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Abstract 18 

Background: Respiratory syncytial virus (RSV) is a leading cause of respiratory tract infections 19 

and bronchiolitis in young children. The seasonal pattern of RSV is shaped by short-lived 20 

immunity, seasonally varying contact rates and pathogen viability. The magnitude of each of 21 

these parameters is not fully clear. The disruption of the regular seasonality of RSV during the 22 

COVID pandemic in 2020 due to control measures, and the ensuing delayed surge in RSV 23 

cases provides an opportunity to disentangle these factors and to understand the implication for 24 

vaccination strategies. A better understanding of the drivers of RSV seasonality is key for 25 

developing future vaccination strategies.  26 

Methods: We developed a mathematical model of RSV transmission, which simulates the 27 

sequential re-infection (SEIRRS4) and uses a flexible Von Mises function to model the seasonal 28 

forcing. Using MCMC we fit the model to laboratory confirmed RSV data from 2010-2022 from 29 

NSW while accounting for the reduced contact rates during the pandemic with Google mobility 30 

data. We estimated the baseline transmission rate, its amplitude and shape during RSV season 31 

as well as the duration of immunity. The resulting parameter estimates were compared to a fit to 32 

pre-pandemic data only, and to a fit with a cosine forcing function. We then simulated the 33 

expected shifts in peak timing and amplitude under two vaccination strategies: continuous and 34 

seasonal vaccination. 35 

Results: We estimate that RSV dynamics in NSW can be best explained by a high effective 36 

baseline transmission rate (2.94/d, 95% CrI 2.72-3.19) and a narrow peak with a maximum 13% 37 

increase compared to the baseline transmission rate. We also estimate the duration of post 38 

infection temporary but sterilizing immunity to be 412 days (95% CrI 391-434). A cosine forcing 39 
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resulted in a similar fit and posterior estimates. Excluding the data from the pandemic period in 40 

the fit increased parameter correlation and yielded less informative posterior distributions. The 41 

continuous vaccination strategy led to more extreme seasonal incidence with a delay in the 42 

peak timing and a higher amplitude whereas seasonal vaccination flattened the incidence 43 

curves.  44 

Conclusion: Quantifying the parameters that govern RSV seasonality is key in determining 45 

potential indirect effects from immunization strategies as those are being rolled out in the next 46 

few years. 47 

Introduction 48 

Respiratory syncytial virus (RSV) is an endemic virus and a leading cause of acute lower 49 

respiratory tract infections in young children. The majority are infected at least once before they 50 

are two years old [1]. Subsequent re-infections and infections at older age are thought to result 51 

in less severe disease [2,3]. Typical complications of RSV in young children are bronchiolitis or 52 

pneumonia. The proportion asymptomatic among infected individuals ranges from 9% in <1 53 

year olds to 78% in adults [4].   54 

 55 

To date, the only available measure for pharmaceutical prevention of severe disease is 56 

palivizumab, a short-lived and costly monoclonal antibody; no active immunisation product has 57 

been licensed yet. Several vaccine candidates and a long-lasting monoclonal antibody are 58 

undergoing trials in young infants, pregnant women or the elderly [5,6]. The optimal vaccination 59 

strategy depends on the efficacy and duration of immunity conferred [7]. Anticipating short-lived 60 

protection from immunisation, seasonal immunisation of infants before the onset of RSV season 61 

was estimated to be more cost-effective than year-round vaccination [6,8]. 62 

 63 

RSV has a distinct and consistent seasonal pattern in many temperate climate settings [9,10]. 64 

The regular seasonality is likely an interplay of the seasonal fluctuations in human contacts, 65 

meteorological determinants that govern pathogen viability and host susceptibility, as well as the 66 

characteristics of the immune response following infection [11–16]. The factors that govern 67 

seasonality have been challenging to quantify, and a given seasonal disease pattern may be 68 

modelled with various combinations of parameter values. Identifiable and robust parameters are 69 

crucial for predicting incidence and determining the potential indirect effects from immunisation 70 

strategies as those are being rolled out in the next few years. 71 

 72 

The COVID pandemic, where mobility was restricted globally and contacts were reduced 73 

dramatically while seasonal climatic pathogen properties and duration of RSV immunity were 74 

