block | 83 | FICB single shot | 79 | Pain 100mm VAS 60 minutes after the block | Analgesia at timepoints; analgesic consumption | Not stated | 38 (25) vs 36 (25) to 10.8 | p = 0.44 | No difference between groups |

Favours FICB for analgesia.

Nie et al., 2015

RCT 104 Hip fracture surgery Neuropathy of lower extremities, bladder dysfunction, Cough apathy, Allergy to drugs used, Uncooperative, Psychological disorder, Cognitive disorder PCB 51 IV-fentanyl (patient-controlled) 55 NRS pain score at 2, 4, 6, 8, 12, 24 h and 48 h after analgesia was started. Delirium, postoperative nausea and vomiting (PONV), and pruritus ANOVA: Chi-square test, post hoc test: Newman-Keuls test, P<0.05 Patients in the PCB group reported less pain than those in the PCA group (P<0.05; d=0.3). The change in pain scores over time was similar between the two groups Favour PCB for analgesia.

Flaschi et al., 2019

Double-Blinded RCT 30 Age >70, admitted to emergency with hip fracture Femoral fracture, Polyneuropathy, Weight <40 kg, Chronic pain condition, Chemotherapy, infection at injection site, Allergy to local anesthetics, Cognitive disorder PCB 15 Placebo (Sham injection, saline) 15 NRS pain score at rest within 45 minutes post-op. NRS pain score on movement 4h, 8h, 12h, and 24h post-op. Total opioid (morphine) consumption at 24h post-op ANOVA, Chi-square test, post hoc test: Newman-Keuls test, P<0.05 Continuous variables: Wilcoxon-Mann-Whitney rank sum test, Discrete variables: Pearson’s chi-squared test, NRS analysed using linear mixed models with a random effect, Difference between groups: Wald test, p<0.05 FICB had lower mean pain score at rest than control group (difference: μ=−2.9, 95%CI [−2.4, 0.5]), p<0.05 No statistically significant difference between groups.

Rowlands et al, 2018

RCT 111 participants aged 70 years and over admitted directly to the Emergency Department (ED) of Queen’s Medical Centre, Nottingham University Hospitals NHS Trust, UK >18 Xray confirmed hip fracture Femoral Block 83 Femoral nerve block 35 Refers to the included femoral nerve block, contralateral femoral nerve block and PCA, regular femoral nerve block or glucocorticoid therapy, alcohol or substance abuse, documented medical history adverse reactions to morphine, restrictions to their postoperative mobilization or already participating in another clinical trial and participants, who in the opinion of the investigator, had any condition which could adversely affect the study Continuous femoral nerve block 56 Cumulative dynamic pain score over 3 days (0–30), cumulative ambulatory score over 3 days (0–18) Secondary outcome measures were: pain scores in the first 180 minutes following randomization; pain scores at rest; presence of side effects (nausea and constipation); caloric and protein intake; quality of life (measured by EuroQOL 5D score (EQ-5D) (https://euroqol.org/)) at day 3 and day 30; length of acute hospital stay and rehabilitation outcome (measured by mobility score, at the time of discharge). Comparison of CAS and cumulative pain scores was performed using Mann-Whitney U test. Secondary outcome variables were compared using the independent samples t-test for continuous outcomes or the Mann-Whitney U test if assumptions for using the t-test were not satisfied after appropriate transformations of the data had been applied. Binary and Cumulated Ambulation Score 7.41 (3.70) 6 (5–9) 7.51 (3.25) 7 (5–10) Cumulative Dynamic Pain Score 19.4 (6.29) 20 (15–23) 18.67 (5.97) 19.5 (14.5–23) 0.51 No difference between groups.
<table>
<thead>
<tr>
<th>Study</th>
<th>Study Type</th>
<th>Sample Size</th>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
<th>Intervention</th>
<th>Pain Assessment</th>
<th>Statistical Analysis</th>
<th>Findings</th>
</tr>
</thead>
</table>
| Szucs et al, 2010 | RCT | 24 | Fractured neck of femur, American Society of Anesthesiologists (ASA) Class I-III and aged above 50 years | Exclusion criteria included patient refusal, the presence of more than one fracture, Mini-Mental Score < 22 [6], coagulation disorders, head injury, loss of consciousness, 10 mg or more morphine administration pre-hospital, morphine or pethidine, skin lesions/infection at block site, and renal dysfunction. | Continuous femoral nerve block | Visual analogue scores for pain were measured at rest and passive movement at recruitment, 30 minutes after recruitment and 6 hourly for the next 72 hours. Passive movement was defined as 30 degree flexion of thigh. Pain on positioning for spinal anaesthesia was also recorded. Pain on positioning for spinal anaesthesia was also recorded. | Statistical analysis was performed using EpilInfo™ 2002 (Centers for Disease Control and Prevention) statistics software. Quantitative data were analyzed using ANOVA or Fisher’s Exact test. Categorical data were examined by Kruskal-Wallis test. | VAS pain scores for the fractured limb 30.7(23.4) vs 67.0(32.3) mm, p = 0.004)
| Unneby et al, 2017 | RCT | 266 | Aged 70 years with radiographically verified hip fracture | Exclusion criteria were infection or previous vascular surgery in the inginal area. | Femoral Block | Visual analogue scores for pain were measured at rest and passive movement at recruitment, 30 minutes after recruitment and 6 hourly for the next 72 hours. | Student’s t-test and the chi-squared test were used to analyze differences in baseline characteristics and opioid consumption between the intervention and control groups. Subgroup analyses were performed with data from patients diagnosed with dementia. The Mann–Whitney U test was used. | VAS pain scores, opioid consumption

