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Summary

Differential host responses in coronavirus disease 2019 (COVID-19) and multisystem inflammatory
syndrome in children (MIS-C) remain poorly characterized. Here we use next-generation sequencing to
longitudinally analyze blood samples from pediatric patients with acute COVID-19 (n=70) or MIS-C (n=141)
across three hospitals. Profiling of plasma cell-free nucleic acids uncovers distinct signatures of cell injury and
death between these two disease states, with increased heterogeneity and multi-organ involvement in MIS-C
encompassing diverse cell types such as endothelial and neuronal Schwann cells. Whole blood RNA profiling
reveals upregulation of similar pro-inflammatory signaling pathways in COVID-19 and MIS-C, but also MIS-C
specific downregulation of T cell-associated pathways. Profiling of plasma cell-free RNA and whole blood RNA
in paired samples vyields different yet complementary signatures for each disease state. Our work provides a
systems-level, multi-analyte view of immune responses and tissue damage in COVID-19 and MIS-C and
informs the future development of new disease biomarkers.

INTRODUCTION
At the onset of the coronavirus disease 2019 (COVID-19) pandemic, SARS-CoV-2 was thought to only
cause mild or asymptomatic infection in children. Large-scale surveillance studies have since demonstrated
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targeted interventions, particularly as new variants of
SARS-CoV-2 continue to emerge. Figure 1. Study design and patient characteristics.

Initial characterization by proteomics and RNA (A) Sample collection and processing overview. (B)

sequencing revealed that IS'C has an inflammatory DTN S samples actose enaytes (O
profile similar to KD and severe COVID-19, with key group.
differences, including specific increases in IFNy, IL-6, IL-
17, IL-10, alarmin-related proteins, and other proinflammatory factors®™*!. Autoantibody profiling revealed a
unique autoantigen profile targeting organs often injured during MIS-C, but the damage to the organs and
tissues has not yet been quantified on a system-wide level*?. Immune cell profiling showed that MIS-C is
associated with an expansion of specific subsets of NK cells, T cells, and B cells’®**, and gene expression
profiling showed that a high fraction (~24%) of T cells in patients with MIS-C are T cell receptor beta variable
11-2 (TRBV11-2) positive’*™. T cell receptor repertoire analyses have led to the hypothesis that the SARS-
CoV-2 spike protein has a superantigen effect, causing T cell dysregulation that contributes to the development
of MIS-C*°. Finally, flow cytometry analyses have demonstrated that children with MIS-C have reduced virus-
specific CD4+ and CD8+ T cells compared to children with COVID-19 and controls®®.

Despite these prior studies, much remains unclear about the pathogenesis of MIS-C, and there is a lack
of biomarkers that could be leveraged to develop diagnostic and prognostic assays. Here we performed
unbiased profiling of whole blood cellular RNA (wbRNA), plasma cell-free RNA (cfRNA), and plasma cell-free
DNA (cfDNA) from 211 pediatric patients diagnosed with COVID-19 or MIS-C and 26 controls across 3
separate pediatric hospital systems in the United States. Longitudinal sampling of these 3 blood analytes
enable a complementary and systems-level view of immune responses and cell/tissue damage associated with
MIS-C and COVID-19.

RESULTS
Clinical COVID-19 and/or MIS-C cohort
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Varisbles Group Overall COVD-18 MIS-C Controls
n 237 70 1 26
orlgin, n (%) CNH 95(14.8) 5 (24.8)
EMORY 176 (743) 43(700) 101 (71.6) 26(100.0)
UCSF 26(11.0) 21 (30.0) 5(3.5)
Diseasa Severity, n(%)  Asympiomatic 5(2.1) 5(7.1)
Mild 5(2.1) 5(7.1)
Moderate 63(26.6) 21 {(30.0) 2(298
Severe 138(58.2) 20{55.7) 99 (70.2)
Age, mean (SO 11(8) 12{6} 9{5 14(2)
Gender, n (%) Female 109 (43.5) a7 (52) 49(348) 17 (65.4)
Male 134 (56.5) Z3{47.1) 92 (85.2) 9(34.8)
Race, n (%) American Indian 2(08) 2(7.7)
Asian 12(5.1) £(57) 2{1.4) 8(z31)
Black/AA 120(=08) 28(40.0) 86(61.0) 6(23.1)
White 58(24.5) 17(4.3) 3 (220) 10(38.5)
Other/Dedined 45(19.0) 21 {30.0) 22 (15.6) 2(7.7)
Ethnicity, n (%) Hisparic 67(24.1) 23(329) 23(206) 5{19.2)
Non-Hispanic 180 (75.9) 47(67.1) 112(79.4) 21(80.8)

Table. Demographic and clinical characteristics of the study cohort

We collected 416 blood and/or ‘plasma samples from 237 patients from the University of California at
San Francisco (UCSF), Emory University/Children’s Healthcare of Atlanta (EMORY), and Children’s National
Hospital (CNH) (Fig. 1A and B, Table; Methods). Patients from Emory were prospectively enrolled into a
specimen collection and biobanking protocol, permitting the acquisition of longitudinal samples during
hospitalization, one month post-hospitalization, and =3 months post-hospitalization. Remnant clinical samples
from patients at the other sites were biobanked and analyzed under approved institutional review board (IRB)
protocols with waiver of consent. All samples were stratified by diagnosis, time of collection, and severity of
disease (Fig. 1C). Patients were either diagnosed with COVID-19 (without MIS-C) or MIS-C, or were
uninfected control subjects. The control subjects were healthy outpatient children prospectively enrolled at
Emory. Hospitalization time points were stratified as acute (0-4 days after hospital admission) or post-acute (>4
days after hospital admission), and patients were classified according to clinical severity at time of presentation
as having asymptomatic, mild, moderate, or severe disease (Supplementary Table). cfRNA and cfDNA
profiling by next-generation sequencing (NGS) were performed from plasma, and transcriptome RNA profiling
(RNA-Seq) was performed from whole blood.

Circulating cell-free RNA profiling

We performed transcriptome sequencing of plasma cfRNA on 132 samples from 124 pediatric patients.
Of the 132 samples, 88 (67%) were classified as MIS-C, 31 (23%) as moderate-to-severe COVID-19 and 13
(10%) as negative controls (Fig. 2A). Recent work by Vorperian et al. demonstrated the possibility to quantify
cell-types-of-origin (CTO) of cfRNA using reference-based deconvolution'’. Here, we implemented BayesPrism
and the “Tabula Sapiens” human single-cell transcriptome atlas as a reference to quantify the cfRNA CTO?®,
We consistently observed significant increases in cfRNA from neutrophils, kidney epithelial cells, thymocytes,
and solid organ-derived cell types in moderate-to-severe COVID-19 as compared to control individuals, and
further increased contributions from these cell types in MIS-C (p-value<0.05 by Mann-Whitney U test) (Fig. 2B
and C; Supplemental Fig. 1A). We also observed significant increases in cfRNA from endothelial cells and
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neuronal Schwann specifically in children with MIS-C (p-value<0.05 by Mann-Whitney U test) (Fig. 2B and C).
Platelet cfRNA was decreased in MIS-C and moderate-to-severe COVID-19 compared to controls. The CTO of
cfRNA were highly similar for samples collected at different hospitals, highlighting the potential for cfRNA as a
diagnostic biomarker for COVID-19 or MIS-C.