unchanged, provides a unique opportunity to estimate the magnitude of the different factors 75 

contributing to the regular RSV seasonal pattern observed in temperate settings. The COVID 76 

control measures have disrupted the seasonal pattern of RSV around the globe. Countries in 77 

the Southern hemisphere, where the initial lockdowns occurred at the beginning of the season, 78 

showed an abrupt termination of the 2020 season followed by a delayed peak once the 79 

restrictions were eased (see e.g. Australia [17–19] or South Africa [20]). In the Northern 80 

hemisphere, the 2020/2021 season following the lockdown period also exhibited a peak delayed 81 
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by several months in multiple countries (see e.g. France [21], Israel [22], USA [23], Japan [24], 82 

UK [25] or Spain [26].  83 

 84 

In this study, we use incident RSV data from New South Wales (NSW, Australia) from sentinel 85 

laboratories from 2010-2022 and fit a dynamic transmission model to quantify the magnitude of 86 

RSV seasonality and the duration of immunity taking into account the reduction of contacts 87 

during the pandemic. We hypothesised that the additional information in the data resulting from 88 

the contact reductions facilitates parameter inference by constraining the parameter space. To 89 

approximate the contact reduction, we use Google mobility data. We then compare the resulting 90 

parameter estimates to a fit to a subset of pre-pandemic data and to a fit using an alternative 91 

transmission forcing function. Finally, we investigate how two hypothetical vaccination strategies 92 

may impact the regular seasonal pattern.  93 

Methods 94 

Data 95 

We used two types of RSV data to inform our model parameters. The main data source was an 96 

incidence times series from the respiratory diseases surveillance system in New South Wales 97 

[27,28]. These reports comprise the weekly incidence of laboratory confirmed RSV and 98 

influenza cases, as well as the total number of tested cases (influenza only). The data include 99 

only symptomatic patients that sought healthcare and had a sample taken, which are an 100 

unknown fraction of the total number of cases. RSV cases are defined as a patient for whom 101 

RSV was detected by cell culture, nucleic acid testing (PCR), antigen testing or serology 102 

(https://www1.health.gov.au/internet/main/publishing.nsf/Content/cda-surveil-nndss-casedefs-103 

cd_rsv.htm). We included cases recorded between 8. January 2010 and 6. February 2022. 104 

From 2015 - 2019 both the base levels and the amplitude of RSV notifications increased, which 105 

coincided with an increasing number of samples tested for influenza in the same surveillance 106 

network (see Figure S1a). However, emergency department visits for bronchiolitis remained 107 

roughly the same between 2010-2019 with around 350 cases per week at peak seasonal 108 

activity (Figure S1b) suggesting an increase in sensitivity of the sentinel surveillance rather than 109 

an increasing burden of disease. The increase in testing was in part due to the introduction of 110 

new multiplex PCR assays in some hospitals in 2015 [29]. Secondly, we used annual RSV 111 

infection attack rates estimates from a longitudinal, prospective study in Kenyan households, 112 

which collected biweekly samples of all participants regardless of symptoms [4]. The change in 113 

contact patterns due to COVID-19 mitigation measures since early 2020 was approximated 114 

through the Google Community Mobility index [30]. We selected the mobility index at 115 

workplaces as most indicative of changes in RSV transmission relevant contacts besides 116 

schools (which are not covered in the Google mobility data). We used the rolling 7-day median 117 

index to smooth the data while retaining changing trends in mobility (Fig. S2a).   118 
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Model and parameter calibration 119 

We developed a dynamic compartmental transmission model with sequential acquisition of 120 

immunity (adapted from [6,14]) to account for the natural history of RSV infection. Briefly, 121 

individuals are classed into five different states (S, E, I, R1, R2) at four different levels (0,1,2,3+) 122 

that reflect the number of previous RSV infections. The two R compartments at each level 123 

correspond to an Erlang distributed duration of immunity [31]. Infants are born into the 124 

susceptible compartment S0 at a rate μ. When infected, they become latently infected (E0) and 125 

subsequently infectious (I0) after which they become temporarily but fully immune (R0
1 followed 126 

by R0
2). After this temporary but sterilising immunity wanes, individuals become partially 127 

susceptible again (S1). Subsequent re-infection will lead to similar progression while keeping 128 

track of the number of previous infections until an individual has had three infections, after which 129 

infections are assumed to no longer lead to differences in immunity and susceptibility. 130 