CCA-BY 4.0 International license
It is made available under a is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review) The copyright holder for this preprint this version posted June 23, 2022. doi: 10.1101/2022.06.22.22276758

medRxiv preprint
<table>
<thead>
<tr>
<th>Author(s) et al., 2019</th>
<th>RCT</th>
<th>127</th>
<th>Inclusion criteria: 1) a radiographically confirmed hip fracture; 2) age >64 years; 3) Faciona Ilisca. Compartent Block administered within 1 h of admission to hospital. The exclusion criteria were: 1) refusal to participate; 2) more than one fracture; 3) trauma more than 12 h before inclusion; 4) hyporesponsitivity to local anaesthetics; 5) infection in the injection area; 6) neuro-vascular problems in the affected leg; 7) unable to receive FICB within the inclusion time frame and 8) patients assessed as at risk of complications from the FICB due to health status.</th>
<th>Compare differences in VAS pain scores between groups. Wilcoxon matched-pairs signed-rank tests and Friedman analysis of variance were used to compare differences in pain scores across two or more timepoints.</th>
<th>Pain score 66 saline placebo</th>
<th>61</th>
<th>Change in 10-point VAS 2 hours following block</th>
<th>Mann-Whitney U test was used for continuous variables, the Mantel- Haenszel chi-square test was used for ordinal categorical variables, Fisher’s exact test was used for dichotomous variables and the Pearson chi-square test.</th>
<th>1 (1.9) vs 0.5 (2.8) p = 0.002</th>
<th>Favour FICB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wennberg et al., 2019</td>
<td>RCT</td>
<td>127</td>
<td>Inclusion criteria were: 1) a radiographically confirmed hip fracture; 2) age >64 years; 3) Faciona Ilisca. Compartent Block administered within 1 h of admission to hospital. The exclusion criteria were: 1) refusal to participate; 2) more than one fracture; 3) trauma more than 12 h before inclusion; 4) hyporesponsitivity to local anaesthetics; 5) infection in the injection area; 6) neuro-vascular problems in the affected leg; 7) unable to receive FICB within the inclusion time frame and 8) patients assessed as at risk of complications from the FICB due to health status.</td>
<td>Compare differences in VAS pain scores between groups. Wilcoxon matched-pairs signed-rank tests and Friedman analysis of variance were used to compare differences in pain scores across two or more timepoints.</td>
<td>Pain score 66 saline placebo</td>
<td>61</td>
<td>Change in 10-point VAS 2 hours following block</td>
<td>Mann-Whitney U test was used for continuous variables, the Mantel- Haenszel chi-square test was used for ordinal categorical variables, Fisher’s exact test was used for dichotomous variables and the Pearson chi-square test.</td>
<td>1 (1.9) vs 0.5 (2.8) p = 0.002</td>
<td>Favour FICB</td>
</tr>
<tr>
<td>Yamamoto et al., 2020</td>
<td>RCT</td>
<td>33</td>
<td>Inclusion criteria: age over 50 years, the ability to provide written informed consent and stand on their own before the fracture, American Society of Anesthesiolo- gists physical status I-II, and planned surgery for proximal hip fractures under spinal anaesthesia. Exclusion criteria: 1) refusal to participate; 2) more than one fracture; 3) trauma more than 12 h before inclusion; 4) hyporesponsitivity to local anaesthetics; 5) infection in the injection area; 6) neuro-vascular problems in the affected leg; 7) unable to receive FICB within the inclusion time frame and 8) patients assessed as at risk of complications from the FICB due to health status.</td>
<td>Mann-Whitney U test was used for continuous variables, the Mantel- Haenszel chi-square test was used for ordinal categorical variables, Fisher’s exact test was used for dichotomous variables and the Pearson chi-square test.</td>
<td>Pain score 25 intravenous acetaminophen q6h</td>
<td>28</td>
<td>Change in 10-point VAS Pain on movement @ 24 hrs</td>
<td>Mann-Whitney U test was used for continuous variables, the Mantel- Haenszel chi-square test was used for ordinal categorical variables, Fisher’s exact test was used for dichotomous variables and the Pearson chi-square test.</td>
<td>20 (10-30) vs 40 (30-53) p < 0.01 Favour FICB</td>
<td></td>
</tr>
<tr>
<td>Yun et al., 2009</td>
<td>Single-Blinded RCT</td>
<td>40</td>
<td>Inclusion criteria: Age 62-88, ASA I-III, Femoral neck fracture (isolated). Exclusion criteria: 1) allergy to drugs used, hemorrhagic diathesis, peripheral neuropathy, mental disorders; 2) contraindication to drugs used, pain caused by comorbidities, mental illness, analgesia.</td>
<td>Compare differences in VAS pain scores between groups. Wilcoxon matched-pairs signed-rank tests and Friedman analysis of variance were used to compare differences in pain scores across two or more timepoints.</td>
<td>Pain score 20 IV-fentanyl</td>
<td>20</td>
<td>Change in 10-point VAS Pain on movement @ 24 hrs</td>
<td>Mann-Whitney U test was used for continuous variables, the Mantel- Haenszel chi-square test was used for ordinal categorical variables, Fisher’s exact test was used for dichotomous variables and the Pearson chi-square test.</td>
<td>20 (10-30) vs 40 (30-53) p < 0.01 Favour FICB</td>
<td></td>
</tr>
<tr>
<td>Zhou et al., 2019</td>
<td>Double-Blinded RCT</td>
<td>154</td>
<td>Inclusion criteria: Age 65+, Hip fracture surgery within 48 h of admission, VAS >40 on admission. Exclusion criteria: 1) allergy to drugs used, hemorrhagic diathesis, peripheral neuropathy, mental disorders; 2) contraindication to drugs used, pain caused by comorbidities, mental illness, analgesia.</td>
<td>Mann-Whitney U test was used for continuous variables, the Mantel- Haenszel chi-square test was used for ordinal categorical variables, Fisher’s exact test was used for dichotomous variables and the Pearson chi-square test.</td>
<td>Pain score 77 PNB</td>
<td>77</td>
<td>Change in 10-point VAS Pain at rest and during exercise immediately before and 30 min after</td>
<td>Mann-Whitney U test was used for continuous variables, the Mantel- Haenszel chi-square test was used for ordinal categorical variables, Fisher’s exact test was used for dichotomous variables and the Pearson chi-square test.</td>
<td>20 (10-30) vs 40 (30-53) p < 0.01 Favour FICB</td>
<td></td>
</tr>
</tbody>
</table>
used within 24 h before hip fracture, block, 1 day after admission, 2nd day after admission paired-samples t-test, Difference between groups: Mann-Whitney U test, Numerical data: Fisher's exact test, P-value were 62 ±14 compared with 69±12 (P=0.001), and the VAS scores in the FONB group were significantly lower than in the FICB group, 30 minutes after nerve blocking. Also, the resting VAS scores in the FONB group and the FICB group were 26±10 and 31±7 (P=0.001) and the exercising VAS scores in the FONB group and the FICB group were 44±13 and 52±13 (P<0.01), which were significantly lower in the FONB group compared with the FICB group on the first day after nerve blocking. However, no statistically significant differences were detected for the resting VAS scores in the FONB group and the FICB group, which were 34±9 and 35±8 (P=0.601) and on exercising, which were 51±16 and 52±13 (P=0.642) at two days after nerve blocking.
Risk of bias in included studies