Figure 2. Plasma cell-free RNA profiling. (A) Study design and analysis overview. (B) Average cfRNA deconvolution
results for COVID-19, MIS-C, and controls over various time points. (C) Cell-free RNA deconvolution results of endothelial
cell, neutrophil, and Schwann cell derived cfRNA (D) Diversity of cell type contributions to the cell-free transcriptome as
measured by Simpson’s Index. (E) Dissimilarity of samples as compared to controls. Each point represents a comparison
to a control, as measured with the Bray-Curtis dissimilarity measurement. (F) Scaled counts per million (CPM) values of
significantly differentially abundant genes (DAGs) (DESeq2, Benjamini-Hochberg adjusted p-value < 0.01,
|Log2FoldChange| > 1.5). Number of DAGs indicated to the left of the heatmap. Samples and genes are clustered based
on correlation. (G) Normalized CPM values of TGM2 and antiviral gene RSAD2 across sample groups at the acute
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timepoint. (H) Cumulative CPM of genes in significant gene ontology groups (topGO, adjusted p-value < 0.05). Panels A
and B show the number of samples in each group. Box plots show cumulative CPM distribution of controls and acute
timepoint MIS-C and moderate-to-severe COVID-19. Points represent average cumulative CPM and bars represent
standard error. Outliers are indicated with arrows and values. Asterisks indicate statistical significance by Mann-Whitney
U test using Benjamini-Hochberg adjusted p-values as follows: ns, non-significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001;
*k p < 0.001.

Next, we sought to investigate longitudinal changes in cfRNA CTO in MIS-C. We observed significantly
greater CTO diversity using Simpson’s index?® in acute MIS-C versus convalescent MIS-C (=1 month post-
hospitalization) or controls (p-value<0.05 by Mann-Whitney U test) (Fig. 2D). In contrast, cfRNA CTO diversity
was not significantly different for acute moderate-to-severe COVID-19 compared to controls or convalescent
COVID-19 (p-value>0.05 by Mann-Whitney U test) (Fig. 2D). Samples from patients with acute moderate-to-
severe COVID-19 separated into 2 groups, one group with high and one with low ¢fRNA CTO diversity,
consistent with the heterogeneity of cell types involved in COVID-19 as. previously described®. We further
compared the cfRNA CTO diversity of post-acute MIS-C and COVID-19. We found that samples from post-
acute MIS-C patients had high cfRNA CTO diversity while.samples  from post-acute moderate-to-severe
COVID-19 patients had low cfRNA CTO diversity (Supplemental Fig:"1B and C). These trends were also
observed using the Shannon diversity index®2. Next, we analyzed pairwise dissimilarity in cfRNA CTO between
COVID-19 and MIS-C samples and controls. The Bray-Curtis dissimilarity of cfRNA CTO within controls was
significantly lower than between: controls. and acute MIS-C (mean dissimilarity = 0.18 versus 0.56, p-
value<0.05 by Mann-Whitney U test) and between controls andcacute moderate-to-severe COVID-19 (mean
dissimilarity = 0.18 versus 0.38, p-value<0.05 by Mann-Whitney U test) (Fig. 2E). Among convalescent
COVID-19 or MIS-C samples, only the COVID-19 one-month follow up cohort exhibited significant divergence
of cfRNA CTO compared to controls (Fig. 2E)- Patients from 2 different hospitals (Emory and CNH) exhibited
similar diversity. and pairwise dissimilarity, metrics (Fig. 2D and E). These findings revealed that acute MIS-C
exhibited a higher diversity of cell types than either COVID-19 or controls, and that the observed cell types
based on cfRNA gene expression were significantly different between MIS-C and COVID-19.

We identified differentially abundant genes (DAGS) in cfRNA associated with dead or dying cells to gain
insight into disease pathogenesis and to characterize potential diagnostic biomarkers®. Patients diagnosed
with acute MIS-C or moderate-to-severe COVID-19 were compared pairwise to controls. Using an absolute
log2 fold change cutoff of 1.5 and a Benjamini-Hochberg adjusted p-value of <0.01, 1,409 DAGs were
identified between MIS-C and controls, 265 DAGs between COVID-19 and controls, and 102 DAGs between
MIS-C and COVID-19. Unsupervised clustering revealed distinct gene expression profiles separating MIS-C
and COVID-19 from controls (Fig. 2F). Samples from acute MIS-C patients were assigned into three groups
based on unsupervised clustering, each group with a distinct CTO profile (Supplemental Fig. 1D). The three
groups consisted of cfRNA predominantly derived from (1) endothelial cells, NK cells, and respiratory ciliated
cells, (2) monocytes, neutrophils, and myeloid progenitors, and (3) platelets. The third group clustered with
samples from controls and COVID-19 patients and may hence be a technical artifact associated with elevated
platelet lysis during sample preparation.

We analyzed significant DAGs between acute MIS-C and moderate-to-severe COVID-19 to obtain
insights into disease pathogenesis and differential immune responses associated with these 2 diseases. Acute
MIS-C was associated with elevated levels of endothelial cell markers (AKAP12, CNN3, FZD4), neuronal
markers (GAS7, FEZ1, VATL1), actin-related genes (FSCN1, AFAP1L1, ITGA9), and an autoantigen also found
in patients with celiac disease (TGM2) (Fig. 2G, Supplemental Fig. 1E). In contrast, acute COVID-19 was
associated with elevated levels of interferon genes (IFI6, IFIT1, IFI44L, IFI27, IFITM1), antiviral genes (RSAD2,
MX1, CMP2, LY6E), chemokine genes (CXCL5, CXCL3), and ciliated olfactory cell markers (OR2B6, ENKUR)
(Fig. 2G, Supplemental Fig. 1E). Next, we performed gene ontology analysis using the R package topGO?*.
Gene ontology terms enriched in samples from COVID-19 patients included those associated with
programmed cell death, response to viral infection, and regulation of the viral life cycle, while those enriched in
MIS-C patients included actin cytoskeleton organization, endothelial cell migration, cytokine responses, and
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cell migration. To identify disease-specific pathways, we calculated counts per million (CPM) for each gene
ontology group by summing the counts of DAGs in that group®®>. Compared to controls, the cumulative CPM
score for endothelial cell migration was significantly increased in acute MIS-C (p-value<0.05 by Mann-Whitney
U test), while cumulative CPM scores for myeloid cell differentiation were increased in acute MIS-C and
moderate-to-severe COVID-19 (p-value<0.05 by Mann-Whitney U test) (Fig. 2H). Control samples were
associated with increased gene ontology groups related to cell division and cell communication, consistent with
the observation that the baseline cfRNA signal is predominantly derived from extracellular vesicles and cells
undergoing apoptosis, as typically occurs during mitosis?®. Next, we perfomed pathway analysis using
Ingenuity Pathway Analysis (IPA). Pathways enriched in MIS-C included pyroptosis, synaptogenesis, NF-kB
signaling, IL-6 signaling, IL-8 signaling, antiviral responses including interferon induction,and cholesterol
biosynthesis, while a different set of pathways enriched in COVID-19 included macrophage production of nitric
oxide, coronavirus pathogenesis, LXR/RXR activation, GP6 signaling, PTEN signaling, summylation, gustation
(taste), and HMGBL1 signaling (Supplemental Fig. 1F and G).