Susceptibility to re-infection and duration of infectiousness are assumed to decrease with repeat 131 

exposure. The duration of the protective immunity was assumed to be the same at each level of 132 

immunity. The population was modelled with a life expectancy of 80 years and a constant 133 

birth/death rate μ, which results in a closed population of constant size. We assumed that the 134 

effective per capita transmission rate (βeff) varied seasonally due to seasonal differences in 135 

contacts and pathogen viability in the environment. We modelled the seasonal forcing with a 136 

modified Von Mises function (MVM) with parameter k that allows adjusting the variance of the 137 

peak (see supplement). The MVM can take any shape between a cosine-like function and a flat 138 

line with a sharp peak on a single day. The change in contact behaviour during the pandemic 139 

was modelled by scaling the force of infection with a time-varying parameter i with i ∈  [0,1], 140 

which was estimated from Google Community Mobility data [30] (see supplement).  141 

 142 

We fitted the model jointly to the two datasets described above. We assumed that the reported 143 

weekly incidence is a fraction ⍴  of the incident symptomatic cases, and that only cases of levels 144 

0-2 would lead to severe enough disease requiring testing. The present surveillance data does 145 

not provide age information but earlier laboratory data confirm that >93% of all tests were for 146 

children aged <5 years old [32,33]. The reporting rate comprises the overall combined 147 

probability of symptomatic disease, visiting a GP and having a sample taken and analysed by 148 

the laboratory. To account for the non-linear increase in sampling and testing over time, we 149 

assumed ⍴  followed a sigmoid function with two parameters: an initial reporting rate ⍴ 0, and a 150 

rate of increase, q (see supplement). For (2), we assumed an average level-specific attack rate 151 

calculated as the cumulative cases at the end of the year divided by the population size at the 152 

beginning of the year for a given level of reinfection. The model was fitted jointly to the reported 153 

weekly incidence of cases assuming a Negative Binomial likelihood with dispersion parameter 154 

ѱ, and to the yearly attack rate data from a longitudinal Kenyan household study assuming a 155 

Binomial likelihood (see supplement).  156 

 157 

To improve the identifiability of all parameters and convergence, we fixed all parameters for 158 

which we had acceptable point estimates and which did not depend on a specific geographical 159 

setting to values from published literature. The following parameters of interest to the study 160 

question were estimated: the baseline transmission rate (β0), the amplitude (η), peak width (k) 161 
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and phase shift (φ) of seasonal transmission rate and the reduction of the susceptibility to 162 

reinfection at the different levels (δ1, δ2, δ3) (Table 1). Moreover, we estimated the baseline and 163 

rate of increase in the reporting rate (⍴ 0 and q) and the dispersion parameter of the observation 164 

model (ѱ), since these depend on the data and cannot easily be compared between settings. 165 

The proportion asymptomatic or the duration of infectiousness are often assumed to differ by 166 

age and/or level of reinfection, but the latter is not commonly measured in observational studies. 167 

We therefore converted age-specific estimates to level-specific estimates assuming that level 0 168 

corresponds to age <1 year, level 1 to age 1-2 years, level 2 to age 3-5 years and level 3 to 5+ 169 

years.  170 

 171 

The model was fitted with a Bayesian MCMC algorithm with the priors shown in Table 1. We 172 

simulated the model with a run-in period of 100 years before evaluating the likelihood to ensure 173 

a stable periodic orbit (quasi equilibrium). We used the Hamiltonian Monte Carlo (HMC) No-U-174 

Turn Sampler (NUTS) algorithm implemented in the Julia package Turing.jl [34,35] to run 10 175 

chains with 500 iterations burn-in and 500 posterior samples per chain. Convergence was 176 

confirmed with the Gelman-Rubin statistics (estimates <1.1 were considered indicative of 177 

convergence). The uncertainty of model-derived quantities was calculated from the 2.5th and 178 

97.5th percentile of all trajectories over each modelled data point (posterior predictive interval 179 

PPI). Marginal posteriors are reported as median and 2.5th - 97.5th percentiles Credible 180 