Based on criteria adapted from the Cochrane ‘Risk of Bias’ assessment tool, nine of the included randomised controlled trials[12, 16, 38, 47, 62, 65, 82, 85, 86] were rated with overall low risk of bias, eleven studies had some concerns according to RoB 2[14, 20, 23, 28, 34, 59, 60, 66, 72, 77, 83], and five studies were rated as high risk of bias[27, 33, 51, 74, 80]. These findings are summarized in Table 2. Of the papers with some concern for risk of bias, five had issues with the randomisation process[14, 20, 23, 28, 77], two had deviations from the intended interventions[14, 57], eight had issues with measurement of the outcome[23, 34, 59, 60, 66, 72, 77, 83]. Of the papers with high risk of bias, three had issues with; the (i) randomization process, had (ii) deviations from the intended interventions, and had issues with the (iii) outcome measurement[27, 74, 80], one had issues with the randomization process and measurement of the outcome[33], and one had deviations from the intended interventions as well as issues with the measurement of outcome[51]. None of the papers had missing outcome data, loss to follow-up >15%, or issues with selection of the reported result. The five papers with high risk of bias according to the RoB 2 tool were excluded from the meta-analysis. Thus, twenty articles were included in the meta-analysis.

Table 2 Risk of bias within studies based on criteria adapted from the Cochrane ‘Risk of Bias’ assessment tool.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Randomization process</th>
<th>Deviations from intended interventions</th>
<th>Missing outcome data</th>
<th>Measurement of the outcome</th>
<th>Selection of the reported result</th>
<th>Overall Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aprato et al., 2018</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Beaudoin et al., 2013</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Chaudet et al., 2015</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Cooper et al., 2019</td>
<td>Some concerns</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Some concerns</td>
</tr>
<tr>
<td>Deniz et al., 2014</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Some concerns</td>
<td>Low</td>
<td>Some concerns</td>
</tr>
<tr>
<td>Fletcher et al., 2003</td>
<td>Some concerns</td>
<td>Low</td>
<td>Low</td>
<td>Some concerns</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Foss et al., 2007</td>
<td>Some concerns</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Some concerns</td>
</tr>
<tr>
<td>Gille et al., 2006</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Some concerns</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Graham et al., 2008</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Some concerns</td>
<td>Low</td>
<td>Some concerns</td>
</tr>
<tr>
<td>Hwang et al., 2015</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Ma et al., 2018</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Mostafa et al., 2018</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Newman et al., 2013</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Some concerns</td>
<td>Low</td>
<td>Some concerns</td>
</tr>
<tr>
<td>Nie et al., 2015</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Some concerns</td>
<td>Low</td>
<td>Some concerns</td>
</tr>
<tr>
<td>Pasquier et al., 2019</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Reavley et al 2014</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Rowlands et al 2018</td>
<td>Low</td>
<td>Some concerns</td>
<td>Low</td>
<td>Some concerns</td>
<td>Low</td>
<td>Some concerns</td>
</tr>
<tr>
<td>Szucs et al 2010</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Some concerns</td>
<td>Low</td>
<td>Some concerns</td>
</tr>
<tr>
<td>Temelkovska-Stevanovska et</td>
<td>High</td>
<td>Some concerns</td>
<td>Low</td>
<td>Some concerns</td>
<td>Low</td>
<td>High</td>
</tr>
</tbody>
</table>
Results of individual studies

