ABSTRACT
Infraslow activity (ISA) is a biomarker that has recently become of interest in the characterization of seizure recordings. Recent data from a small number of studies have suggested that the epileptogenic zone may be identified by the presence of ISA. Investigation of low frequency activity in clinical seizure recordings, however, has been hampered by technical limitations. EEG systems necessarily include a high-pass filter early in the measurement chain to remove large artifactual drifts that can saturate recording elements such as the amplifier. This filter unfortunately attenuates legitimately seizure-related low frequencies, making ISA difficult to study in clinical EEG recordings. In this study, we present a deconvolution-based digital inverse filter that allows recovery of attenuated low frequency activity in intracranial recordings of temporal lobe epilepsy patients. First, we show that the unit impulse response (UIR) of an EEG system can be characterized by differentiation of the system’s step response. As proof of method, we present several examples that show that the low frequency component of a high-pass filtered signal can be restored by deconvolution with the UIR. We then demonstrate that this method can be applied to biologically relevant signals including clinical EEG recordings obtained from seizure patients. Finally, we discuss how this method can be applied to study ISA to identify and assess the seizure onset zone.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
S.L. and W.v.D were supported by NIH Grant R01 NS-084142. S.L. was supported by The University of Chicago MSTP Training Grant T32GM007281. A.K.T. was supported by the Comer Children's Development Board (Race for Kids at Comer).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Institutional Review Board of The University of Chicago gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
↵# Shared senior authorship
Data Availability
All scripts and data except human EEG recordings are available at https://github.com/sominlee14/deconvolution_based_inverse_filter
https://github.com/sominlee14/deconvolution_based_inverse_filter