Intervals (CrI).  181 

Sensitivity analysis 182 

To explore the sensitivity of the model parameters to changes in the underlying data, we fit the 183 

same model to a subset of the RSV incidence data covering only the pre-pandemic period 184 

2010-2019, and compared the posterior cross-correlations and the marginal posterior 185 

distributions. We also studied the effect of the choice of the seasonal forcing function on the 186 

trajectory fit and the posterior parameter estimates in a sensitivity analysis. We re-fit the model 187 

to the 2010-2022 data using a cosine forcing (see supplement), which has one parameter less 188 

and produces a symmetric peak and nadir around an average transmission rate. The trajectory 189 

fit was compared to the main results with the Von Mises forcing using Pareto-smoothed 190 

importance sampling leave-one-out cross-validation (LOO) [36]. Finally, we omitted the Kenyan 191 

attack rate data from the likelihood function and fitted the model with the Von Mises forcing only 192 

to the time series data from NSW, and compared the results. 193 

Vaccination strategies 194 

To investigate how active immunisation of infants against RSV may interfere with RSV 195 

seasonality, we used the posterior estimates to forward simulate the pattern of RSV seasonality 196 

in NSW and its changes under two different vaccination strategies. We simulated both 197 

continuous (year-round) and seasonal vaccination in previously unexposed, fully susceptible 198 

individuals in level 0 as a proxy for vaccinating infants. The model equations are given in the 199 

supplement. Seasonal vaccination was simulated with a time window of seven months during 200 

RSV season (March-October), corresponding to the seven months of RSV season when 201 
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monoclonal antibodies are commonly administered in NSW [37]. For simplicity we assume that 202 

eligible individuals who are in the exposed (E0) or infected (I0) state before vaccination would 203 

not generate an additional immune response following vaccination but simply progress to the 204 

next regular level of immunity. We also assume that the vaccine confers the same type and 205 

duration of immunity as the first infection. A temporary, sterilising immunity has been observed 206 

in trials for a live-attenuated vaccine in children [38] and a protein-based vaccine in adults [39] 207 

From the simulated trajectories we summarised 1) the shift in peak activity, 2) the changes in 208 

the amplitude and 3) the yearly percentage of cases averted compared to the baseline scenario 209 

of no vaccination. The simulated effective vaccination coverage ranged from 10% to 100% in 210 

10% steps. The effective coverage is to be interpreted as the product of distribution coverage 211 

and vaccine effectiveness. We did not include the passive immunisation with monoclonal 212 

antibodies in our model, which prevents severe disease but does not lead to sequential 213 

acquisition of immunity. The number of infants receiving the currently licensed monoclonal 214 

antibodies is small with respect to the total population of infants and we deem the effect of a 215 

delayed susceptibility in these infants irrelevant for the transmission dynamics in our model.  216 

Results 217 

RSV seasonality 218 

In the 10 years prior to the COVID-19 pandemic, RSV in NSW commonly peaked mid-July 219 

(median ISO week 28, range ISO week 18-32, i.e. May to August) with 66-79% of all annual 220 

cases occurring during the five months between April and August (Fig. S1C). In 2020, the 221 

beginning RSV season was abruptly terminated in March followed by a delayed peak in 222 

December 2020 (6 months after the typical season) and a smaller regular peak in July 2021 223 

(Fig. S1D).  224 

 225 

The model was able to replicate the regular seasonal pattern, the increase in reported incidence 226 

over time as well as the pandemic-related disruption with the exception of the first half of 2021, 227 

where the model overestimated the reported cases (Fig. 1A & B). We estimated RSV 228 

transmission to be high but only moderately seasonal with 2.94 (95% CrI 2.72-3.19) effective 229 

contacts per day for most of the year and a narrow peak with a maximum of 3.33 (95% CrI 3.04-230 

3.69) effective contacts per day (13.1% increase above baseline, 95% CrI 12.7-13.6%) at week 231 

29 at the end of July (Figure 1C). The average duration of sterilising, post exposure immunity, 232 

the other determinant of regular seasonal RSV behaviour, was estimated as 412 days (95% CrI 233 

391-434 days) (Table 1). We also estimated that 0.6% (95% CrI 0.5-0.6%) of symptomatic RSV 234 

infections among levels 0-2 were reported through the sentinel surveillance in 2010, increasing 235 

to 15.3% (95% CrI 14.5-16.2%) in 2022 (Fig. 1D). The level-specific attack rates were 63% 236 