In the meta-analysis of the seven studies comparing the analgesic efficacy of FICB compared with Opioids, there was a statistically significant difference between the groups at rest at 24 hours and on movement at 12 hours as shown in Table 3. Data for pain scores at rest at 24 hours in this group were derived from three studies out of the seven as shown in Figure 1. Compared with opioids at rest at 24 hours, FICB had a greater analgesic effect with an SMD (standardized mean difference) of -0.79 (95% CI; -1.34, -0.24) (P = 0.005) (Z = 2.83) (heterogeneity: tau² = 0.09, Chi² = 3.23, df = 2, P = 0.20, I² = 38%). Data for pain scores on movement at 12 hours in this group were derived from two studies out of the seven as shown in Figure 2. Compared with opioids on movement at 12 hours, FICB had a greater analgesic effect with an SMD (standardized mean difference) of -1.91 (95% CI; -2.52, -1.30) (P < 0.00001) (Z = 6.18) (heterogeneity: tau² = 0.00, Chi² = 1.00, df = 1, P = 0.32, I² = 0%).

In the meta-analysis of the seven studies comparing the analgesic efficacy of FNB compared with Opioids, there was a statistically significant difference between the groups initially at rest following the block as shown in Table 4. Data for pain scores at rest following the block in this group were derived from five studies out of the seven as shown in Figure 3. Compared with opioids at rest following the block, FICB had a greater analgesic effect with an SMD (standardized mean difference) of -0.58 (95% CI; -1.04, -0.12) (P = 0.01) (Z = 2.49) (heterogeneity: tau² = 0.19, Chi² = 16.46, df = 4, P = 0.002, I² = 76%).

In the meta-analysis of the five studies comparing the analgesic efficacy of FICB compared with FNB, there was a statistically significant difference between the groups on movement initially following the block and on movement at 24 hours as shown in Table 5. Data for pain scores on movement initially following the block in this group were derived from one study out of the five as shown in Figure 4. Compared with FICB on movement initially following the block, FNB had a greater analgesic effect with an SMD (standardized mean difference) of 0.53 (95% CI; 0.21, 0.86) (P = 0.001) (Z = 3.26) (heterogeneity: not applicable). Data for pain scores on movement at 24 hours in this group were derived from one study out of the five as shown in Figure 5. Compared with FICB on movement at 24 hours, FNB had a greater analgesic effect with an SMD (standardized mean difference) of 0.61 (95% CI; 0.29, 0.94) (P < 0.002) (Z = 3.71) (heterogeneity: not applicable).

Forest plots for the studies with statistically significant findings can be found in Figures 6-9.

Table 3 Fascia iliaca compartment block vs. Opioids

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Number of Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Pain Scores at</td>
<td>7</td>
<td>285</td>
<td>Std. Mean Difference</td>
<td>0.05 [-0.78, 0.88]</td>
</tr>
<tr>
<td>Rest Following Block</td>
<td></td>
<td>(IV, Random, 95% CI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>----------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Pain Scores at Rest at 12 Hours</td>
<td>7</td>
<td>67</td>
<td>Std. Mean Difference (IV, Random, 95% CI)</td>
<td>-1.29 [-2.93, 0.35]</td>
</tr>
<tr>
<td>Pain Scores at Rest at 24 Hours</td>
<td>7</td>
<td>105</td>
<td>Std. Mean Difference (IV, Random, 95% CI)</td>
<td>-0.79 [-1.34, -0.24]</td>
</tr>
<tr>
<td>Initial Pain Scores on Movement Following Block</td>
<td>7</td>
<td>245</td>
<td>Std. Mean Difference (IV, Random, 95% CI)</td>
<td>-0.87 [-3.12, 1.37]</td>
</tr>
<tr>
<td>Pain Scores on Movement at 12 Hours</td>
<td>7</td>
<td>64</td>
<td>Std. Mean Difference (IV, Random, 95% CI)</td>
<td>-1.91 [-2.52, -1.30]</td>
</tr>
<tr>
<td>Pain Scores on Movement at 24 Hours</td>
<td>7</td>
<td>64</td>
<td>Std. Mean Difference (IV, Random, 95% CI)</td>
<td>-2.01 [-5.27, 1.26]</td>
</tr>
</tbody>
</table>