Whole blood RNA profiling by transcriptome sequencing (RNA-Seq)

Whole blood transcriptome profiling was performed-on 217 samples from 187 pediatric patients. Of the
217 whole blood samples, 135 (62%) were classified ‘as MIS-C, 56 (26%) as'moderate-to-severe COVID-19
and 26 (12%) as negative controls (Fig 3A). Samples from Emory and UCSF were used for the differential
expression anlaysis (DEA) and no batch effect was detected via‘unsupervised clustering (Supplemental Fig.
2A). Samples from CNH were used as a validation group'(Fig. 3B-C). Pairwise comparisons of MIS-C and
severe CQVID-19 relative to controls showed a_large degree of overlap in shared differentially expressed
genes (DEGs) between MIS-C and COVID-19 (DESeqg2, Benjamini-Hochberg corrected p-value < 0.01,
|Log2FoldChange| > 1.5) (Fig. 3B-C,-Supplemental Fig. 2A). The top 2 shared DEGs in both diseases were
ADAMTS2, a metalloprotease that processes procollagen (Fig. 3D and Supplemental Fig. 2B), and CD177, a
neutrophil activator (Supplemental Fig. 2B and C). Notably, ADAMTS2 has been previously implicated in
severe COVID-19 in a study using peripheral blood mononuclear cell (PBMC) single-cell transcriptome
sequencing®’ , whereas CD177 has been reported to be upregulated in the blood of MIS-C and COVID-19
patients?®®. We also observed elevated levels of ADAMTS2 during the post-acute stage of MIS-C and COVID-
19; however, one month after hospitalization levels returned to baseline in children with MIS-C but were still
elevated in children with COVID-19 (Supplemental Fig. 2D). Certain inflammatory genes such as interferon-
stimulated gene 15 (ISG15) and macrophage-associated sialic acid binding Ig-like lectin 1 (SIGLEC1) were
significantly upregulated in COVID-19 but not in MIS-C versus controls (Fig. 3D and Supplemental Fig. 2B).
In contrast, T-cell receptor beta variable 11-2 (TRBV11-2) was more highly expressed in MIS-C than in
COVID-19 versus controls (Fig. 3D), a finding that was also seen in a direct head-by-head comparison
between MIS-C and COVID-19 (Supplemental Fig. 2D). This observation is consistent with two studies
showing that TRBV11-2 is overexpressed by T-cells in most MIS-C patients, but not in patients with COVID-19,
Kawasaki disease (KD), or toxic shock syndrome (TSS)'*%. These differences in TRBV11-2 expression in
MIS-C versus COVID-19 or controls were observed at the post-acute timepoint, but not at the 1 month or =3
months timepoints (Supplemental Fig 2D). Interestingly, expression of gene paralogs KLRF1 and KLRB1,
natural killer (NK) cell surface receptors, were found to be significantly decreased in COVID-19 and MIS-C
compared to controls (Fig. 3D, Supplemental Fig. 2C), consistent with lower expression of these genes
reported in severe COVID-19 versus controls®*. Decreased KLRF1 and KLRB1 expression in COVID-19 and
MIS-C was also observed at the post-acute timepoint, but at 1 month post-hospitalization returned to baseline
in MIS-C yet remained decreased in COVID-19 (Supplemental Fig. 2D). In the head-to-head comparison
between MIS-C and COVID-19, the top upregulated genes in COVID-19 were most likely to be those related to
the antiviral type 1 interferon response pathway (e.g., IFIT2, SIGLECL1, IFI27, IFI44L, 1SG15, IFIT3)
(Supplemental Fig. 2E; Supplemental Dataset 1). The top upregulated genes in MIS-C were related to
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28  multiple pathways, likely due to the heterogeneous nature of MIS-C, including those associated with cell-to-cell

29  communication (e.g., ITGA7, CDHR1, CD177, PGF, ERFE, MMP8) (Supplemental Dataset 1).
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31 Figure 3. Whole blood RNA profiling. (A) Study design and analysis overview. (B) Scaled CPM values of significantly
32 differentially expressed genes (DESeq2, Benjamini-Hochberg corrected p-value < 0.01, |Log2FoldChange| > 1.5).

33 Differentially expressed genes were discovered using Emory and UCSF samples and the total number is indicated to the
34 left of each heatmap. Samples and genes are clustered based on correlation. (C) Scaled CPM values of the top 300

35  significantly expressed genes from each comparison (union of genes, DESeq2, Benjamini-Hochberg adjusted p-value <
36 0.01, ranked by absolute Log2FoldChange). Samples and genes are clustered based on correlation. (D) CPM of

37  ADAMTS2, TRBV11-2, SIGLEC1, and KLRB1 in controls, acute MIS-C, and acute moderate-to-severe COVID-19. Points
38  represent average CPM and bars represent standard error. Asterisks indicate statistical significance by Mann-Whitney U
39  test using Benjamini-Hochberg adjusted p-values as follows: ns, non-significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001;
10 ** p <0.001. Panels 3A show the number of samples in each group. (E) Top 20 differential pathways between controls
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and MIS-C or COVID-19 ranked by activation z-score. Lines connect matching pathways. Pathways highlighted in red are
distinct to either MIS-C or COVID-19. (F) Top 20 differential pathways between MIS-C and COVID-19 ranked by activation
z-score.

Next, we compared differentially expressed pathways in MIS-C and COVID-19 relative to controls (Fig.
3E) and to each other (Fig. 3F). In both MIS-C and COVID-19 patients, we found increased activation of
immune-related pathways which include phagosome formation, macrophage production of nitric oxide,
dendritic cell
maturation, TREM1, and IL-6 and IL-8 signaling. Pathways associated with hypoxia (hypoxia-inducible factor 1-
alpha, or HIF1-alpha signaling), neuroinflammation, and cardiac hypertrophy were also upregulated in both
MIS-C and COVID-19. MIS-C patients showed a marked inhibition of T cell receptor, interleukin-2 (IL-2), and
focal adhesion kinase (FAK) signaling pathways, concurrent with an activation of tumor.environment, IL-1, and
IL-13 signaling pathways. In contrast, COVID-19 patients showed a more pronounced activation of cytokine, B-
cell, and adrenomedullin pathways (Fig. 3F). We analyzed differentially expressed pathways and their
associations with diseases or biological functions and observed (striking differences between MIS-C and
COVID-19 compared to controls (Supplemental Fig. 3).-MIS-C was characterized by downregulation of
multiple pathways related to inflammatory response, cell death.and survival, cell-to-cell signaling, and immune
cell trafficking, whereas activation of these same pathways was predicted in COVID-19. These results are
consistent with the downregulation of exhausted T cells that has been previously reported in children with MIS-
c.

Cell-free DNA tissues-of-origin by methylation profiling

We. performed whole genome bisulfite sequencing of cfDNA extracted from plasma samples from 67
children with MIS-C (n=41), COVID-19 (n=21); or' from controls (n=5) (Fig. 4A) and compared the cfDNA data
to previously published data from an-adult COVID-19 cohort®. The highest mean levels of total cfDNA were
found in children 'with MIS-C as‘compared to pediatric COVID-19, adult COVID-19, or controls (4.12 ng/uL, p-
value<0.03, by Mann-Whitney U test) (Fig. 4B). A subset of MIS-C patients (n=3) showed a markedly elevated
burden of cfDNA (>10 ng/ul), likely secondary to widespread tissue injury. There were also significantly higher
mean levels of cfDNA in more severe COVID-19 pediatric and adult cases as compared to mild or
asymptomatic COVID-19 cases and controls (p-value<0.05 by Mann-Whitney U test) (Fig. 4B).