(95% PPI 60-66%), 59% (95% PPI 57-62%), 58% (95% PPI 56-61%) and 35% (95% PPI 33-237 

36%) for levels 0-3, respectively, which closely matches the attack rate data the model was 238 

fitted to (Fig. 1E). Overall, we estimate that the average incidence was ~2.9 Million cases (95% 239 

PPI 2.8-3 million) per year (36% of the population). MCMC trace plots, diagnostics and 240 

additional numerical results are shown in the supplementary text and Figures S3A, S4A.   241 
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 242 

 243 
 244 

Fig. 1. Fitted model. The shaded areas represent the 95% posterior predictive intervals; the 245 

darker lines represent the medians. A) Simulated trajectory fit and the weekly data points (black 246 

dots). The blue vertical line denotes the first implementation of the lockdown measures in NSW. 247 

B) The normalised fitted total incidence (red line) matches the normalised observed data (grey 248 

dots) except for the peak timing, which is likely preceded by a few days. C) The fitted seasonal 249 

transmission rate (βeff) is large with a narrow peak in July and a maximum increase of 1.13 250 

times the baseline. D) The fit also suggests an initial reporting rate of <1% of all symptomatic 251 

cases in children increasing to 15% in 2022. E) The numerator of the attack rates as fitted by 252 

the model (blue distribution) matched the data points (red line).  253 

 254 

 255 

 256 

 257 

 258 

 259 
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Table 1. Parameters used in the model. Values were either fixed from literature or fitted. 260 

U=Uniform(lower bound, upper bound), NT=normal truncated(mean, sd, lower bound, upper 261 

bound).  262 

 263 

Symbol Parameter Fixed mean value or 
prior 

Posterior value 
Median (95% CrI) 

β₀  Baseline transmission rate Gamma(4.0, 1.0) 2.94 (2.73-3.19) 

η Amplitude of seasonal peak U(0.0, 2.0) 0.39 (0.33-0.49) 

k Width scaling of seasonal peak U(0.0, 3.0) 0.39 (0.29-0.48) 

φ Phase shift of seasonal transmission 
(days) 

NT(180.0, 40.0, 0.0, 
364.0) 

202 (206-209) 

ρ₀  Initial reporting rate Beta(1.0, 30.0) 0.0056 (0.0051, 0.0061) 

q Increase in reporting rate U(0.0, 0.001) 2.5*1e-4 (2.4-2.6) 

ψ Dispersion parameter of observation 
model 

Beta(1.0, 30.0) 0.17 (0.15-0.19) 

ω Average duration of immunity (days) NT(250, 125, 60, 730) 
[40,41] 

412 (391-434) 

δ₁  Scaling of susceptibility of secondary 
infection relative to primary 

Beta(35.583, 11.417) 
[6] 

0.83 (0.73-0.90) 

δ₂  Scaling of susceptibility of tertiary 
infections relative to secondary 

Beta(22.829, 3.171) [6] 0.93 (0.84-0.98) 

δ3 Scaling of susceptibility of subsequent 
infections relative to tertiary 

Beta(6.117, 12.882) [6] 0.31 (0.28-0.36) 

1/γ0, 
1/γ1 

Average duration of first infectiousness 
(days) 

9.0 Fixed [42] 

1/γ2 Average duration of second and third 
infectiousness (days) 

3.9 Fixed [42] 

1/γ3 Average duration of fourth and further 
infectiousness (days) 

1.6 Fixed [42] 

μ Mortality and birth rate (per day) 1/(80*365) Fixed 

1/σ Average duration of exposure (days) 4.0 Fixed [43] 

p0 Proportion asymptomatic at level 0 0.091 Fixed [4] 

p1, p2 Proportion asymptomatic at level 1 and 2 0.173 Fixed [4] 

p3 Proportion asymptomatic at level 3 0.778 Fixed [4] 
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Sensitivity analysis 264 

