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Summary 33 

Differential host responses in coronavirus disease 2019 (COVID-19) and multisystem inflammatory 34 
syndrome in children (MIS-C) remain poorly characterized. Here we use next-generation sequencing to 35 
longitudinally analyze blood samples from pediatric patients with acute COVID-19 (n=70) or MIS-C (n=141) 36 
across three hospitals. Profiling of plasma cell-free nucleic acids uncovers distinct signatures of cell injury and 37 
death between these two disease states, with increased heterogeneity and multi-organ involvement in MIS-C 38 
encompassing diverse cell types such as endothelial and neuronal Schwann cells. Whole blood RNA profiling 39 
reveals upregulation of similar pro-inflammatory signaling pathways in COVID-19 and MIS-C, but also MIS-C 40 
specific downregulation of T cell-associated pathways. Profiling of plasma cell-free RNA and whole blood RNA 41 
in paired samples yields different yet complementary signatures for each disease state. Our work provides a 42 
systems-level, multi-analyte view of immune responses and tissue damage in COVID-19 and MIS-C and 43 
informs the future development of new disease biomarkers. 44 
 45 
INTRODUCTION 46 

At the onset of the coronavirus disease 2019 (COVID-19) pandemic, SARS-CoV-2 was thought to only 47 
cause mild or asymptomatic infection in children. Large-scale surveillance studies have since demonstrated 48 
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cases of severe COVID-19-associated pneumonia 49 
occurring throughout the pandemic, especially in children 50 
with underlying comorbidities1,2. To date, mortality from 51 
COVID-19 in children has exceeded the pediatric mortality 52 
from influenza in any given season3,4. Furthermore, 53 
children are at risk for the post-infectious multisystem 54 
inflammatory syndrome in children (MIS-C) associated 55 
with COVID-19, which manifests as severe disease with 56 
systemic hyperinflammation and multiorgan involvement5. 57 
The diagnosis of MIS-C currently relies on clinical 58 
symptoms, and the pathogenesis of MIS-C is incompletely 59 
understood. Of note, cases of MIS-C were initially 60 
misdiagnosed as Kawasaki disease (KD)6, another 61 
systemic inflammatory syndrome, because of overlapping 62 
clinical features including fever, hyperinflammation, 63 
mucocutaneous involvement, and vascular endothelial 64 
dysfunction. However, subsequent studies have 65 
demonstrated distinct clinical7 and immunological8 66 
phenotypes associated with MIS-C as compared to KD. 67 
Thus, a better understanding of the pathogenesis of MIS-68 
C is critical to improve clinical diagnosis and inform 69 
targeted interventions, particularly as new variants of 70 
SARS-CoV-2 continue to emerge.  71 

Initial characterization by proteomics and RNA 72 
sequencing revealed that MIS-C has an inflammatory 73 
profile similar to KD and severe COVID-19, with key 74 
differences, including specific increases in IFNy, IL-6, IL-75 
17, IL-10, alarmin-related proteins, and other proinflammatory factors9–11. Autoantibody profiling reve76 
unique autoantigen profile targeting organs often injured during MIS-C, but the damage to the orga77 
tissues has not yet been quantified on a system-wide level12. Immune cell profiling showed that M78 
associated with an expansion of specific subsets of NK cells, T cells, and B cells10,13, and gene exp79 
profiling showed that a high fraction (~24%) of T cells in patients with MIS-C are T cell receptor beta v80 
11-2 (TRBV11-2) positive13–15. T cell receptor repertoire analyses have led to the hypothesis that the 81 
CoV-2 spike protein has a superantigen effect, causing T cell dysregulation that contributes to the devel82 
of MIS-C15. Finally, flow cytometry analyses have demonstrated that children with MIS-C have reduced83 
specific CD4+ and CD8+ T cells compared to children with COVID-19 and controls16.  84 

Despite these prior studies, much remains unclear about the pathogenesis of MIS-C, and there is85 
of biomarkers that could be leveraged to develop diagnostic and prognostic assays. Here we per86 
unbiased profiling of whole blood cellular RNA (wbRNA), plasma cell-free RNA (cfRNA), and plasma c87 
DNA (cfDNA) from 211 pediatric patients diagnosed with COVID-19 or MIS-C and 26 controls ac88 
separate pediatric hospital systems in the United States. Longitudinal sampling of these 3 blood a89 
enable a complementary and systems-level view of immune responses and cell/tissue damage associat90 
MIS-C and COVID-19. 91 
 92 

RESULTS 93 

Clinical COVID-19 and/or MIS-C cohort 94 

Figure 1. Study design and patient characte
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Table. Demographic and clinical characteristics of the study cohort 

 We collected 416 blood and/or plasma samples from 237 patients from the University of Califo95 
San Francisco (UCSF), Emory University/Children’s Healthcare of Atlanta (EMORY), and Children’s N96 
Hospital (CNH) (Fig. 1A and B, Table; Methods). Patients from Emory were prospectively enrolled97 
specimen collection and biobanking protocol, permitting the acquisition of longitudinal samples 98 
hospitalization, one month post-hospitalization, and ≥3 months post-hospitalization. Remnant clinical s99 
from patients at the other sites were biobanked and analyzed under approved institutional review boar100 
protocols with waiver of consent. All samples were stratified by diagnosis, time of collection, and sev101 
disease (Fig. 1C). Patients were either diagnosed with COVID-19 (without MIS-C) or MIS-C, o102 
uninfected control subjects. The control subjects were healthy outpatient children prospectively enro103 
Emory. Hospitalization time points were stratified as acute (0-4 days after hospital admission) or post-ac104 
days after hospital admission), and patients were classified according to clinical severity at time of prese105 
as having asymptomatic, mild, moderate, or severe disease (Supplementary Table). cfRNA and 106 
profiling by next-generation sequencing (NGS) were performed from plasma, and transcriptome RNA p107 
(RNA-Seq) was performed from whole blood. 108 
 109 
Circulating cell-free RNA profiling 110 

We performed transcriptome sequencing of plasma cfRNA on 132 samples from 124 pediatric p111 
Of the 132 samples, 88 (67%) were classified as MIS-C, 31 (23%) as moderate-to-severe COVID-19 112 
(10%) as negative controls (Fig. 2A). Recent work by Vorperian et al. demonstrated the possibility to q113 
cell-types-of-origin (CTO) of cfRNA using reference-based deconvolution17. Here, we implemented Baye114 
and the “Tabula Sapiens” human single-cell transcriptome atlas as a reference to quantify the cfRNA C115 
We consistently observed significant increases in cfRNA from neutrophils, kidney epithelial cells, thym116 
and solid organ-derived cell types in moderate-to-severe COVID-19 as compared to control individua117 
further increased contributions from these cell types in MIS-C (p-value<0.05 by Mann-Whitney U test) (118 
and C; Supplemental Fig. 1A). We also observed significant increases in cfRNA from endothelial ce119 
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neuronal Schwann specifically in children with MIS-C (p-value<0.05 by Mann-Whitney U test) (Fig. 2B a120 
Platelet cfRNA was decreased in MIS-C and moderate-to-severe COVID-19 compared to controls. The 121 
cfRNA were highly similar for samples collected at different hospitals, highlighting the potential for cfRN122 
diagnostic biomarker for COVID-19 or MIS-C.  123 
Figure 2. Plasma cell-free RNA profiling. (A) Study design and analysis overview. (B) Average cfRNA decon124 
results for COVID-19, MIS-C, and controls over various time points. (C) Cell-free RNA deconvolution results of end125 
cell, neutrophil, and Schwann cell derived cfRNA (D) Diversity of cell type contributions to the cell-free transcrip126 
measured by Simpson’s Index. (E) Dissimilarity of samples as compared to controls. Each point represents a com127 
to a control, as measured with the Bray-Curtis dissimilarity measurement. (F) Scaled counts per million (CPM) v128 
significantly differentially abundant genes (DAGs) (DESeq2, Benjamini-Hochberg adjusted p-value <129 
|Log2FoldChange| > 1.5). Number of DAGs indicated to the left of the heatmap. Samples and genes are clustere130 
on correlation. (G) Normalized CPM values of TGM2 and antiviral gene RSAD2 across sample groups at th131 
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timepoint. (H) Cumulative CPM of genes in significant gene ontology groups (topGO, adjusted p-value < 0.05). Panels A 132 
and B show the number of samples in each group. Box plots show cumulative CPM distribution of controls and acute 133 
timepoint MIS-C and moderate-to-severe COVID-19. Points represent average cumulative CPM and bars represent 134 
standard error. Outliers are indicated with arrows and values. Asterisks indicate statistical significance by Mann-Whitney 135 
U test using Benjamini-Hochberg adjusted p-values as follows: ns, non-significant;  *, p < 0.05; **, p < 0.01; ***, p < 0.001; 136 
****, p  < 0.001. 137 