We next examined the utility of cfDNA tissues-of-origin (TOO) profiling to identify tissue profiles by
comparison to a reference set of methylation profiles of purified cells and tissue samples, as previously
described®. We observed significantly elevated levels of solid-organ-derived cfDNA in pediatric acute MIS-C
and pediatric moderate-to-severe COVID-19 as compared to pediatric controls, pediatric acute mild or
asymptomatic COVID-19, adult controls, and adult mild-to-severe COVID-19 cases (p-value<0.03, by Mann-
Whitney U test) (Fig. 4C). Levels of solid-organ-derived cfDNA in acute MIS-C tended to be increased relative
to acute moderate-to-severe COVID-19, although this difference was not significant (p-value=0.12, by Mann-
Whitney U test) (Fig. 4C). We further observed elevated levels of cfDNA derived from innate immune cell types
in acute MIS-C and moderate-to-severe pediatric COVID-19 compared to all other groups; however, this
difference was not significant (Fig. 4C). In addition, we identified extensive heterogeneity in the TOO profiles
from patients in the moderate-to-severe MIS-C cohort, including elevated levels of eosinophil, neutrophil,
erythroblast, liver, heart, kidney, lung, and spleen-derived cfDNA (Supplemental Fig. 4). Although recent
studies have reported increases in mitochondrial cfDNA in plasma from patients diagnosed with COVID-19%,
here we observed a significant reduction in the concentration of mitochondrial cfDNA in pediatric patients with
MIS-C and COVID-19 (p-value<0.04, by Mann-Whitney U test) (Fig. 4D). Finally, we found that cfDNA metrics
associated with affected tissues and organs mirrored organ-specific clinical laboratory parameters. Significant
correlations between kidney cfDNA concentration and creatinine levels (Pearson correlation; R=0.40, p-
value=0.004), total cfDNA concentration and C-reactive protein (CRP) levels in the blood (Pearson correlation;
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R=0.34, p-value=0.022), and liver cfDNA concentration and ALT levels (Pearson correlation; R=0.303, p-

value=0.036) were observed (Fig. 4E).
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Figure 4. Plasma cfDNA tissues-of-origin by methylation profiling. (A) Study design and analysis overview. (B) Total
cfDNA concentration and solid organ derived cfDNA concentration. (C) cfDNA concentration derived from innate and
adaptive immune cell types. (D) Abundance of mitochondrial derived cfDNA. Asterisks indicate statistical significance by
Mann-Whitney U test using Benjamini-Hochberg adjusted p-values as follows: ns, non-significant; *, p < 0.05; **, p < 0.01;
*** p < 0.001; *** p < 0.001. (E) Correlation of cfDNA metrics with standard clinical measurements, along with the
Pearson correlation Benjamini-Hochberg adjusted p-value for each comparison. Panels A and B show the number of
samples corresponding to each group. Abbreviations: ASX, asymptomatic.

Comparative analysis of plasma cell-free RNA and whole blood RNA

A subset of cellular woRNA and cfRNA samples were derived from the same blood draw (n=97),
providing the opportunity to directly compare these two different analytes (Fig. 5A). First, we assessed the
correlation of cfRNA and wbRNA abundance for genes with high average abundance (mean log-transformed
CPM>10)
across all sample categories. We found 1002 genes with significantly correlated wbRNA and cfRNA
abundance (Pearson coefficient Benjamini-Hochberg adjusted p-value < 0.05). Positive correlation was
observed in 992 (99%) of these 1002 genes, predominated by genes associated with myeloid cell transcription
such as BNIP3L, HEMGN and NFKBIA (Supplemental Fig. 5A and B). Randomized permutation testing
(n=1000 permutations) using either randomly paired genes or samples yielded on average far fewer
significantly correlated genes (mean=250 and <1 with gene and sample randomization, respectively at a
Benjamini-Hochberg adjusted p-value of <0.05) and decreased positive correlation (56% and 74% with gene
and sample randomization, respectively), confirming the robustness of these observations. Next, we examined
the degree of overlap in DEGs/DAGs among patients with either MIS-C (n=26) or moderate-to-severe COVID-
19 (n=13), or controls (n=13) (Fig. 5B). We observed a substantial overlap in DEGs/DAGs in wbRNA and
cfRNA when comparing MIS-C to controls (n=494) and COVID-19 to controls (n=153), but very little overlap

9
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when comparing MIS-C to moderate-to-severe COVID-19 (n=9). Of the 9 DEGs/DAGs that overlap when
comparing MIS-C to moderate-to-severe COVID-19, seven had been previously reported in association with
COVID-19 (IFI6, IF144L, RSAD2, LY6E, EPSTI1, XAF1, MX1)**® Similar to the gene abundance profiles,
differential pathway analysis revealed minimal overlap in top enriched pathways between wbRNA and cfRNA
for each subgroup comparison (Supplemental Fig. 5C and D).

10


https://doi.org/10.1101/2022.06.21.22276250
http://creativecommons.org/licenses/by-nc-nd/4.0/

21
22
23
24
5
26
27

medRxiv preprint doi: https://doi.org/10.1101/2022.06.21.22276250; this version posted June 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

A Paired Whole Blood RNA
and Cell-Free RNA Samples

c
Acute LONGL Total

COVID-19 vs Controls Baker's y = 0.64, p<0.001

a®
2E MIS-C 26 24 50
i s 52
5 < ———
53 e ————
= a/"\cowme 13/2 10/4 23/6
Pl ]
<=
£3 —h,
T Controls 13 )
r T T 1 T T T T T T T 1
Cell-Free RNA  Whole Blood RNA S 15 10 05 0.0 00 02 04 06 08 10 12 1«
* 55 @ MIS-C vs Controls  Baker's y = 0.60, p<0.001
Differential Abundance Analysis f, § 1\ MiS-C 5
. c 2
Pathway Analysis £z Moderate-to-Severe
Deconvolution = Asymptomatic-to-Mild
Cell Type Contribution Diversity © LONGL = Longitudinal
VID-19 v: ntrol -
B up-regulated in up-regulated in
COVID-19: Controls: L L L L—

Assay

-~

144 9 _
T
220
O Cell-free R

Baker's y =0.11, p=0.026

MIS-C vs COVID-19

o0 MIS-C vs Controls
'\ " Whole Blood up-regulated in up-regulated in
- MAS1? Controls:
l__ %? -~ ||5 |lu 075 c:o nfn nls 1?0 1?5
Sample Group "‘ \
4 031 562 ) D
.COVID-19 4 v Controls COVID-19
- 1.00 — 1.00 - 1.00 4
MIS-C
O MIS-C vs COVID-19 2,-0.75 - 0.75 0.75
up-regulated in up-regulated in §§
O Controld MIS-C: COVID-9: Eé 0504 0504 050
_ ! FE
4 Zh 0.25- 0.25 0.25
18 | ©
A 7
b 0.00 : : 0.00 A : : 0.00 A
Cell-free Whole-Blood Cell-free Whole-Blood Cellllree WhoIeI-BIood
RNA RNA RNA RNA RNA RNA
® Platelet @ Erythrocyte.erythroid.progenitor neutrophil ® Monocyte other
® Myeloid.progenitor ~ T.Cell ® Thymocyte NK_.Cell
E F G
Controls COVID-19 ° MIS-C
0.75 b
5 |9
S .
C
- 0504 @ ° ”
3 ¢ 4 %
oo ) ° !. LY
J) 1 Y PY [ ]
2 0.25 » d S ’
.25 = o & ‘o0
= g s o0 & %% oo ®
of o e o %
o e o o g0¢ o @28 o °
) ° L 4 ° t -° ® ° 0 A R o ®
E e ©60 o o ° 5 [J ° (]
0.00 L - Wwe . %S oo S@
T T T T T T T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Cell-Free Fraction