Fitting the same model to the pre-pandemic period (2010-2019) resulted in seemingly bimodal 265 

posterior samples (Fig. S3B) due to two chains getting stuck in a local mode as suggested by 266 

the log posterior plot (Fig S4B). For the estimation of the posterior predictive and the parameter 267 

correlation we therefore excluded these two chains. The fit to the time series data was almost 268 

identical to the result from the full dataset (Fig. S5A). However, several of the parameters that 269 

govern seasonality, particularly the baseline effective transmission rate (β0) and the amplitude of 270 

the seasonal forcing (η) were highly positively correlated (Fig. S5B top) suggesting a poor 271 

parameter identifiability. Including the pandemic period in the fit successfully reduced the 272 

correlation among most of the parameters with the exception of a negative correlation between 273 

η and k (which defines the width of the seasonal forcing) (Fig. S5B bottom). It’s likely that the 274 

model fits best with a specific area under the curve of the transmission rate during the season. 275 

Fitting to the full data set also resulted in narrower and more informative posteriors (Fig S5C).  276 

 277 

Our main findings of a low seasonal forcing for RSV were robust to the shape of the forcing 278 

function. When the seasonal forcing was modelled with a cosine function, the model fitted the 279 

data almost as well (expected log pointwise predictive density -3485.94) as with a Von Mises 280 

function (ELPD -3413.37) but produced a larger uncertainty (S6A). The effective transmission 281 

rate was slightly lower at the nadir (2.82, 95% CrI 2.64-3.02), and the amplitude (maximum over 282 

minimum) was 1.10, which is a similarly weak seasonal forcing as with the Von Mises function 283 

(1.13) (Fig. S6B). The posterior densities were similar for the two forcing functions (Fig. S6C). 284 

However, the duration of immunity was estimated to be slightly shorter for the cosine model 285 

(392 days, 95% CrI 371-414 days). Of note, the cosine model turned out to be more challenging 286 

to fit. The majority of the chains did not converge within 48 hours and had to be cancelled, 287 

which could mean the posterior samples we obtained (Fig S3C, Fig. S4C) may not be 288 

representative of the target distribution.  289 

 290 

Fitting only to the time series data from NSW, omitting the Kenyan attack rate data, resulted in a 291 

poorer chain mixing (including one chain stuck in a local mode) (Fig. S3D) and longer runtime, 292 

which, when using HMC NUTS, is indicative of a more difficult posterior to sample from. The 293 

trajectory fit was almost identical to the fit from the joint datasets (Fig. S7A), and the attack rates 294 

predicted by the model for the levels 0-2 were similar (Fig S7B). However, the predicted attack 295 

rates at level 3 were marginally higher when fitted without the AR data (median 41%, 95 % CrI 296 

36-46%). Including the additional data for the attack rate led to more identifiable parameters (Fig 297 

S7C) and narrower marginal posterior distributions for some parameters including the duration 298 

of immunity (ω) (Fig. S7D). These results suggest that including the additional attack rate data 299 

improved our inference framework.  300 

Impact of vaccination strategies on seasonal pattern 301 

We found that despite the relatively weak seasonal forcing, neither continuous (year-round) or 302 

seasonal immunisation of infants is likely to disrupt RSV seasonality as substantially as the 303 

COVID-19 pandemic did. Continuous vaccination is predicted to lead to delayed and more 304 
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pronounced seasonal patterns with a narrower peak at all levels of (re-)infection (Fig. 2) with a 305 

higher peak at lower coverages. Seasonal vaccination on the other hand flattened the seasonal 306 

peak but increased the incidence off-season. Seasonal vaccination at 100% coverage led to a 307 

weak bimodal pattern in those previously infected with a peak at the beginning and the end of 308 

the regular season. Due to the more condensed season caused by continuous vaccination, the 309 

infection incidence at peak can increase by up to 156% in the previously unexposed and up to 310 

200% in previously exposed individuals if vaccine coverage is low (Fig. 3A). Only if vaccine 311 

coverage exceeds 50% the peak incidence among previously uninfected decreases compared 312 

to no vaccination. The peak timing is always delayed under a continuous strategy (Fig. 3B). The 313 

delay increases with increasing vaccination coverage with a maximum delay of 80 days in the 314 

previously exposed at 100% coverage. Seasonal vaccination also delays the peak at level 3 by 315 

up to 17 days at low coverage, but generally advances the peak at all levels up to 129 days at 316 

100% coverage. Both continuous and seasonal vaccination prevented a similar amount of cases 317 