Next, we sought to investigate longitudinal changes in cfRNA CTO in MIS-C. We observed significantly 138 
greater CTO diversity using Simpson’s index20 in acute MIS-C versus convalescent MIS-C (≥1 month post-139 
hospitalization) or controls (p-value<0.05 by Mann-Whitney U test) (Fig. 2D). In contrast, cfRNA CTO diversity 140 
was not significantly different for acute moderate-to-severe COVID-19 compared to controls or convalescent 141 
COVID-19 (p-value>0.05 by Mann-Whitney U test) (Fig. 2D). Samples from patients with acute moderate-to-142 
severe COVID-19 separated into 2 groups, one group with high and one with low cfRNA CTO diversity, 143 
consistent with the heterogeneity of cell types involved in COVID-19 as previously described21. We further 144 
compared the cfRNA CTO diversity of post-acute MIS-C and COVID-19. We found that samples from post-145 
acute MIS-C patients had high cfRNA CTO diversity while samples from post-acute moderate-to-severe 146 
COVID-19 patients had low cfRNA CTO diversity (Supplemental Fig. 1B and C). These trends were also 147 
observed using the Shannon diversity index22. Next, we analyzed pairwise dissimilarity in cfRNA CTO between 148 
COVID-19 and MIS-C samples and controls. The Bray-Curtis dissimilarity of cfRNA CTO within controls was 149 
significantly lower than between controls and acute MIS-C (mean dissimilarity = 0.18 versus 0.56, p-150 
value<0.05 by Mann-Whitney U test) and between controls and acute moderate-to-severe COVID-19 (mean 151 
dissimilarity = 0.18 versus 0.38, p-value<0.05 by Mann-Whitney U test) (Fig. 2E). Among convalescent 152 
COVID-19 or MIS-C samples, only the COVID-19 one-month follow up cohort exhibited significant divergence 153 
of cfRNA CTO compared to controls (Fig. 2E). Patients from 2 different hospitals (Emory and CNH) exhibited 154 
similar diversity and pairwise dissimilarity metrics (Fig. 2D and E). These findings revealed that acute MIS-C 155 
exhibited a higher diversity of cell types than either COVID-19 or controls, and that the observed cell types 156 
based on cfRNA gene expression were significantly different between MIS-C and COVID-19. 157 

We identified differentially abundant genes (DAGs) in cfRNA associated with dead or dying cells to gain 158 
insight into disease pathogenesis and to characterize potential diagnostic biomarkers23. Patients diagnosed 159 
with acute MIS-C or moderate-to-severe COVID-19 were compared pairwise to controls. Using an absolute 160 
log2 fold change cutoff of 1.5 and a Benjamini-Hochberg adjusted p-value of <0.01, 1,409 DAGs were 161 
identified between MIS-C and controls, 265 DAGs between COVID-19 and controls, and 102 DAGs between 162 
MIS-C and COVID-19. Unsupervised clustering revealed distinct gene expression profiles separating MIS-C 163 
and COVID-19 from controls (Fig. 2F). Samples from acute MIS-C patients were assigned into three groups 164 
based on unsupervised clustering, each group with a distinct CTO profile (Supplemental Fig. 1D). The three 165 
groups consisted of cfRNA predominantly derived from (1) endothelial cells, NK cells, and respiratory ciliated 166 
cells, (2) monocytes, neutrophils, and myeloid progenitors, and (3) platelets. The third group clustered with 167 
samples from controls and COVID-19 patients and may hence be a technical artifact associated with elevated 168 
platelet lysis during sample preparation. 169 

We analyzed significant DAGs between acute MIS-C and moderate-to-severe COVID-19 to obtain 170 
insights into disease pathogenesis and differential immune responses associated with these 2 diseases. Acute 171 
MIS-C was associated with elevated levels of endothelial cell markers (AKAP12, CNN3, FZD4), neuronal 172 
markers (GAS7, FEZ1, VAT1), actin-related genes (FSCN1, AFAP1L1, ITGA9), and an autoantigen also found 173 
in patients with celiac disease (TGM2) (Fig. 2G, Supplemental Fig. 1E). In contrast, acute COVID-19 was 174 
associated with elevated levels of interferon genes (IFI6, IFIT1, IFI44L, IFI27, IFITM1), antiviral genes (RSAD2, 175 
MX1, CMP2, LY6E), chemokine genes (CXCL5, CXCL3), and ciliated olfactory cell markers (OR2B6, ENKUR) 176 
(Fig. 2G, Supplemental Fig. 1E). Next, we performed gene ontology analysis using the R package topGO24. 177 
Gene ontology terms enriched in samples from COVID-19 patients included those associated with 178 
programmed cell death, response to viral infection, and regulation of the viral life cycle, while those enriched in 179 
MIS-C patients included actin cytoskeleton organization, endothelial cell migration, cytokine responses, and 180 
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cell migration. To identify disease-specific pathways, we calculated counts per million (CPM) for each gene 181 
ontology group by summing the counts of DAGs in that group25. Compared to controls, the cumulative CPM 182 
score for endothelial cell migration was significantly increased in acute MIS-C (p-value<0.05 by Mann-Whitney 183 
U test), while cumulative CPM scores for myeloid cell differentiation were increased in acute MIS-C and 184 
moderate-to-severe COVID-19 (p-value<0.05 by Mann-Whitney U test) (Fig. 2H). Control samples were 185 
associated with increased gene ontology groups related to cell division and cell communication, consistent with 186 
the observation that the baseline cfRNA signal is predominantly derived from extracellular vesicles and cells 187 
undergoing apoptosis, as typically occurs during mitosis26. Next, we perfomed pathway analysis using 188 
Ingenuity Pathway Analysis (IPA). Pathways enriched in MIS-C included pyroptosis, synaptogenesis, NF-kB 189 
signaling, IL-6 signaling, IL-8 signaling, antiviral responses including interferon induction, and cholesterol 190 
biosynthesis, while a different set of pathways enriched in COVID-19 included macrophage production of nitric 191 
oxide, coronavirus pathogenesis, LXR/RXR activation, GP6 signaling, PTEN signaling, summylation, gustation 192 
(taste), and HMGB1 signaling (Supplemental Fig. 1F and G).  193 
 194 