Table 4 Femoral nerve block vs. Opioids

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Number of Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Pain Scores at Rest Following Block</td>
<td>7</td>
<td>388</td>
<td>Std. Mean Difference (IV, Random, 95% CI)</td>
<td>-0.58 [-1.04, -0.12]</td>
</tr>
<tr>
<td>Pain Scores at Rest at 12 Hours</td>
<td>7</td>
<td>64</td>
<td>Std. Mean Difference (IV, Random, 95% CI)</td>
<td>-0.47 [-0.97, 0.03]</td>
</tr>
<tr>
<td>Pain Scores at Rest at 24 Hours</td>
<td>7</td>
<td>55</td>
<td>Std. Mean Difference (IV, Random, 95% CI)</td>
<td>-0.28 [-0.81, 0.25]</td>
</tr>
<tr>
<td>Initial Pain Scores on Movement Following Block</td>
<td>7</td>
<td>111</td>
<td>Std. Mean Difference (IV, Random, 95% CI)</td>
<td>-0.37 [-0.74, 0.01]</td>
</tr>
<tr>
<td>Pain Scores on Movement at 12 Hours</td>
<td>7</td>
<td>0</td>
<td>Std. Mean Difference (IV, Random, 95% CI)</td>
<td>Not estimable</td>
</tr>
<tr>
<td>Pain Scores on Movement at 24 Hours</td>
<td>7</td>
<td>0</td>
<td>Std. Mean Difference (IV, Random, 95% CI)</td>
<td>Not estimable</td>
</tr>
</tbody>
</table>

Table 5 Fascia iliaca compartment block vs. Femoral nerve block

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Number of Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Pain Scores at Rest Following Block</td>
<td>5</td>
<td>523</td>
<td>Std. Mean Difference (IV, Random, 95% CI)</td>
<td>0.07 [-0.22, 0.35]</td>
</tr>
<tr>
<td>Pain Scores at Rest at 12 Hours</td>
<td>5</td>
<td>0</td>
<td>Std. Mean Difference (IV, Random, 95% CI)</td>
<td>Not estimable</td>
</tr>
<tr>
<td>Pain Scores at Rest at 24 Hours</td>
<td>5</td>
<td>154</td>
<td>Std. Mean Difference (IV, Random, 95% CI)</td>
<td>0.10 [-0.22, 0.42]</td>
</tr>
<tr>
<td>Initial Pain Scores on Movement Following Block</td>
<td>5</td>
<td>154</td>
<td>Std. Mean Difference (IV, Random, 95% CI)</td>
<td>0.53 [0.21, 0.86]</td>
</tr>
<tr>
<td>Pain Scores on Movement at 12 Hours</td>
<td>5</td>
<td>0</td>
<td>Std. Mean Difference (IV, Random, 95% CI)</td>
<td>Not estimable</td>
</tr>
<tr>
<td>Pain Scores on Movement at 24 Hours</td>
<td>5</td>
<td>154</td>
<td>Std. Mean Difference (IV, Random, 95% CI)</td>
<td>0.61 [0.29, 0.94]</td>
</tr>
</tbody>
</table>
DISCUSSION

Summary of main results
This systematic review and meta-analysis demonstrated that FNB had a superior analgesic effect compared with FICB, and both FNB and FICB had superior analgesic effect compared with opioids.

Of the twenty studies included in the meta-analysis, 7 studies compared FICB with opioids. Pain scores at rest at 24 hours (-0.79 [-1.34, -0.24], P= 0.005), and on movement at 12 hours post hip-fracture surgery (-1.91 [-2.5, -1.3], P< 0.00001) were lower in the FICB group compared with the opioid group. However, there was no statistically significant difference between the use of FICB versus opioids in analgesic efficacy measured by pain (VAS, NRS) scores after hip fracture surgery in patients initially at rest following the block, at rest at 12 hours, initial pain scores on movement following the block, or on movement at 24 hours.

An additional seven studies compared FNB with opioids. The initial pain scores at rest were lower in the FNB group (-0.58 [-0.104, -0.12], P= 0.01). However, there was no statistically significant difference between the use of FNB versus opioids in analgesic efficacy after hip fracture surgery in patients at rest at 12 hours, 24 hours, or when comparing initial pain scores on movement following the block. There was insufficient data for pain scores on movement at 12 hours, and 24 hours.

Finally, five studies compared FNB with FICB. Pain scores on movement initially following the block, and at 24 hours were lower in the FNB group when compared with FICB (initial: 0.53 [0.21, 0.86], P= 0.001, 24 h: 0.61 [0.29, 0.94], P= 0.0002). However, there was no statistically significant difference between the groups for pain scores at rest. There was insufficient data for pain scores at rest at 12 hours, and pain scores on movement at 12 hours.