Figure 5: Comparison of paired whole blood RNA-seq and cfRNA sequencing data. (A) Study design and analysis
overview. (B) Overlap of differentially abundant genes (DAGs)/differentially expressed genes (DEGSs) between whole
blood RNA-seq and cfRNA-seq using paired samples (DESeq2, Benjamini-Hochberg adjusted p-value < 0.05,
|Log2FoldChange| > 1). Venn Diagrams represent the overlap of upregulated genes between analytes in each sample
group, as indicated by fill color. (C) Comparison of clustering topology between paired whole blood RNA-seq and cfRNA
sequencing samples. Samples were clustered based on correlation of DAGs/DEGs from their respective analyses. Lines
between trees connect paired woRNA and cfRNA samples. Correlation was calculated using Baker's Gamma and p-
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values were calculated using a Monte Carlo permutation test. (D) Comparison of cell-types-of-origin diversity between
cfRNA and wbRNA as calculated with a Simpson Index. Paired samples are connected with a line. Asterisks indicate
statistical significance by Mann-Whitney U test using Benjamini-Hochberg adjusted p-values as follows: ns, non-
significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001; *** p < 0.001. (E) Cell-type-of-origin fractions, normalized to blood
cell types and split by diagnosis group.

Next, we compared the agreement in unsupervised hierarchical sample clustering based on wbRNA
and cfRNA profiling of DEGs (Fig. 5C). Samples clustered similarly in the MIS-C versus control and COVID-19
versus control comparisons (Baker's Gamma Index = 0.60 and 0.64, respectively; two-sided p-values <0.01 for
both, n=39 and n=26, respectively). In contrast, the MIS-C versus COVID-19 comparison yielded clustering
that was less similar but still significantly correlated (Baker's Gamma Index = 0.11; two-sided p-value = 0.013,
n=39). We
used subsampling and bootstrapping to determine whether the high Baker's Gamma index in the COVID-19
versus control comparison was an artifact due to a smaller sample size (n=26). We did not observe a
significant difference between the originally calculated values-and bootstrapped distribution of Baker's Gamma
Index values after subsampling (p-value = 0.88 for the MIS-C versus control comparison; p-value=0.40 for the
MIS-C versus COVID-19 comparison). Thus, despite the lack of overlap in DEGs, cfRNA and wbRNA sample
grouping by unsupervised clustering was similar for the MIS-C and COVID-19 samples relative to controls,
indicating that these two analytes-provide complementary information.

Finally, we compared the cell-types-of-origin (CTO) in wbRNA and cfRNA between paired samples. We
observed significantly different woRNA and cfRNA CTO diversity in paired samples from acute moderate-to-
severe CQVID-19 patients and paired samples' from controls (p-value = 0.032 and p-value = 0.0007,
respectively, by paired Wilcoxon test) (Fig.,5D),'However, the CTO diversity was not significantly different
between wbRNA and c¢fRNA in paired samples from patients with acute MIS-C (p-value = 0.41 by paired
Wilcoxon test) (Fig. 5D). Furthermore, in unpaired analyses, we observed a significant difference in wbRNA
CTO diversity between acute moderate-to-severe COVID-19 and controls, but not between acute MIS-C and
controls (Mann-Whitney U Test, Benjamini-Hochberg adjusted p-value = 0.02 and 0.10) (Supplemental Fig.
5E). Conversely, we observe a significant difference in cfRNA CTO diversity in acute MIS-C and controls, but
not in acute moderate-to-severe COVID-19 and controls (Mann-Whitney U Test, Benjamini-Hochberg adjusted
p-value = 0.03 and 0.32) (Supplemental Fig. 5E). Finally, we compared patterns of blood-derived CTO in
paired wbRNA and cfRNA samples from patients with MIS-C, patients with acute moderate-to-severe COVID-
19, and controls (Fig. 5E-G). The wbRNA and cfRNA CTO profiles corresponding to MIS-C and COVID-19
(Fig. 5F and G), characterized by multiple blood cell types, were distinct from the control group profiles, which
consisted of a single predominant baseline cell type (erythroid precursors in wbRNA and platelets in cfRNA)
(Fig. 5E). Within each disease group, wbRNA and cfRNA CTO profiles were also distinct. For COVID-19,
wbRNA CTO profiles had higher contributions from neutrophils, NK cells, T cells, and monocytes, whereas
cfRNA CTO profiles had lower proportions of these inflammatory cells (Fig. 5F). In contrast, for MIS-C, wbRNA
CTO profiles were predominated by neutrophils, whereas cfRNA CTO profiles had relatively higher
contributions from myeloid progenitor cells, NK cells, and monocytes (Fig. 5G).

DISCUSSION

Here, we report a systems-level, longitudinal analysis of COVID-19 and MIS-C by next-generation
sequencing of nucleic acids (cfRNA, wbRNA, and cfDNA) in a large multi-hospital study of 416 blood samples
from 237 patients. Using plasma cfRNA profiling, we identify signatures associated with cellular injury and
death that distinguish MIS-C and COVID-19, as well as the involvement of previously unreported cell types in
MIS-C. wbRNA analysis reveals substantial overlap in pro-inflammatory pathways between MIS-C and COVID-
19, yet also reveals pathways that are specific to each disease state. Plasma cfDNA profiling suggests
increased cfDNA and solid organ involvement in MIS-C compared to COVID-19 and controls. Comparative
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analyses of paired cfRNA and wbRNA samples demonstrate that these analytes yield separate, but
complementary, signatures associated with MIS-C and COVID-19 that reflect distinct cell types of origin. These
results provide novel insights into the differential pathogenesis of MIS-C and COVID-19 and lay the
groundwork for the development of minimally invasive diagnostic tests for these two disease states.

Whole blood RNA sequencing (RNA-Seq) of cellular RNA has traditionally been considered the gold
standard method for assaying gene expression in blood. However, the signal from wbRNA is primarily derived
from circulating leukocytes due to primarily sampling cell types found in the blood, thus measuring the
activation of a patient’'s inflammatory and immune response to an infection. In contrast, plasma cfRNA and
cfDNA both measure levels and types of cell death from circulating cell types and peripheral tissues®’*°. With
respect to cells that are turning over or dying, cfDNA enables precise quantification of cell numbers, whereas
cfRNA enables characterization of gene expression and pathways* . cfRNA profiling can leverage the
extensive information regarding cell type specific gene expression that is available from recent large-scale
human cell atlas projects, whereas reference data for cfDNA methylation profiling is currently more limited*’.
Overall, these cell-associated (WbRNA) and cell-free (cfRNA and c¢fDNA) approaches mutually complement
each other. When combined, they provide a more complete picture of the dynamic, “yin-yang” interplay
between host and pathogen or between cell activation / proliferation and cell death than achievable using a
single modality alone.