Whole blood RNA profiling by transcriptome sequencing (RNA-Seq) 195 
Whole blood transcriptome profiling was performed on 217 samples from 187 pediatric patients. Of the 196 

217 whole blood samples, 135 (62%) were classified as MIS-C, 56 (26%) as moderate-to-severe COVID-19 197 
and 26 (12%) as negative controls (Fig 3A). Samples from Emory and UCSF were used for the differential 198 
expression anlaysis (DEA) and no batch effect was detected via unsupervised clustering (Supplemental Fig. 199 
2A). Samples from CNH were used as a validation group (Fig. 3B-C). Pairwise comparisons of MIS-C and 200 
severe COVID-19 relative to controls showed a large degree of overlap in shared differentially expressed 201 
genes (DEGs) between MIS-C and COVID-19 (DESeq2, Benjamini-Hochberg corrected p-value < 0.01, 202 
|Log2FoldChange| > 1.5) (Fig. 3B-C, Supplemental Fig. 2A). The top 2 shared DEGs in both diseases were 203 
ADAMTS2, a metalloprotease that processes procollagen (Fig. 3D and Supplemental Fig. 2B), and CD177, a 204 
neutrophil activator (Supplemental Fig. 2B and C). Notably, ADAMTS2 has been previously implicated in 205 
severe COVID-19 in a study using peripheral blood mononuclear cell (PBMC) single-cell transcriptome 206 
sequencing27 , whereas CD177 has been reported to be upregulated in the blood of MIS-C and COVID-19 207 
patients28. We also observed elevated levels of ADAMTS2 during the post-acute stage of MIS-C and COVID-208 
19; however, one month after hospitalization levels returned to baseline in children with MIS-C but were still 209 
elevated in children with COVID-19 (Supplemental Fig. 2D). Certain inflammatory genes such as interferon-210 
stimulated gene 15 (ISG15) and macrophage-associated sialic acid binding Ig-like lectin 1 (SIGLEC1) were 211 
significantly upregulated in COVID-19 but not in MIS-C versus controls (Fig. 3D and Supplemental Fig. 2B). 212 
In contrast, T-cell receptor beta variable 11-2 (TRBV11-2) was more highly expressed in MIS-C than in 213 
COVID-19 versus controls (Fig. 3D), a finding that was also seen in a direct head-by-head comparison 214 
between MIS-C and COVID-19 (Supplemental Fig. 2D). This observation is consistent with two studies 215 
showing that TRBV11-2 is overexpressed by T-cells in most MIS-C patients, but not in patients with COVID-19, 216 
Kawasaki disease (KD), or toxic shock syndrome (TSS)14,29. These differences in TRBV11-2 expression in 217 
MIS-C versus COVID-19 or controls were observed at the post-acute timepoint, but not at the 1 month or ≥3 218 
months timepoints (Supplemental Fig 2D). Interestingly, expression of gene paralogs KLRF1 and KLRB1, 219 
natural killer (NK) cell surface receptors, were found to be significantly decreased in COVID-19 and MIS-C 220 
compared to controls (Fig. 3D, Supplemental Fig. 2C), consistent with lower expression of these genes 221 
reported in severe COVID-19 versus controls30. Decreased KLRF1 and KLRB1 expression in COVID-19 and 222 
MIS-C was also observed at the post-acute timepoint, but at 1 month post-hospitalization returned to baseline 223 
in MIS-C yet remained decreased in COVID-19 (Supplemental Fig. 2D). In the head-to-head comparison 224 
between MIS-C and COVID-19, the top upregulated genes in COVID-19 were most likely to be those related to 225 
the antiviral type 1 interferon response pathway (e.g., IFIT2, SIGLEC1, IFI27, IFI44L, ISG15, IFIT3) 226 
(Supplemental Fig. 2E; Supplemental Dataset 1). The top upregulated genes in MIS-C were related to 227 
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multiple pathways, likely due to the heterogeneous nature of MIS-C, including those associated with cel228 
communication (e.g., ITGA7, CDHR1, CD177, PGF, ERFE, MMP8) (Supplemental Dataset 1). 229 

230 
Figure 3. Whole blood RNA profiling. (A) Study design and analysis overview. (B) Scaled CPM values of signific231 
differentially expressed genes (DESeq2, Benjamini-Hochberg corrected p-value < 0.01, |Log2FoldChange| > 1.5). 232 
Differentially expressed genes were discovered using Emory and UCSF samples and the total number is indicated233 
left of each heatmap. Samples and genes are clustered based on correlation. (C) Scaled CPM values of the top 30234 
significantly expressed genes from each comparison (union of genes, DESeq2, Benjamini-Hochberg adjusted p-va235 
0.01, ranked by absolute Log2FoldChange). Samples and genes are clustered based on correlation. (D) CPM of 236 
ADAMTS2, TRBV11-2, SIGLEC1, and KLRB1 in controls, acute MIS-C, and acute moderate-to-severe COVID-19.237 
represent average CPM and bars represent standard error. Asterisks indicate statistical significance by Mann-Whit238 
test using Benjamini-Hochberg adjusted p-values as follows: ns, non-significant; *, p < 0.05; **, p < 0.01; ***, p < 0.239 
****, p < 0.001. Panels 3A show the number of samples in each group. (E) Top 20 differential pathways between c240 
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and MIS-C or COVID-19 ranked by activation z-score. Lines connect matching pathways. Pathways highlighted in red are 241 
distinct to either MIS-C or COVID-19. (F) Top 20 differential pathways between MIS-C and COVID-19 ranked by activation 242 
z-score. 243 

Next, we compared differentially expressed pathways in MIS-C and COVID-19 relative to controls (Fig. 244 
3E) and to each other (Fig. 3F). In both MIS-C and COVID-19 patients, we found increased activation of 245 
immune-related pathways which include phagosome formation, macrophage production of nitric oxide, 246 
dendritic cell  247 
maturation, TREM1, and IL-6 and IL-8 signaling. Pathways associated with hypoxia (hypoxia-inducible factor 1-248 
alpha, or HIF1-alpha signaling), neuroinflammation, and cardiac hypertrophy were also upregulated in both 249 
MIS-C and COVID-19. MIS-C patients showed a marked inhibition of T cell receptor, interleukin-2 (IL-2), and 250 
focal adhesion kinase (FAK) signaling pathways, concurrent with an activation of tumor environment, IL-1, and 251 
IL-13 signaling pathways. In contrast, COVID-19 patients showed a more pronounced activation of cytokine, B-252 
cell, and adrenomedullin pathways (Fig. 3F). We analyzed differentially expressed pathways and their 253 
associations with diseases or biological functions and observed striking differences between MIS-C and 254 
COVID-19 compared to controls (Supplemental Fig. 3). MIS-C was characterized by downregulation of 255 
multiple pathways related to inflammatory response, cell death and survival, cell-to-cell signaling, and immune 256 
cell trafficking, whereas activation of these same pathways was predicted in COVID-19. These results are 257 
consistent with the downregulation of exhausted T cells that has been previously reported in children with MIS-258 
C31. 259 
 260 
Cell-free DNA tissues-of-origin by methylation profiling  261 