The remaining study compared the analgesic efficacy of FICB with intra-articular hip injection (IAHI) as control[12]. The primary outcome was pain relief measured using the NRS at 20 minutes, 12 hours, 24 hours and 48 hours after the regional anaesthesia, both at rest and on movement. Pain was significantly lower in the IAHI group during movement of the fractured limb at 20 min (p < 0.05), 12h (p<0.05), 24h (p<0.05) and 48h (p<0.05). The findings of this study suggest that IAHI provides better pre-operative pain management in elder patients with intracapsular hip fractures compared to FICB.

Strengths and Limitations
The strengths of this study are that two independent reviewers decided the eligibility of the full-text articles and conducted the risk of bias assessment, and high risk of bias papers were not included in the meta-analysis. In addition, a full manual search was conducted to ensure no missing articles, and authors of the included papers were contacted for missing data. However, the limitations of this study were that filters were applied during the search, which set limits for the type of study, age, language, etc. Due to subgrouping, there were not enough studies to conduct funnel plots and rule out publication bias. The funnel plot might appear symmetrical, but the interpretation is unsure, with only five to seven studies per subgroup. In addition, the statistically significant results for the FICB vs. FNB subgroup were based on data from 1 paper.
AUTHORS' CONCLUSIONS

Implications for practice
Both femoral nerve block and fascia iliaca compartment block enhance analgesic outcomes following hip fracture and hip fracture surgery, superior to the use of systemic analgesics such as opioids. FNB may be more efficacious at reducing pain following hip fracture surgery when compared to FICB.

Implications for research
This paper was designed to include all forms of regional anaesthesia for the lumbar plexus and its terminal branches. In the end, there was only enough high quality randomized-controlled trials to answer the research questions for Femoral nerve block and Fascia Iliaca Compartment block. More research should be conducted on the analgesic efficacy of PCB and PENG block for hip fracture surgeries. That way, future systematic reviews and meta-analyses can effectively compare all the block types. Future studies should further focus on comparing the analgesic efficacy of FNB vs FICB with respect to hip fracture surgeries to see if evidence supports the superiority of FNB compared to FICB.

CONTRIBUTIONS OF AUTHORS
Conducted literature search and study selection: A.M.S.
Supervised literature search and study selection: B.O.D.
Performed data extraction and assessment of risk of bias: both authors.
Conducted meta-analysis: A.M.S.
Supervised meta-analysis: B.O.D.
Wrote manuscript: A.M.S.

DECLARATIONS OF INTEREST
The authors have no competing interest to declare.

DIFFERENCES BETWEEN PROTOCOL AND REVIEW
There were no differences between the protocol and review.

ACKNOWLEDGMENT
I would like to thank Dr. Brian O'Donnell for his contributions and guidance throughout this project.
REFERENCES

FIGURE LEGENDS

Figure 1 Forest plot of comparison: FICB vs. Opioids. Outcome: pain scores at rest at 24 hours.

Figure 2 Forest plot of comparison: FICB vs. Opioids. Outcome: pain scores on movement at 12 hours.

Figure 3 Forest plot comparison: FNB vs. Opioids. Outcome: initial pain scores at rest following block.

Figure 4 Forest plot comparison: FICB vs. FNB. Outcome: initial pain scores on movement following block.

Figure 5 Forest plot of comparison: FICB vs. FNB. Outcome: pain scores on movement at 24 hours.
Figure 6 Funnel plot of comparison: FICB vs. Opioids. Outcome: pain scores at rest at 24 hours.

Figure 7 Funnel plot of comparison: FICB vs. Opioids. Outcome: pain scores on movement at 12 hours.

Figure 8 Funnel plot of comparison: FNB vs. Opioids. Outcome: initial pain scores at rest following block.

Figure 9 Funnel plot comparison: FICB vs. FNB. Outcome: initial pain scores on movement following block.

Figure 10 Funnel plot of comparison: FICB vs. FNB. Outcome: pain scores on movement at 24 hours.
APPENDIX

Appendix A Timeline and description of regional anaesthesia approaches to the lumbar plexus and associated terminal branches.

3-in-1 Block (Anterior Lumbar Plexus Block)
Blockade of the femoral nerve obturator and lateral femoral cutaneous nerves are important for procedures above the knee. It was not possible without large number of injections and large volumes of local anesthetics before 1973 when Wintze and colleagues (97) proposed a way to block the femoral, lateral femoral cutaneous and obturator nerves with a single injection known as the 3-in-1 block.

In this technique, the needle is inserted 1 cm lateral to the femoral artery pulse, in the femoral crease below the inguinal crease. Local anaesthetic is injected below the fascia iliaca (98).

1973

Fascia Iliaca Block
An anterior approach to blocking the lumbar plexus was first described by Dulek and colleagues in 1989 (99).

In this technique, the needle is inserted 1 cm caudal to the junction of lateral 1/3 and medial 2/3 of a line between the anterior superior iliac spine and pubic tubercle. Local anaesthetic is injected onto the fascia iliac above the iliacus muscle, to ultimately block the femoral, lateral femoral cutaneous and obturator nerves (98).