cfRNA is an analyte that probes cellular death and immune dynamics,on a systems level. Previous
analyses of MIS-C and COVID-19 from.-the blood have relied on single cell or bulk RNA-Seq of whole blood
cells, which generally. only characterizes the host immune-response, or on proteomic and cytokine-based
assays, which use a limited number of markers or for:which-there is a lack of standardized reference data. In
contrast, the signals from cfRNA are derived from{any cell or vascularized tissue type, and there is a plethora
of RNA-Seq reference data that can be used to-interpret results. Consistent with prior studies, here we observe
increased levels of cfRNA from endothélial cells in MIS-C*® and from neutrophils and thymocytes in MIS-C and
COVID-19°*** as well as increased signaling from disease-specific pathways in MIS-C (IL-6, IL-8, and NF-
kB)'** and COVID-19 (olfactory, gustation, sumoylation, coronavirus replication, and HMGB1)"**34¢,
However, the cfRNA data also uncovered several novel features of MIS-C, such as enrichment of neuronal
genes associated with synaptogenesis and increased cfRNA burden from Schwann cells. These findings
suggest that peripheral nervous system damage may be a common feature of MIS-C. Interestingly, both
central and peripheral nervous system involvement in MIS-C have been previously described**°, although
these clinical manifestations are infrequent. Notably, peripheral nervous system damage has also been
documented in pediatric and adult COVID-19 and in post-acute sequelae such as long COVID* 3. Future
studies are needed to elucidate the mechanisms and clinical spectrum of neurologic involvement in acute MIS-
C and their association with long-term neurodevelopment. Furthermore, we observe an enrichment of genes
associated with the pyroptosis pathway in MIS-C, likely related to inflammasome activation®. Pyroptosis is a
form of rapid cellular death that occurs during highly inflammatory states®. Previous reports have shown that
pyroptosis occurs in vascular endothelial cells in Kawasaki disease, a similar systemic inflammatory
syndrome®®. Based on the observed increase of cfRNA from endothelial cells and cfRNA signatures of
pyroptosis, our data thus support the likely critical role of pyroptosis and endothelial cells in MIS-C
pathogenesis, and may help explain the overlapping clinical presentations between MIS-C and Kawasaki
disease in acutely ill pediatric patients.

Whole blood RNA-Seq reveals a high degree of overlap in shared, largely pro-inflammatory genes and
pathways between COVID-19 and MIS-C. This is expected as both diseases are caused by SARS-CoV-2 and
are highly inflammatory states. However, different levels of expression are observed for certain genes, such as
upregulation of ISG15 and SIGLEC1 in COVID-19 and upregulation of TRBV11-2 in MIS-C, as well as for
certain pathways, such as inhibition of T-cell receptor, IL-2, and FAK signaling pathways in MIS-C. The latter
finding is consistent with the observation of “T-cell exhaustion” associated with downregulation of NK and
CD8+ T cells driving a sustained inflammatory response in MIS-C*!. Genes showing differences in levels of
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gene expression (e.g. ISG15, SIGLEC1, TRBV11-2, CREB3L) or in persistence of gene expression as
revealed by longitudinal data (e.g. ADAMTS2, KLRFB1), may be useful target biomarkers for diagnostic and
prognostic assays that can discriminate between MIS-C, COVID-19, and other hyperinflammatory conditions.

Like cfRNA, cfDNA allows monitoring and quantification of tissue injury and cell death in a minimally
invasive manner from blood. Previous studies have shown that the relative concentrations of cfDNA in specific
tissues vary in different disease states, including COVID-19 in adults, solid-organ transplant rejection, graft-
versus-host disease following stem cell transplantation, urinary tract infection, and cancer>*’-*°. The profiling
of cell-type specific methylation in cfDNA can also be used to estimate cfDNA tissues-of-origin (TOO). Here we
guantify the concentration of cfDNA and perform cfDNA TOO profiling to assess the extent of cell, tissue, and
organ injury related to MIS-C and COVID-19. We observe an increase in cell death and high levels of
heterogeneity in TOO of cfDNA in MIS-C compared to COVID-19 and controls, consistent with the systemic
inflammatory nature of MIS-C that manifests clinically with the involvementof multiple organs and organ
systems. In addition, we observe a decrease in the concentration of mitochondrial cfDNA in” MIS-C and
COVID-19, which is discrepant from previous studies reporting an increase of mitochondrial cfDNA by PCR®.

Most prior host-biomarker studies of MIS-C and _pediatric COVID-19 analyze samples from the acute
symptomatic timepoint. Here, we report longitudinal. sampling of cfRNA and wbRNA in patients with MIS-C and
COVID-19 at acute, post-acute, one-month.post-hospitalization, and =3 months post-hospitalization timepoints.
We observe that most, but not all, gene measurements return to “baseline”levels similar to those in control
samples by one-month psot-hospitalization. In WoRNA we observe opposirg dynamics of ADAMTS2 levels in
MIS-C and COVID-19, in which elevated ADAMTS2 levels return'te-baseline in MIS-C but not in COVID-19 at
one-month post=hospitalization. Similarly, we observe recovery of woRNA KLRB1 levels in MIS-C at one-
month post-hospitalization, but not'in COVID-19.-These findings may be related to the post-acute sequelae of
SARS-CoV-2 infection (“long COVID”) (that-has been postulated to be caused by persistent immune
dysregulation and that can occur after. COVID-19 ®. In contrast, despite the severity of the initial presentation,
most clinical and laboratory-abnormalities from MIS-C tend to quickly resolve within a few weeks, along with
normalization of inflammatory and injury biomarkers®®. In cfRNA, we found that most biomarker measurements,
such as CTO values and gene modules scores, persist at 1 month but return to baseline =3 months post-
hospitalization. These results are consistent with the generally accepted time frames of recovery after MIS-C®.

We report a large-scale comparison (n=96) of woRNA and cfRNA profiles from paired samples in MIS-
C and COVID-19. A previous study compared paired woRNA and plasma cfRNA from healthy individuals but
was limited by small sample size (n=3) and lack of a disease group for comparison®. Our results reveal
distinct, largely nonoverlapping sets of DAGs/DEGs associated with MIS-C, COVID-19, and non-inflammatory
controls in wbRNA and cfRNA. Thus, both analytes provide complementary information with regards to the
ability to discriminate MIS-C and COVID-19 from controls and from each other. These findings are consistent
with the origin of wbRNA and cfRNA; wbRNA being primarily derived from active immune cells in blood and
cfRNA from dying cells from the blood and peripheral tissues. They are also consistent with our CTO data
showing predominantly erythrocytes in woRNA and platelets in cfRNA and a greater diversity of cell types from
peripheral tissues represented in cfRNA as compared to woRNA. Overall, our results underscore the potential
utility of cfRNA and cfDNA as complementary biomarkers to more traditional diagnostic methods (WbRNA,
cytokines, proteomics) in better diagnosing and enhancing our understanding of complex disease states such
as MIS-C.

Limitations

This study has multiple limitations. First, we have a limited sample size of asymptomatic-to-mild
COVID-19 (wbRNA, n=6; cfRNA, n=6; cfDNA, n=10), as well as a limited number of longtudinally collected
samples (MIS-C or COVID-19 during post-acute, one-month, or 23 months timepoints: WobRNA, n=63; cfRNA,
n=45) and controls (cfDNA, n=5). Second, the accuacy of our deconvolution analyses may be limited by the
reference set used as a comparator. The cfDNA deconvolution reference set consists of a limited nhumber of
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cellular and tissue derived methylomes. The cfRNA/WbRNA deconvolution reference set is derived from a
single cell RNA sequencing (scRNA-seq) atlas that sequenced poly-adenylated transcripts, while here we
performed total RNA-Seq with host ribosomal RNA depletion. Third, we lacked samples from “look-alike”
inflammatory conditions (e.g., Kawasaki disease, toxic shock syndrome, macrophage activation syndrome),
and thus cannot determine whether the signatures in MIS-C and COVID-19 we observe are distinct from these
other conditions. Future studies are needed to address these limitations.