We performed whole genome bisulfite sequencing of cfDNA extracted from plasma samples from 67 262 
children with MIS-C (n=41), COVID-19 (n=21), or from controls (n=5) (Fig. 4A) and compared the cfDNA data 263 
to previously published data from an adult COVID-19 cohort32. The highest mean levels of total cfDNA were 264 
found in children with MIS-C as compared to pediatric COVID-19, adult COVID-19, or controls (4.12 ng/uL, p-265 
value<0.03, by Mann-Whitney U test) (Fig. 4B). A subset of MIS-C patients (n=3) showed a markedly elevated 266 
burden of cfDNA (>10 ng/ul), likely secondary to widespread tissue injury. There were also significantly higher 267 
mean levels of cfDNA in more severe COVID-19 pediatric and adult cases as compared to mild or 268 
asymptomatic COVID-19 cases and controls (p-value<0.05 by Mann-Whitney U test) (Fig. 4B). 269 

We next examined the utility of cfDNA tissues-of-origin (TOO) profiling to identify tissue profiles by 270 
comparison to a reference set of methylation profiles of purified cells and tissue samples, as previously 271 
described32. We observed significantly elevated levels of solid-organ-derived cfDNA in pediatric acute MIS-C 272 
and pediatric moderate-to-severe COVID-19 as compared to pediatric controls, pediatric acute mild or 273 
asymptomatic COVID-19, adult controls, and adult mild-to-severe COVID-19 cases (p-value<0.03, by Mann-274 
Whitney U test) (Fig. 4C). Levels of solid-organ-derived cfDNA in acute MIS-C tended to be increased relative 275 
to acute moderate-to-severe COVID-19, although this difference was not significant (p-value=0.12, by Mann-276 
Whitney U test) (Fig. 4C). We further observed elevated levels of cfDNA derived from innate immune cell types 277 
in acute MIS-C and moderate-to-severe pediatric COVID-19 compared to all other groups; however, this 278 
difference was not significant (Fig. 4C). In addition, we identified extensive heterogeneity in the TOO profiles 279 
from patients in the moderate-to-severe MIS-C cohort, including elevated levels of eosinophil, neutrophil, 280 
erythroblast, liver, heart, kidney, lung, and spleen-derived cfDNA (Supplemental Fig. 4). Although recent 281 
studies have reported increases in mitochondrial cfDNA in plasma from patients diagnosed with COVID-1933, 282 
here we observed a significant reduction in the concentration of mitochondrial cfDNA in pediatric patients with 283 
MIS-C and COVID-19 (p-value<0.04, by Mann-Whitney U test) (Fig. 4D). Finally, we found that cfDNA metrics 284 
associated with affected tissues and organs mirrored organ-specific clinical laboratory parameters. Significant 285 
correlations between kidney cfDNA concentration and creatinine levels (Pearson correlation; R=0.40, p-286 
value=0.004), total cfDNA concentration and C-reactive protein (CRP) levels in the blood (Pearson correlation; 287 
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R=0.34, p-value=0.022), and liver cfDNA concentration and ALT levels (Pearson correlation; R=0.3288 
value=0.036) were observed (Fig. 4E). 289 
 290 

291 
Figure 4. Plasma cfDNA tissues-of-origin by methylation profiling. (A) Study design and analysis overview. (292 
cfDNA concentration and solid organ derived cfDNA concentration. (C) cfDNA concentration derived from inn293 
adaptive immune cell types. (D) Abundance of mitochondrial derived cfDNA. Asterisks indicate statistical signific294 
Mann-Whitney U test using Benjamini-Hochberg adjusted p-values as follows: ns, non-significant;  *, p < 0.05; **, p295 
***, p < 0.001; ****, p  < 0.001. (E) Correlation of cfDNA metrics with standard clinical measurements, along 296 
Pearson correlation Benjamini-Hochberg adjusted p-value for each comparison. Panels A and B show the nu297 
samples corresponding to each group. Abbreviations: ASX, asymptomatic. 298 
 299 
Comparative analysis of plasma cell-free RNA and whole blood RNA  300 

A subset of cellular wbRNA and cfRNA samples were derived from the same blood draw 301 
providing the opportunity to directly compare these two different analytes (Fig. 5A). First, we assess302 
correlation of cfRNA and wbRNA abundance for genes with high average abundance (mean log-trans303 
CPM>10)  304 
across all sample categories. We found 1002 genes with significantly correlated wbRNA and 305 
abundance (Pearson coefficient Benjamini-Hochberg adjusted p-value < 0.05). Positive correlatio306 
observed in 992 (99%) of these 1002 genes, predominated by genes associated with myeloid cell trans307 
such as BNIP3L, HEMGN and NFKBIA (Supplemental Fig. 5A and B). Randomized permutation 308 
(n=1000 permutations) using either randomly paired genes or samples yielded on average far309 
significantly correlated genes (mean=250 and <1 with gene and sample randomization, respective310 
Benjamini-Hochberg adjusted p-value of <0.05) and decreased positive correlation (56% and 74% wit311 
and sample randomization, respectively), confirming the robustness of these observations. Next, we ex312 
the degree of overlap in DEGs/DAGs among patients with either MIS-C (n=26) or moderate-to-severe C313 
19 (n=13), or controls (n=13) (Fig. 5B). We observed a substantial overlap in DEGs/DAGs in wbRN314 
cfRNA when comparing MIS-C to controls (n=494) and COVID-19 to controls (n=153), but very little 315 
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when comparing MIS-C to moderate-to-severe COVID-19 (n=9). Of the 9 DEGs/DAGs that overlap when 316 
comparing MIS-C to moderate-to-severe COVID-19, seven had been previously reported in association with 317 
COVID-19 (IFI6, IFI44L, RSAD2, LY6E, EPSTI1, XAF1, MX1)34–38. Similar to the gene abundance profiles, 318 
differential pathway analysis revealed minimal overlap in top enriched pathways between wbRNA and cfRNA 319 
for each subgroup comparison (Supplemental Fig. 5C and D). 320 
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Figure 5: Comparison of paired whole blood RNA-seq and cfRNA sequencing data. (A) Study design and 321 
overview. (B) Overlap of differentially abundant genes (DAGs)/differentially expressed genes (DEGs) betwee322 
blood RNA-seq and cfRNA-seq using paired samples (DESeq2, Benjamini-Hochberg adjusted p-value 323 
|Log2FoldChange| > 1). Venn Diagrams represent the overlap of upregulated genes between analytes in each324 
group, as indicated by fill color. (C) Comparison of clustering topology between paired whole blood RNA-seq and325 
sequencing samples. Samples were clustered based on correlation of DAGs/DEGs from their respective analyse326 
between trees connect paired wbRNA and cfRNA samples. Correlation was calculated using Baker’s Gamma327 
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values were calculated using a Monte Carlo permutation test. (D) Comparison of cell-types-of-origin diversity between 328 
cfRNA and wbRNA as calculated with a Simpson Index. Paired samples are connected with a line. Asterisks indicate 329 
statistical significance by Mann-Whitney U test using Benjamini-Hochberg adjusted p-values as follows: ns, non-330 
significant;  *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p  < 0.001. (E) Cell-type-of-origin fractions, normalized to blood 331 
cell types and split by diagnosis group. 332 

 333 
Next, we compared the agreement in unsupervised hierarchical sample clustering based on wbRNA 334 

and cfRNA profiling of DEGs (Fig. 5C). Samples clustered similarly in the MIS-C versus control and COVID-19 335 
versus control comparisons (Baker’s Gamma Index = 0.60 and 0.64, respectively; two-sided p-values <0.01 for 336 
both, n=39 and n=26, respectively). In contrast, the MIS-C versus COVID-19 comparison yielded clustering 337 
that was less similar but still significantly correlated (Baker’s Gamma Index = 0.11; two-sided p-value = 0.013, 338 
n=39). We  339 
used subsampling and bootstrapping to determine whether the high Baker’s Gamma index in the COVID-19 340 
versus control comparison was an artifact due to a smaller sample size (n=26). We did not observe a 341 
significant difference between the originally calculated values and bootstrapped distribution of Baker’s Gamma 342 
Index values after subsampling (p-value = 0.88 for the MIS-C versus control comparison; p-value=0.40 for the 343 
MIS-C versus COVID-19 comparison). Thus, despite the lack of overlap in DEGs, cfRNA and wbRNA sample 344 
grouping by unsupervised clustering was similar for the MIS-C and COVID-19 samples relative to controls, 345 
indicating that these two analytes provide complementary information.  346 