1989

Psoas Compartment Block (Posterior Lumbar Plexus Block)
In 1974, the first posterior approach to blocking the lumbar plexus was described by Wintze and colleagues (98). Modifications over the years have led to the recent psoas compartment block by Cadaverini and colleagues (97) that blocks the femoral, lateral femoral cutaneous and obturator nerves as they run within the psoas major muscle.

In this technique, the needle is inserted 1.5 inches lateral to the L5 spinous process, injecting local anaesthetic into the psoas compartment about 2-2.5 inches deep (98).

1974

FENG (Periangular Nerve Group) Block
Most recent technique developed by Giron-Arango and colleagues in 2018 (93). This technique blocks the high articular branches of the femoral and accessory obturator nerves, not consistently blocked by the fascia iliaca or 3-in-1 block, which supply innervation to the anterior hip capsule, contributing to dynamic pain upon fracture of the neck of femur (94).

In this technique, a probe is placed in a transverse plane on the anterior inferior iliac spine and then aligned with the pubic ramus via a 45-degree rotation. Local anaesthetic is injected between the psoas tendon and pubic ramus in the fascial plane, about 4-6 cm deep (94).

2018
Appendix B Database search words and results.

<table>
<thead>
<tr>
<th>Database</th>
<th>Search Key</th>
<th>Number of Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMBASE</td>
<td>((‘hip fracture’/exp OR ‘hip fracture’ OR ‘fracture’/exp OR fracture) OR ‘hip surgery’/exp OR ‘hip surgery’ OR (‘hip’/exp OR ‘fracture’/exp OR ‘fracture’ OR ‘surgery’/exp OR ‘surgery’)) OR ‘femur fracture’/exp OR ‘femur fracture’ OR ((‘femur’/exp OR ‘femur’) AND (‘fracture’/exp OR fracture)) AND (‘lumbar plexus block’/exp OR ‘lumbar plexus block’ OR (‘lumbar’ AND (‘plexus’/exp OR ‘plexus’ AND block)) OR 3-in-1 block’ OR (3 in 1 AND block) OR ‘penc block’ OR (penc AND block) OR ‘pericapsular nerve group block’/exp OR ‘pericapsular nerve group block’ OR ‘nerve’/exp OR ‘nerve’ AND AND (‘group’/exp OR ‘group’) AND block) OR ‘fascia iliaca compartment block’/exp OR ‘fascia iliaca compartment block’ OR ((‘fascia’/exp OR ‘fascia’) AND ‘iliaca’ AND compartment AND block) OR ‘poas compartment block’/exp OR ‘poas compartment block’ OR (‘poas’ AND compartment AND block) AND ‘randomized controlled trial’/de AND ‘human’/de AND [english]/lim AND ((adult)/lim OR [aged]/lim OR [middle aged]/lim OR [very elderly]/lim) AND [article]/lim</td>
<td>175</td>
</tr>
<tr>
<td>SCOPUS</td>
<td>TITLE-ABS-KEY (hip AND fracture AND nerve AND block) AND (LIMIT-TO (SRCTYPE, ”j”)) AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO (LANGUAGE, “English”)) AND (LIMIT-TO (EXACTKEYWORD, “Randomized Controlled Trial”))</td>
<td>45</td>
</tr>
<tr>
<td>EBSCO: CINAHL, MEDLINE</td>
<td>(hip fracture AND nerve block) AND (RCT or randomized control trial or randomized controlled trial)</td>
<td>39</td>
</tr>
<tr>
<td>WEB OF SCIENCE</td>
<td>TOPIC: (Hip fracture AND nerve block)</td>
<td>41</td>
</tr>
<tr>
<td>COCHRANE LIBRARY</td>
<td>hip fracture AND nerve block in Title Abstract Keyword AND "randomized clinical trial" OR "randomized controlled trial" OR "randomized control trial" OR “RCT” in Title Abstract Keyword - (Word variations have been searched)</td>
<td>82</td>
</tr>
</tbody>
</table>

Total Articles: 439
Appendix C Inclusion and exclusion criteria used to select articles.