METHODS

Ethics Statement. The protocols for this study were approved locally at each site by the University of
California, San Francisco (UCSF) Institutional Review Board (IRB) (#21-33403), San Francisco, CA; Emory
University IRB (STUDY00000723), Atlanta, GA; Children’s National Medical Center IRB (Pro00010632),
Washington, DC; and Cornell University IRB for Human Participants (2012010003), New York, NY. The
protocols at UCSF and Children’s National Medical Center were “no subject contact” sample biobanking
protocols under which data was extracted from the medical chart and consent was not obtained. The protocol
at Emory University IRB was a prospective enrollment study under which parents provided consent and
children assent as appropriate for age. De-identified samples and patient information were shared with
collaborating institutions for sample processing (UCSF and Cornell University) and-analysis.

Sample Acquisition UCSF. Pediatric hospitalized patients-who\tested positive and negative for COVID-19
were identified from SARS-CoV-2 real-time PCR (RT-PCR) results from the UCSF Clinical Laboratories daily.
Residual whole blood samples were collected in .EDTA lavender top tubes from residual blood available. 250 pl
of sample was aliquoted with 250 ul of 2x'DNA/RNA shield (Zymo Research) for a 1:1 ratio. The remaining
blood was centrifuged at 2500 rpmfor.15 min and the available plasma was obtained. Samples were properly
identified and added to the biobanking registry. All samples were stored at -80 1 freezer until used.

Sample Acquisition Emory and Children’s Healthcare of Atlanta. At Emory and Children’s Healthcare of
Atlanta, pediatric patients with COVID-19, MIS-C, or controls were enrolled into a specimen collection protocol
following informed consent and assent, as appropriate for age. For this study, patients were classified as
having MIS-C if they met the CDC case definition, and as having COVID-19 if they had any PCR-confirmed
SARS-CoV-2 infection. Controls were healthy outpatients with no known history of COVID-19 who volunteered
for specimen collection. The specimen collection protocol was approved by the Emory University IRB. Residual
whole blood and plasma samples were collected from the clinical laboratory, and prospective blood samples
were additionally collected in EDTA lavender top tubes. Longitudinal samples were also collected at 1-month
and =3-months timepoints for participants who returned for follow-up. From the EDTA tubes, whole blood was
aliquoted, and the remaining blood was centrifuged at 2500 rpm for 15 min to obtain the available plasma. All
samples were de-identified and assigned study IDs. Samples were stored at -80C and shipped on dry ice to
either UCSF or Cornell for analysis.

Sample Acquisition Children’s National. Patients with MIS-C were identified by a multidisciplinary task force
according to the CDC case definition. Remnant whole blood samples from this population were identified,
collected, and processed 12-72 hours after collection. Samples were centrifuged at 1300 xG for 5 minutes at
room temperature. Plasma was aliquoted into a cryovial and frozen at -80°C. A DMSO-based cryopreservative
(Cryostor® CS10) was added in a 1:1 ratio to the cell pellet and then frozen at -80°C in a controlled rate
freezing container (i.e., Mr. Frosty ™). After freezing the pellets with Cryostor they were transferred to liquid
nitrogen cryostorage within 1 week.

15


https://doi.org/10.1101/2022.06.21.22276250
http://creativecommons.org/licenses/by-nc-nd/4.0/

L9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
10
11
12
13
14
15
16
17
18
19
50
)1
2
53
4
35
56
37
8
39
50
31
32
33
4
35
56

medRxiv preprint doi: https://doi.org/10.1101/2022.06.21.22276250; this version posted June 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Clinical Data. For the purposes of this study, MIS-C was defined as any patient who met the CDC case
definition®. Multidisciplinary teams which adjudicated whether a patient met the case definition of MIS-C.
COVID-19 was defined as any patient with PCR-confirmed SARS-CoV-2 infection within the preceding 14 days
who did not also meet the MIS-C case definition. Clinical data was abstracted from the medical record and
entered into a shared REDCap®®®’ database housed at UCSF.

Cell-free RNA Sample Processing and RNA Extraction. Plasma samples were received on dry ice and
stored at -80°C until processed. Prior to extraction, plasma was thawed at room temperature and spun at
1300xg for 10min at 4°C. The supernatant was taken and cfRNA was isolated from plasma (115-1000 pl) using
the Norgen Plasma/Serum Circulating and Exosomal RNA Purification Mini Kit (51000, Norgen). Extracted
RNA was DNase treated with 14 pl of 10 pyl DNase Turbo Buffer (AM2238, Invitrogen), 3 pl DNase Turbo
(AM2238, Invitrogen), 1ul Baseline Zero DNase (DB0715K, Lucigen-Epicenter) for 30 min at.37°C and then
concentrated into 12 pl using the Zymo RNA Clean and Concentrate Kit (R1015, Zymo).

Cell-free RNA Library Preparation and Sequencing. Sequencing libraries were constructed from 8 pl of
concentrated RNA using the Takara SMARTer® Stranded Total. RNA-Seq Kit v2 — Pico Input Mammalian
(634418, Takara). Briefly, extracted RNA was reverse transcribed using randoem priming, barcoded using the
SMARTer RNA Unique Dual Index Kit(634451, Takara), rRNA depleted, and further amplified. Library
concentration was quantified using a Qubit™ 3.0 Fluorometer (Q33216, Invitrogen) with the dsDNA HS Assay
Kit (Q32854, Invitrogen). Libraries were quality-controlled using an Agilent Fragment Analyzer 5200
(M5310AA; Agilent) with the HS NGS Fragment- kit (DNF-474-0500, Agilent). Libraries were pooled to equal
concentrations and sent to the Cornell Genomics core for 150-base pair, paired-end sequencing on an lllumina
NextSeqg550 machine for an average of 10 million reads per sample.

Cell-free DNA Sample Processing and Extraction. Plasma samples were received on dry ice and stored at -
80°C until processed. Prior to extraction, plasma samples (75-650 ul) were thawed at room temperature and
spun at 1300xg for 10min at 4°C. The supernatant was taken and cfDNA was isolated from plasma using the
Qiagen Circulating Nucleic Acid Kit (55114, Qiagen) and eluted to 45 pl.

Cell-free DNA Library Preparation and Sequencing. Sequencing libraries were constructed from 20 pul of
extracted DNA as previously described. Library concentration was quantified using a Qubit™ 3.0 Fluorometer
(Q33216, Invitrogen) with the dsDNA HS Assay Kit (Q32854, Invitrogen). Libraries were quality-controlled
using an Agilent Fragment Analyzer 5200 (M5310AA, Agilent) with the HS NGS Fragment kit (DNF-474-0500,
Agilent). Libraries were pooled to equal concentrations and sent to the Cornell Genomics core for 150-base
pair, paired-end sequencing on an lllumina NextSeq550 machine for an average of 33 million reads per
sample.

Whole Blood RNA Sample Processing and RNA Extraction. Whole blood samples were received on dry ice
and stored at -80°C until processed. Before extraction, all samples were thawed and pretreated with a 1:1 ratio
of 2X RNA/DNA Shield (R1200, Zymo Research) if this was not added prior to freezing. RNA was extracted
from whole blood samples (400 pl) using the Quick-RNA Whole Blood kit (R1201, Zymo Research) following
manufacturer’s instructions. Ribosomal depletion was not performed. RNA was eluted in 15 ul of RNase-free
water and stored at -80 °C until use. The concentration of eluted RNA was measured using a Qubit™ Flex
Fluorometer (Q33326, Invitrogen) with the RNA HS Assay Kit (Q32852, Invitrogen). RNA Integrity was
assessed on a subset of samples using the Agilent Bioanalyzer RNA 6000 Nano/Pico Chip (5067-4626) to
determine the RNA Integrity Number (RIN). All samples analyzed were partially degraded with RIN values
between 2 and 5.
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Whole Blood RNA Library Preparation and Sequencing. Extracted RNA (7 pl or 10-200 ng) was processed
using the NEBNext rRNA Depletion Kit (Human/Mouse/Rat) (E6310, NEB) and the NEBNext Ultra Il Directional
RNA Library Prep Kit (E7760 & E7765, NEB) following manufacturer’'s specifications. Briefly, samples were
first treated for ribosomal RNA depletion and DNase digestion, fragmented for 8 min, and reverse transcribed.
Adapters were ligated to the purified cDNA (1:25 diluted adaptor), followed by library amplification and
barcoding using NEBNext Multiplex Oligos (E6609L, NEB) sets 1 to 4. Libraries were purified using NEBNext
Sample Purification Beads (E7103, NEB).