Finally, we compared the cell-types-of-origin (CTO) in wbRNA and cfRNA between paired samples. We 347 
observed significantly different wbRNA and cfRNA CTO diversity in paired samples from acute moderate-to-348 
severe COVID-19 patients and paired samples from controls (p-value = 0.032 and p-value = 0.0007, 349 
respectively, by paired Wilcoxon test) (Fig. 5D). However, the CTO diversity was not significantly different 350 
between wbRNA and cfRNA in paired samples from patients with acute MIS-C (p-value = 0.41 by paired 351 
Wilcoxon test) (Fig. 5D). Furthermore, in unpaired analyses, we observed a significant difference in wbRNA 352 
CTO diversity between acute moderate-to-severe COVID-19 and controls, but not between acute MIS-C and 353 
controls (Mann-Whitney U Test, Benjamini-Hochberg adjusted p-value = 0.02 and 0.10) (Supplemental Fig. 354 
5E). Conversely, we observe a significant difference in cfRNA CTO diversity in acute MIS-C and controls, but 355 
not in acute moderate-to-severe COVID-19 and controls (Mann-Whitney U Test, Benjamini-Hochberg adjusted 356 
p-value = 0.03 and 0.32) (Supplemental Fig. 5E). Finally, we compared patterns of blood-derived CTO in 357 
paired wbRNA and cfRNA samples from patients with MIS-C, patients with acute moderate-to-severe COVID-358 
19, and controls (Fig. 5E-G). The wbRNA and cfRNA CTO profiles corresponding to MIS-C and COVID-19 359 
(Fig. 5F and G), characterized by multiple blood cell types, were distinct from the control group profiles, which 360 
consisted of a single predominant baseline cell type (erythroid precursors in wbRNA and platelets in cfRNA) 361 
(Fig. 5E).  Within each disease group, wbRNA and cfRNA CTO profiles were also distinct. For COVID-19, 362 
wbRNA CTO profiles had higher contributions from neutrophils, NK cells, T cells, and monocytes, whereas 363 
cfRNA CTO profiles had lower proportions of these inflammatory cells (Fig. 5F). In contrast, for MIS-C, wbRNA 364 
CTO profiles were predominated by neutrophils, whereas cfRNA CTO profiles had relatively higher 365 
contributions from myeloid progenitor cells, NK cells, and monocytes (Fig. 5G). 366 
 367 
DISCUSSION 368 

Here, we report a systems-level, longitudinal analysis of COVID-19 and MIS-C by next-generation 369 
sequencing of nucleic acids (cfRNA, wbRNA, and cfDNA) in a large multi-hospital study of 416 blood samples 370 
from 237 patients. Using plasma cfRNA profiling, we identify signatures associated with cellular injury and 371 
death that distinguish MIS-C and COVID-19, as well as the involvement of previously unreported cell types in 372 
MIS-C. wbRNA analysis reveals substantial overlap in pro-inflammatory pathways between MIS-C and COVID-373 
19, yet also reveals pathways that are specific to each disease state. Plasma cfDNA profiling suggests 374 
increased cfDNA and solid organ involvement in MIS-C compared to COVID-19 and controls. Comparative 375 
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analyses of paired cfRNA and wbRNA samples demonstrate that these analytes yield separate, but 376 
complementary, signatures associated with MIS-C and COVID-19 that reflect distinct cell types of origin. These 377 
results provide novel insights into the differential pathogenesis of MIS-C and COVID-19 and lay the 378 
groundwork for the development of minimally invasive diagnostic tests for these two disease states. 379 

Whole blood RNA sequencing (RNA-Seq) of cellular RNA has traditionally been considered the gold 380 
standard method for assaying gene expression in blood. However, the signal from wbRNA is primarily derived 381 
from circulating leukocytes due to primarily sampling cell types found in the blood, thus measuring the 382 
activation of a patient’s inflammatory and immune response to an infection. In contrast, plasma cfRNA and 383 
cfDNA both measure levels and types of cell death from circulating cell types and peripheral tissues17,39. With 384 
respect to cells that are turning over or dying, cfDNA enables precise quantification of cell numbers, whereas 385 
cfRNA enables characterization of gene expression and pathways40–42. cfRNA profiling can leverage the 386 
extensive information regarding cell type specific gene expression that is available from recent large-scale 387 
human cell atlas projects, whereas reference data for cfDNA methylation profiling is currently more limited17. 388 
Overall, these cell-associated (wbRNA) and cell-free (cfRNA and cfDNA) approaches mutually complement 389 
each other.  When combined, they provide a more complete picture of the dynamic, “yin-yang” interplay 390 
between host and pathogen or between cell activation / proliferation and cell death than achievable using a 391 
single modality alone.  392 

cfRNA is an analyte that probes cellular death and immune dynamics on a systems level. Previous 393 
analyses of MIS-C and COVID-19 from the blood have relied on single cell or bulk RNA-Seq of whole blood 394 
cells, which generally only characterizes the host immune response, or on proteomic and cytokine-based 395 
assays, which use a limited number of markers or for which there is a lack of standardized reference data. In 396 
contrast, the signals from cfRNA are derived from any cell or vascularized tissue type, and there is a plethora 397 
of RNA-Seq reference data that can be used to interpret results. Consistent with prior studies, here we observe 398 
increased levels of cfRNA from endothelial cells in MIS-C43 and from neutrophils and thymocytes in MIS-C and 399 
COVID-199,44,45 as well as increased signaling from disease-specific pathways in MIS-C (IL-6, IL-8, and NF-400 
kB)12,14 and COVID-19 (olfactory, gustation, sumoylation, coronavirus replication, and HMGB1)11,13,46–48. 401 
However, the cfRNA data also uncovered several novel features of MIS-C, such as enrichment of neuronal 402 
genes associated with synaptogenesis and increased cfRNA burden from Schwann cells. These findings 403 
suggest that peripheral nervous system damage may be a common feature of MIS-C. Interestingly, both 404 
central and peripheral nervous system involvement in MIS-C have been previously described49,50, although 405 
these clinical manifestations are infrequent. Notably, peripheral nervous system damage has also been 406 
documented in pediatric and adult COVID-19 and in post-acute sequelae such as long COVID51–53. Future 407 
studies are needed to elucidate the mechanisms and clinical spectrum of neurologic involvement in acute MIS-408 
C and their association with long-term neurodevelopment. Furthermore, we observe an enrichment of genes 409 
associated with the pyroptosis pathway in MIS-C, likely related to inflammasome activation54. Pyroptosis is a 410 
form of rapid cellular death that occurs during highly inflammatory states55. Previous reports have shown that 411 
pyroptosis occurs in vascular endothelial cells in Kawasaki disease, a similar systemic inflammatory 412 
syndrome56. Based on the observed increase of cfRNA from endothelial cells and cfRNA signatures of 413 
pyroptosis, our data thus support the likely critical role of pyroptosis and endothelial cells in MIS-C 414 
pathogenesis, and may help explain the overlapping clinical presentations between MIS-C and Kawasaki 415 
disease in acutely ill pediatric patients.  416 