<table>
<thead>
<tr>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td></td>
</tr>
<tr>
<td>Randomized controlled trials</td>
<td>Articles unavailable in full text</td>
</tr>
<tr>
<td>Scheduled for hip fracture surgery</td>
<td>Unavailable in English</td>
</tr>
<tr>
<td>Intervention</td>
<td></td>
</tr>
<tr>
<td>3-in-1 block</td>
<td>Non-human studies</td>
</tr>
<tr>
<td>PENG block</td>
<td>Include ages <18 years old</td>
</tr>
<tr>
<td>Fascia iliaca compartment block (FICB)</td>
<td>Conference proceedings</td>
</tr>
<tr>
<td>Psoas compartment block (PCB)</td>
<td>Systematic reviews</td>
</tr>
<tr>
<td>Continuous catheter infusion</td>
<td>Narrative reviews</td>
</tr>
<tr>
<td>Single dose</td>
<td>Meta-analyses</td>
</tr>
<tr>
<td>Any dose or form of local anaesthetic to accompany technique</td>
<td>Surgery unrelated to hip</td>
</tr>
<tr>
<td>Comparison</td>
<td></td>
</tr>
<tr>
<td>Interventions of interest compared to each other</td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td></td>
</tr>
<tr>
<td>Non-intervention</td>
<td></td>
</tr>
<tr>
<td>Opioids (any)</td>
<td></td>
</tr>
<tr>
<td>NSAIDs (any)</td>
<td></td>
</tr>
<tr>
<td>Paracetamol</td>
<td></td>
</tr>
<tr>
<td>Outcome: Analgesic Efficacy</td>
<td></td>
</tr>
<tr>
<td>Numeric Pain Rating Scale (NRS)</td>
<td></td>
</tr>
<tr>
<td>Visual Analogue Scale (VAS)</td>
<td></td>
</tr>
<tr>
<td>Pre-operative and/or post-operative need for analgesia</td>
<td></td>
</tr>
<tr>
<td>Time to first request for additional analgesia</td>
<td></td>
</tr>
<tr>
<td>Adverse effects</td>
<td></td>
</tr>
<tr>
<td>Allergic reactions</td>
<td></td>
</tr>
<tr>
<td>Length of hospital stay</td>
<td></td>
</tr>
<tr>
<td>Mortality</td>
<td></td>
</tr>
</tbody>
</table>
Appendix D Overview of research protocol and study selection process.

Research Question
The Anxiode Effect of Different Techniques Surrounding Regional Anesthesia of the Lumbar Plexus and Its Terminal Branches for Hip Fracture Surgeries

Preliminary Search

Summarize Study Idea

Set Inclusion and Exclusion Criteria

Search Databases:
EMBASE (n = 175), PUBMED (n = 27), SCOPUS (n = 43), ESCOC: CINHAL + MEDIATE (n = 39), WEB OF SCIENCE (n = 42), COCHRANE LIBRARY (n = 82)

Total = 459 Articles

Remove Duplicates

123 Articles

316 Articles

Review Abstract for Eligibility

246 Articles

70 Articles

Review Full Text

45 Articles

25 Articles

5 High-Risk of Bias Articles

20 Articles

Manual Search
(Citations, Related Articles on PubMed)

0 Articles

20 Articles
<table>
<thead>
<tr>
<th>Section and Topic</th>
<th>Item #</th>
<th>Checklist Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>1</td>
<td>Identify the report as a systematic review.</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>2</td>
<td>See the PRISMA 2020 for Abstracts checklist.</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rationale</td>
<td>3</td>
<td>Describe the rationale for the review in the context of existing knowledge.</td>
</tr>
<tr>
<td>Objectives</td>
<td>4</td>
<td>Provide an explicit statement of the objective(s) or question(s) the review addresses.</td>
</tr>
<tr>
<td>METHODS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eligibility criteria</td>
<td>5</td>
<td>Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.</td>
</tr>
<tr>
<td>Information sources</td>
<td>6</td>
<td>Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.</td>
</tr>
<tr>
<td>Search strategy</td>
<td>7</td>
<td>Present the full search strategies for all databases, registers and websites, including any filters and limits used.</td>
</tr>
<tr>
<td>Selection process</td>
<td>8</td>
<td>Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.</td>
</tr>
<tr>
<td>Data collection process</td>
<td>9</td>
<td>Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.</td>
</tr>
<tr>
<td>Data items</td>
<td>10a</td>
<td>List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.</td>
</tr>
<tr>
<td></td>
<td>10b</td>
<td>List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.</td>
</tr>
<tr>
<td>Study risk of bias assessment</td>
<td>11</td>
<td>Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.</td>
</tr>
<tr>
<td>Effect measures</td>
<td>12</td>
<td>Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.</td>
</tr>
<tr>
<td>Synthesis methods</td>
<td>13a</td>
<td>Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).</td>
</tr>
<tr>
<td></td>
<td>13b</td>
<td>Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.</td>
</tr>
<tr>
<td></td>
<td>13c</td>
<td>Describe any methods used to tabulate or visually display results of individual studies and syntheses.</td>
</tr>
</tbody>
</table>
RESULTS

Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.
Study characteristics	17	Cite each included study and present its characteristics.
Risk of bias in studies	18	Present assessments of risk of bias for each included study.
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.
Results of syntheses	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.
	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.
	20c	Present results of all investigations of possible causes of heterogeneity among study results.
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.

DISCUSSION

Discussion	23a	Provide a general interpretation of the results in the context of other evidence.
	23b	Discuss any limitations of the evidence included in the review.
	23c	Discuss any limitations of the review processes used.
	23d	Discuss implications of the results for practice, policy, and future research.

OTHER INFORMATION

<p>| Registration and protocol | 24a | Provide registration information for the review, including register name and registration number, or state that the review was not registered. |
| | 24b | Indicate where the review protocol can be accessed, or state that a protocol was not prepared. |</p>
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24c</td>
<td>Describe and explain any amendments to information provided at registration or in the protocol.</td>
</tr>
<tr>
<td>Support</td>
<td>Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.</td>
</tr>
<tr>
<td>Competing interests</td>
<td>Declare any competing interests of review authors.</td>
</tr>
<tr>
<td>Availability of data, code and other materials</td>
<td>Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.</td>
</tr>
</tbody>
</table>