Libraries were quantified using the Qubit™ Flex (Q33327, Invitrogen) with the dsDNA HS Assay Kit (Q32854,
Invitrogen). Libraries were pooled and sent to the UCSF Center of Advanced Technology (CAT) for sequencing
on an lllumina NovaSeq 6000 Sequencing System using 150-base pair paired-end sequencing. Negative
controls (nuclease-free water) were included in every run to monitor for contamination.

RNA Bioinformatic Processing. Sequencing data was-processed using a custom bioinformatics pipeline
utilizing the Snakemake workflow management system (v7.7.0) for the cfRNA samples and a bash script for
the wbRNA samples. Samples were quality filtered and trimmed using BBDUK (v38.90), aligned to the
Gencode GRCh38 human reference genome (v38, primary assembly)-using STAR (v2.7.0f) default
parameters, and features quantified usingfeatureCount (v2.0.0). cfRNA samples were also deduplicated using
Picard MarkDuplicates prior to feature quantification (v2.19.2). Mitochondrial, ribosomal, X, and Y chromosome
genes were removed prior to analysis.

RNA Sample Quality Filtering. wbRNA and ¢fRNA samples were filtered using different QC metrics due to
differences in RNA concentration and ‘quality. wobRNA samples with less than 10% of reads aligning to the
transcriptome were removed from all analyses. cfRNA samples were filtered on the basis of DNA
contamination, rRNA contamination, number of counts, and RNA degradation. DNA contamination was
estimated by calculating the ratio of reads mapping to introns and exons. Samples with an intron to exon ratio
above three were removed. rRNA contamination was measured using Samtools (v1.14). Total counts were
calculated using featureCounts. Degradation was estimated by calculating the 5-3' bias as calculated by
Qualimap (v2.2.1). Samples with rRNA contamination, total counts, or 5-3’ bias greater than three standard
deviations from the mean were removed. Also, samples with less than 75,000 total counts were removed.

RNA Cell Deconvolution and Diversity. Cell type deconvolution was performed using BayesPrism (v1.1) with
the Tabula Sapiens single cell RNA-seq atlas (Release 1) as a reference. Cells from the Tabula Sapiens atlas
were grouped as previously described in Vorperian et al. Cell types with more than 100,000 unique molecular
identifiers (UMIs) were included in the reference and subsampled to 300 cells using ScanPy (v1.8.1). Providing
an equal number of cells to the deconvolution ensured an unbiased prior for the Bayesian algorithm used in
BayesPrism. Cell-type contribution diversity metrics were calculated using the vegan R package (v2.5.7).

RNA Differential Abundance/Expression Analysis. Comparative analysis of DEGs was performed using a
negative binomial model as implemented in the DESeq2 package (WbRNA: v1.28.1, cfRNA: v1.34.0) using a
Benjamini-Hochberg corrected p-value cutoff <0.01, unless otherwise stated. Heatmaps were constructed
using the pheatmap package in R (v1.0.12), samples and genes were clustered using correlation based
hierarchical clustering. Gene ontology analysis was performed using the topGO R package (v2.46.0)** using a
Benjamini-Hochberg-corrected p-value cutoff of <0.05. Cumulative CPM values for gene ontology terms were
calculated by taking the sum of normalized counts from all the significant genes in each gene ontology module.
Canonical pathways, diseases and functions were analyzed using QIAGEN Ingenuity Pathway Analysis (IPA)
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software (v73620684). Pathway analysis was run twice: (1) with all available samples and (2) with samples that

have both whole blood and cell-free data available.

RNA Paired Sample Correlation Analysis. Log CPM normalized RNA counts were correlated between
paired cfRNA and wbRNA samples. Genes with a low average expression (<10 CPM) in either cfRNA or
WbRNA were removed. Samples with extreme cfRNA or wbRNA counts (CPM z-score >3) were removed to
eliminate outlier bias. A Pearson correlation was calculated for each gene and a Benjamini-Hochberg—
corrected p-value cutoff <0.05 was used to determine significance.

We performed two permutation tests (n=1000 permutations) to determine the reliability of the number of genes
observed to be correlated. First, we randomly shuffled the sample labels and recalculated. the total number of
significant genes. Second, we randomly shuffled gene labels and recalculated the total humber of significant
correlations.

Entanglement Analysis. Differential abundance/expression analysis was performed using only paired cfRNA
and wbRNA samples as previously described, using a Benjamini-Hochberg—corrected p-value cutoff <0.05.
Samples were clustered using correlation based hierarchical clustering. Using the dendextend package in R
(v1.15.2), dendrograms were plotted; paired samples were connected by lines; and Baker's gamma correlation
coefficient was calculated. Nen-exact, two-sided p-values were calculated using a monte carlo permutation
test.

DNA Concentration. Eluted DNA was quantified using a Qubit™ 3.0 Fluorometer (Q33216, Invitrogen) with
the dsDNA HS Assay Kit (Q32854, Invitrogen). Total cfDNA concentration was estimated using the following

formula:

(Eluted cfDNA concentration) * (Elution volume)

DNA tration =
cf concentration (Plasma volume)

DNA Bioinformatic Processing. Sequencing data was processed using a custom bioinformatics pipeline
utilizing the Snakemake workflow management system (v7.7.0). Samples were quality filtered and trimmed
using BBDUK (v38.46), aligned to the Gencode GRCh38 human reference genome (v38, primary assembly)
and deduplicated using Bismark (v0.22.1) with default parameters, and quality filtered using samtools (v1.14).
Prior to any analysis, X and Y chromosome mapped reads were removed.

DNA Deconvolution. DNA tissues of origin deconvolution were performed as previously described®?. Briefly, a
custom bioinformatic pipeline utilizing the Snakemake workflow management system (v7.7.0) was used to
process publicly available methylation references, convert to a standard data format, and normalize across
samples. Metline (v0.2-7) was used to discover differentially methylated regions and a quadratic programming
algorithm estimated relative contributions of the tissues represented in the methylation references.

Quantification and Statistical Analysis. All statistical analyses were performed using R (cfDNA: v4.1.0,
cfRNA: v4.1.0, wbRNA: v4.0.3). Data wrangling and visualization was performed using Python (3.9.1), Pandas
(1.3.0) matplotlib-venn (0.11.6), R (v4.1.0), Tidyverse (v1.3.1), and ggplot2 (v3.3.5). Statistical significance was
tested using Wilcoxon signed-rank tests and Mann-Whitney U tests in a two-sided manner, unless otherwise
stated. All sequencing data was aligned to the GRCh38 Gencode v38 Primary Assembly and features counted
using the GRCh38 Gencode v38 Primary Assembly Annotation.
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Data Visualization. Figures were created using Qiagen IPA, Adobe lllustrator, Affinity Designer, and

BioRender.com software.
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