Whole blood RNA-Seq reveals a high degree of overlap in shared, largely pro-inflammatory genes and 417 
pathways between COVID-19 and MIS-C. This is expected as both diseases are caused by SARS-CoV-2 and 418 
are highly inflammatory states. However, different levels of expression are observed for certain genes, such as 419 
upregulation of ISG15 and SIGLEC1 in COVID-19 and upregulation of TRBV11-2 in MIS-C, as well as for 420 
certain pathways, such as inhibition of T-cell receptor, IL-2, and FAK signaling pathways in MIS-C. The latter 421 
finding is consistent with the observation of “T-cell exhaustion” associated with downregulation of NK and 422 
CD8+ T cells driving a sustained inflammatory response in MIS-C31. Genes showing differences in levels of 423 
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gene expression (e.g. ISG15, SIGLEC1, TRBV11-2, CREB3L) or in persistence of gene expression as 424 
revealed by longitudinal data (e.g. ADAMTS2, KLRFB1), may be useful target biomarkers for diagnostic and 425 
prognostic assays that can discriminate between MIS-C, COVID-19, and other hyperinflammatory conditions. 426 

Like cfRNA, cfDNA allows monitoring and quantification of tissue injury and cell death in a minimally 427 
invasive manner from blood. Previous studies have shown that the relative concentrations of cfDNA in specific 428 
tissues vary in different disease states, including COVID-19 in adults, solid-organ transplant rejection, graft-429 
versus-host disease following stem cell transplantation, urinary tract infection, and cancer32,57–60. The profiling 430 
of cell-type specific methylation in cfDNA can also be used to estimate cfDNA tissues-of-origin (TOO). Here we 431 
quantify the concentration of cfDNA and perform cfDNA TOO profiling to assess the extent of cell, tissue, and 432 
organ injury related to MIS-C and COVID-19. We observe an increase in cell death and high levels of 433 
heterogeneity in TOO of cfDNA in MIS-C compared to COVID-19 and controls, consistent with the systemic 434 
inflammatory nature of MIS-C that manifests clinically with the involvement of multiple organs and organ 435 
systems. In addition, we observe a decrease in the concentration of mitochondrial cfDNA in MIS-C and 436 
COVID-19, which is discrepant from previous studies reporting an increase of mitochondrial cfDNA by PCR61. 437 

Most prior host-biomarker studies of MIS-C and pediatric COVID-19 analyze samples from the acute 438 
symptomatic timepoint. Here, we report longitudinal sampling of cfRNA and wbRNA in patients with MIS-C and 439 
COVID-19 at acute, post-acute, one-month post-hospitalization, and ≥3 months post-hospitalization timepoints. 440 
We observe that most, but not all, gene measurements return to “baseline” levels similar to those in control 441 
samples by one-month psot-hospitalization. In wbRNA we observe opposing dynamics of ADAMTS2 levels in 442 
MIS-C and COVID-19, in which elevated ADAMTS2 levels return to baseline in MIS-C but not in COVID-19 at 443 
one-month post-hospitalization. Similarly, we observe recovery of wbRNA KLRB1 levels in MIS-C at one-444 
month post-hospitalization, but not in COVID-19. These findings may be related to the post-acute sequelae of 445 
SARS-CoV-2 infection (“long COVID”) that has been postulated to be caused by persistent immune 446 
dysregulation and that can occur after COVID-19 62. In contrast, despite the severity of the initial presentation, 447 
most clinical and laboratory abnormalities from MIS-C tend to quickly resolve within a few weeks, along with 448 
normalization of inflammatory and injury biomarkers63. In cfRNA, we found that most biomarker measurements, 449 
such as CTO values and gene modules scores, persist at 1 month but return to baseline ≥3 months post-450 
hospitalization. These results are consistent with the generally accepted time frames of recovery after MIS-C64. 451 

We report a large-scale comparison (n=96) of wbRNA and cfRNA profiles from paired samples in MIS-452 
C and COVID-19. A previous study compared paired wbRNA and plasma cfRNA from healthy individuals but 453 
was limited by small sample size (n=3) and lack of a disease group for comparison65. Our results reveal 454 
distinct, largely nonoverlapping sets of DAGs/DEGs associated with MIS-C, COVID-19, and non-inflammatory 455 
controls in wbRNA and cfRNA. Thus, both analytes provide complementary information with regards to the 456 
ability to discriminate MIS-C and COVID-19 from controls and from each other. These findings are consistent 457 
with the origin of wbRNA and cfRNA; wbRNA being primarily derived from active immune cells in blood and 458 
cfRNA from dying cells from the blood and peripheral tissues. They are also consistent with our CTO data 459 
showing predominantly erythrocytes in wbRNA and platelets in cfRNA and a greater diversity of cell types from 460 
peripheral tissues represented in cfRNA as compared to wbRNA. Overall, our results underscore the potential 461 
utility of cfRNA and cfDNA as complementary biomarkers to more traditional diagnostic methods (wbRNA, 462 
cytokines, proteomics) in better diagnosing and enhancing our understanding of complex disease states such 463 
as MIS-C. 464 
 465 
Limitations 466 

This study has multiple limitations. First, we have a limited sample size of asymptomatic-to-mild 467 
COVID-19 (wbRNA, n=6; cfRNA, n=6; cfDNA, n=10), as well as a limited number of longtudinally collected 468 
samples (MIS-C or COVID-19 during post-acute, one-month, or ≥3 months timepoints: wbRNA, n=63; cfRNA, 469 
n=45) and controls (cfDNA, n=5). Second, the accuacy of our deconvolution analyses may be limited by the 470 
reference set used as a comparator. The cfDNA deconvolution reference set consists of a limited number of 471 
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cellular and tissue derived methylomes. The cfRNA/wbRNA deconvolution reference set is derived from a 472 
single cell RNA sequencing (scRNA-seq) atlas that sequenced poly-adenylated transcripts, while here we 473 
performed total RNA-Seq with host ribosomal RNA depletion. Third, we lacked samples from “look-alike” 474 
inflammatory conditions (e.g., Kawasaki disease, toxic shock syndrome, macrophage activation syndrome), 475 
and thus cannot determine whether the signatures in MIS-C and COVID-19 we observe are distinct from these 476 
other conditions. Future studies are needed to address these limitations. 477 
 478 
METHODS 479 
 480 
Ethics Statement. The protocols for this study were approved locally at each site by the University of 481 
California, San Francisco (UCSF) Institutional Review Board (IRB) (#21-33403), San Francisco, CA; Emory 482 
University IRB (STUDY00000723), Atlanta, GA;  Children’s National Medical Center IRB (Pro00010632), 483 
Washington, DC; and Cornell University IRB for Human Participants (2012010003), New York, NY. The 484 
protocols at UCSF and Children’s National Medical Center were “no subject contact” sample biobanking 485 
protocols under which data was extracted from the medical chart and consent was not obtained. The protocol 486 
at Emory University IRB was a prospective enrollment study under which parents provided consent and 487 
children assent as appropriate for age. De-identified samples and patient information were shared with 488 
collaborating institutions for sample processing (UCSF and Cornell University) and analysis.  489 
 490 
Sample Acquisition UCSF. Pediatric hospitalized patients who tested positive and negative for COVID-19 491 
were identified from SARS-CoV-2 real-time PCR (RT-PCR) results from the UCSF Clinical Laboratories daily. 492 
Residual whole blood samples were collected in EDTA lavender top tubes from residual blood available. 250 µl 493 
of sample was aliquoted with 250 µl of 2x DNA/RNA shield (Zymo Research) for a 1:1 ratio. The remaining 494 
blood was centrifuged at 2500 rpm for 15 min and the available plasma was obtained. Samples were properly 495 
identified and added to the biobanking registry. All samples were stored at -80� freezer until used. 496 
 497 
Sample Acquisition Emory and Children’s Healthcare of Atlanta. At Emory and Children’s Healthcare of 498 
Atlanta, pediatric patients with COVID-19, MIS-C, or controls were enrolled into a specimen collection protocol 499 
following informed consent and assent, as appropriate for age. For this study, patients were classified as 500 
having MIS-C if they met the CDC case definition, and as having COVID-19 if they had any PCR-confirmed 501 
SARS-CoV-2 infection. Controls were healthy outpatients with no known history of COVID-19 who volunteered 502 
for specimen collection. The specimen collection protocol was approved by the Emory University IRB. Residual 503 
whole blood and plasma samples were collected from the clinical laboratory, and prospective blood samples 504 
were additionally collected in EDTA lavender top tubes. Longitudinal samples were also collected at 1-month 505 
and ≥3-months timepoints for participants who returned for follow-up. From the EDTA tubes, whole blood was 506 
aliquoted, and the remaining blood was centrifuged at 2500 rpm for 15 min to obtain the available plasma. All 507 
samples were de-identified and assigned study IDs. Samples were stored at -80� and shipped on dry ice to 508 
either UCSF or Cornell for analysis. 509 
 510 
Sample Acquisition Children’s National. Patients with MIS-C were identified by a multidisciplinary task force 511 
according to the CDC case definition. Remnant whole blood samples from this population were identified, 512 
collected, and processed 12-72 hours after collection. Samples were centrifuged at 1300 xG for 5 minutes at 513 
room temperature. Plasma was aliquoted into a cryovial and frozen at -80°C. A DMSO-based cryopreservative 514 
(CryostorⓇ CS10) was added in a 1:1 ratio to the cell pellet and then frozen at -80°C in a controlled rate 515 

freezing container (i.e., Mr. Frosty tm). After freezing the pellets with Cryostor they were transferred to liquid 516 
nitrogen cryostorage within 1 week.  517 
 518 
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Clinical Data.  For the purposes of this study, MIS-C was defined as any patient who met the CDC case 519 
definition5. Multidisciplinary teams which adjudicated whether a patient met the case definition of MIS-C. 520 
COVID-19 was defined as any patient with PCR-confirmed SARS-CoV-2 infection within the preceding 14 days 521 
who did not also meet the MIS-C case definition. Clinical data was abstracted from the medical record and 522 
entered into a shared REDCap66,67 database housed at UCSF.  523 
 524 
Cell-free RNA Sample Processing and RNA Extraction. Plasma samples were received on dry ice and 525 
stored at -80°C until processed. Prior to extraction, plasma was thawed at room temperature and spun at 526 
1300xg for 10min at 4°C. The supernatant was taken and cfRNA was isolated from plasma (115-1000 µl) using 527 
the Norgen Plasma/Serum Circulating and Exosomal RNA Purification Mini Kit (51000, Norgen). Extracted 528 
RNA was DNase treated with 14 µl of 10 µl DNase Turbo Buffer (AM2238, Invitrogen), 3 µl DNase Turbo 529 
(AM2238, Invitrogen), 1µl Baseline Zero DNase (DB0715K, Lucigen-Epicenter) for 30 min at 37°C and then 530 
concentrated into 12 µl using the Zymo RNA Clean and Concentrate Kit (R1015, Zymo). 531 
 532 
 533 
Cell-free RNA Library Preparation and Sequencing. Sequencing libraries were constructed from 8 µl of 534 
concentrated RNA using the Takara SMARTer® Stranded Total RNA-Seq Kit v2 – Pico Input Mammalian 535 
(634418, Takara). Briefly, extracted RNA was reverse transcribed using random priming, barcoded using the 536 
SMARTer RNA Unique Dual Index Kit (634451, Takara), rRNA depleted, and further amplified. Library 537 
concentration was quantified using a Qubit™ 3.0 Fluorometer (Q33216, Invitrogen) with the dsDNA HS Assay 538 
Kit (Q32854, Invitrogen). Libraries were quality-controlled using an Agilent Fragment Analyzer 5200 539 
(M5310AA, Agilent) with the HS NGS Fragment kit (DNF-474-0500, Agilent). Libraries were pooled to equal 540 
concentrations and sent to the Cornell Genomics core for 150-base pair, paired-end sequencing on an Illumina 541 
NextSeq550 machine for an average of 10 million reads per sample. 542 
 543 
Cell-free DNA Sample Processing and Extraction. Plasma samples were received on dry ice and stored at -544 
80°C until processed. Prior to extraction, plasma samples (75-650 µl) were thawed at room temperature and 545 
spun at 1300xg for 10min at 4°C. The supernatant was taken and cfDNA was isolated from plasma using the 546 
Qiagen Circulating Nucleic Acid Kit (55114, Qiagen) and eluted to 45 µl. 547 
 548 
Cell-free DNA Library Preparation and Sequencing. Sequencing libraries were constructed from 20 µl of 549 
extracted DNA as previously described32. Library concentration was quantified using a Qubit™ 3.0 Fluorometer 550 
(Q33216, Invitrogen) with the dsDNA HS Assay Kit (Q32854, Invitrogen). Libraries were quality-controlled 551 
using an Agilent Fragment Analyzer 5200 (M5310AA, Agilent) with the HS NGS Fragment kit (DNF-474-0500, 552 
Agilent). Libraries were pooled to equal concentrations and sent to the Cornell Genomics core for 150-base 553 
pair, paired-end sequencing on an Illumina NextSeq550 machine for an average of 33 million reads per 554 
sample. 555 
 556 
Whole Blood RNA Sample Processing and RNA Extraction. Whole blood samples were received on dry ice 557 
and stored at -80°C until processed. Before extraction, all samples were thawed and pretreated with a 1:1 ratio 558 
of 2X RNA/DNA Shield (R1200, Zymo Research) if this was not added prior to freezing. RNA was extracted 559 
from whole blood samples (400 µl) using the Quick-RNA Whole Blood kit (R1201, Zymo Research) following 560 
manufacturer’s instructions. Ribosomal depletion was not performed. RNA was eluted in 15 µl of RNase-free 561 
water and stored at -80 oC until use. The concentration of eluted RNA was measured using a Qubit™ Flex 562 
Fluorometer (Q33326, Invitrogen) with the RNA HS Assay Kit (Q32852, Invitrogen). RNA Integrity was 563 
assessed on a subset of samples using the Agilent Bioanalyzer RNA 6000 Nano/Pico Chip (5067-4626) to 564 
determine the RNA Integrity Number (RIN). All samples analyzed were partially degraded with RIN values 565 
between 2 and 5. 566 
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 567 
Whole Blood RNA Library Preparation and Sequencing. Extracted RNA (7 µl or 10-200 ng) was processed 568 
using the NEBNext rRNA Depletion Kit (Human/Mouse/Rat) (E6310, NEB) and the NEBNext Ultra II Directional 569 
RNA Library Prep Kit (E7760 & E7765, NEB) following manufacturer’s specifications. Briefly, samples were 570 
first treated for ribosomal RNA depletion and DNase digestion, fragmented for 8 min, and reverse transcribed. 571 
Adapters were ligated to the purified cDNA (1:25 diluted adaptor), followed by library amplification and 572 
barcoding using NEBNext Multiplex Oligos (E6609L, NEB) sets 1 to 4. Libraries were purified using NEBNext 573 
Sample Purification Beads (E7103, NEB). 574 
 575 
Libraries were quantified using the Qubit™ Flex (Q33327, Invitrogen) with the dsDNA HS Assay Kit (Q32854, 576 
Invitrogen). Libraries were pooled and sent to the UCSF Center of Advanced Technology (CAT) for sequencing 577 
on an Illumina NovaSeq 6000 Sequencing System using 150-base pair paired-end sequencing. Negative 578 
controls (nuclease-free water) were included in every run to monitor for contamination.  579 
 580 
RNA Bioinformatic Processing. Sequencing data was processed using a custom bioinformatics pipeline 581 
utilizing the Snakemake workflow management system (v7.7.0) for the cfRNA samples and a bash script for 582 
the wbRNA samples. Samples were quality filtered and trimmed using BBDUK (v38.90), aligned to the 583 
Gencode GRCh38 human reference genome (v38, primary assembly) using STAR (v2.7.0f) default 584 
parameters, and features quantified using featureCount (v2.0.0). cfRNA samples were also deduplicated using 585 
Picard MarkDuplicates prior to feature quantification (v2.19.2). Mitochondrial, ribosomal, X, and Y chromosome 586 
genes were removed prior to analysis. 587 

 588 
RNA Sample Quality Filtering. wbRNA and cfRNA samples were filtered using different QC metrics due to 589 
differences in RNA concentration and quality. wbRNA samples with less than 10% of reads aligning to the 590 
transcriptome were removed from all analyses. cfRNA samples were filtered on the basis of DNA 591 
contamination, rRNA contamination, number of counts, and RNA degradation. DNA contamination was 592 
estimated by calculating the ratio of reads mapping to introns and exons. Samples with an intron to exon ratio 593 
above three were removed. rRNA contamination was measured using Samtools (v1.14). Total counts were 594 
calculated using featureCounts. Degradation was estimated by calculating the 5-3’ bias as calculated by 595 
Qualimap (v2.2.1). Samples with rRNA contamination, total counts, or 5-3’ bias greater than three standard 596 
deviations from the mean were removed. Also, samples with less than 75,000 total counts were removed.  597 
 598 
RNA Cell Deconvolution and Diversity. Cell type deconvolution was performed using BayesPrism (v1.1) with 599 
the Tabula Sapiens single cell RNA-seq atlas (Release 1) as a reference. Cells from the Tabula Sapiens atlas 600 
were grouped as previously described in Vorperian et al. Cell types with more than 100,000 unique molecular 601 
identifiers (UMIs) were included in the reference and subsampled to 300 cells using ScanPy (v1.8.1). Providing 602 
an equal number of cells to the deconvolution ensured an unbiased prior for the Bayesian algorithm used in 603 
BayesPrism. Cell-type contribution diversity metrics were calculated using the vegan R package (v2.5.7).  604 
 605 
RNA Differential Abundance/Expression Analysis. Comparative analysis of DEGs was performed using a 606 
negative binomial model as implemented in the DESeq2 package (wbRNA: v1.28.1, cfRNA: v1.34.0) using a 607 
Benjamini-Hochberg corrected p-value cutoff <0.01, unless otherwise stated. Heatmaps were constructed 608 
using the pheatmap package in R (v1.0.12), samples and genes were clustered using correlation based 609 
hierarchical clustering. Gene ontology analysis was performed using the topGO R package (v2.46.0)24 using a 610 
Benjamini-Hochberg-corrected p-value cutoff of <0.05. Cumulative CPM values for gene ontology terms were 611 
calculated by taking the sum of normalized counts from all the significant genes in each gene ontology module. 612 
Canonical pathways, diseases and functions were analyzed using QIAGEN Ingenuity Pathway Analysis (IPA) 613 
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software (v73620684). Pathway analysis was run twice: (1) with all available samples and (2) with samples that 614 
have both whole blood and cell-free data available. 615 
 616 
RNA Paired Sample Correlation Analysis. Log CPM normalized RNA counts were correlated between 617 
paired    cfRNA and wbRNA samples. Genes with a low average expression (<10 CPM) in either cfRNA or 618 
wbRNA were removed. Samples with extreme cfRNA or wbRNA counts (CPM z-score >3) were removed to 619 
eliminate outlier bias. A Pearson correlation was calculated for each gene and a Benjamini-Hochberg–620 
corrected p-value cutoff <0.05 was used to determine significance. 621 
 622 
We performed two permutation tests (n=1000 permutations) to determine the reliability of the number of genes 623 
observed to be correlated. First, we randomly shuffled the sample labels and recalculated the total number of 624 
significant genes. Second, we randomly shuffled gene labels and recalculated the total number of significant 625 
correlations.  626 
 627 
Entanglement Analysis. Differential abundance/expression analysis was performed using only paired cfRNA 628 
and wbRNA samples as previously described, using a Benjamini-Hochberg–corrected p-value cutoff <0.05. 629 
Samples were clustered using correlation based hierarchical clustering. Using the dendextend package in R 630 
(v1.15.2), dendrograms were plotted, paired samples were connected by lines, and Baker’s gamma correlation 631 
coefficient was calculated. Non-exact, two-sided p-values were calculated using a monte carlo permutation 632 
test. 633 
 634 
DNA Concentration. Eluted DNA was quantified using a Qubit™ 3.0 Fluorometer (Q33216, Invitrogen) with 635 
the dsDNA HS Assay Kit (Q32854, Invitrogen). Total cfDNA concentration was estimated using the following 636 
formula:  637 

 638 
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 639 
DNA Bioinformatic Processing. Sequencing data was processed using a custom bioinformatics pipeline 640 
utilizing the Snakemake workflow management system (v7.7.0). Samples were quality filtered and trimmed 641 
using BBDUK (v38.46), aligned to the Gencode GRCh38 human reference genome (v38, primary assembly) 642 
and deduplicated using Bismark (v0.22.1) with default parameters, and quality filtered using samtools (v1.14). 643 
Prior to any analysis, X and Y chromosome mapped reads were removed. 644 
 645 
DNA Deconvolution. DNA tissues of origin deconvolution were performed as previously described32. Briefly, a 646 
custom bioinformatic pipeline utilizing the Snakemake workflow management system (v7.7.0) was used to 647 
process publicly available methylation references, convert to a standard data format, and normalize across 648 
samples. Metline (v0.2-7) was used to discover differentially methylated regions and a quadratic programming 649 
algorithm estimated relative contributions of the tissues represented in the methylation references. 650 
 651 
Quantification and Statistical Analysis. All statistical analyses were performed using R (cfDNA: v4.1.0, 652 
cfRNA: v4.1.0, wbRNA: v4.0.3). Data wrangling and visualization was performed using Python (3.9.1), Pandas 653 
(1.3.0) matplotlib-venn (0.11.6), R (v4.1.0), Tidyverse (v1.3.1), and ggplot2 (v3.3.5). Statistical significance was 654 
tested using Wilcoxon signed-rank tests and Mann-Whitney U tests in a two-sided manner, unless otherwise 655 
stated. All sequencing data was aligned to the GRCh38 Gencode v38 Primary Assembly and features counted 656 
using the GRCh38 Gencode v38 Primary Assembly Annotation. 657 
 658 
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Data Visualization. Figures were created using Qiagen IPA, Adobe Illustrator, Affinity Designer, and 659 
BioRender.com software. 660 
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