(Fig. 4). In the previously unexposed (level 0) the proportion of cases prevented increased 318 

roughly linearly with increasing coverage and with only minimal displacement of infection and 319 

disease into other groups (maximum 0.2%).   320 

 321 
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 322 
 323 

Fig. 2. Temporal changes in seasonal RSV incidence under different vaccination coverages and 324 

strategies (seasonal vs. continuous, vaccination windows indicated by grey shaded areas) 325 

compared to no vaccination (black dashed lines). Continuous vaccination leads to more narrow 326 

epidemic peaks with larger amplitude and delayed peak timing at all levels for all coverages 327 

(except 100% coverage at level 0). Seasonal vaccination at coverages less than 100% flattens 328 

the epidemic peak at all levels. 100% seasonal coverage leads to two small peaks at the 329 

beginning and the end of the regular season for levels 1-3.  330 
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 331 
Fig. 3. Quantitative effect of different vaccination coverages on peak timing and amplitude at all 332 

levels (0-3). A) Percentage change of incident cases at peak relative to no vaccination. 333 

Continuous vaccination increases the peak amplitude for level 0 if coverage is below 50%, and 334 

for levels 1-3 regardless of coverage. Seasonal vaccination always decreases peak amplitude 335 

B) Continuous vaccination delays the peak for all levels and coverages with a maximum of 80 336 

days at coverage of 100%. Seasonal vaccination delays the peak for level 3 with a maximum of 337 

17 days at a low coverage but otherwise advances the peak for all levels with a maximum of 338 

129 days at 100% coverage.  339 

 340 
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 341 

 342 
Fig. 4. Percentage of cases averted by strategy for each level of (re-)infection. The prevention of 343 

cases at levels 0 and 3 increases linearly with coverage, and continuous and seasonal 344 

vaccination prevent almost the same percentage for a given coverage. Vaccination shifts more 345 

fully susceptible individuals to level 2 than infection alone leading to a small increase in cases at 346 

levels 1 and 2 at high coverage (maximum 0.2%, not visible on the graph).  347 

 348 
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Discussion 349 

In this study, we show how pandemic disruptions of RSV can be used to quantify the factors 350 

that drive the seasonal pattern. In a setting like NSW, the best fitting transmission rate is high 351 

but mostly constant throughout the year with a single, narrow peak in winter with a maximum 352 

amplitude of 1.13 times the minimum. Our sensitivity analysis confirmed our suspicion that fitting 353 

only to the pre-pandemic time series resulted in an acceptable match to the time series data but 354 

also in a correlation of the parameters governing seasonality. Excluding the attack rate data 355 

also led to higher overall parameter correlation and less informative posteriors. When the 356 

transmission rate was modelled as a cosine function, we could also obtain a similarly good fit to 357 

the data as with the Von Mises function (albeit with a wider uncertainty) and similar posteriors. 358 

However, the lower transmission rate was counteracted by a lower duration of immunity. The 359 

low amplitude of seasonal forcing (maximum over minimum) estimated in both models (cosine 360 

and Von Mises) suggests that moderate changes in contact rates and/or pathogen viability are 361 

sufficient to trigger a seasonal peak. The amount of seasonal forcing estimated in other studies 362 

is quite heterogeneous (ranging from 1.04 to 9.8 times the baseline [6,40,44–54], which may 363 

suggest problems in the parameter inference but also geographical heterogeneity in the 364 

seasonal transmission parameter. This also emphasises the need for more data resulting from 365 

quantifiable disturbances of the regular RSV dynamics from other geographical settings to 366 

narrow down the parameter space. Not only the seasonal forcing but also the average duration 367 

of infection induced immunity in the literature - either as a fitted model parameter or estimated 368 

from observational studies - varies substantially (range 169 - 744 days [6,40,44–46,48,49,51–369 

53]. Here we show that based on our model, the immunity may last longer than the ~250 days 370 

suggested by Australian reinfection data [40]. The high force of infection and the resulting low 371 

average age at first and second infection is also consistent with data from a longitudinal study 372 

from Finland, which shows that ~60% of children under the age of three years were re-infected 373 

every year [55].  374 

 375 

Our simulation study shows that a strategy of continuous vaccination of previously unexposed 376 

individuals can lead to a delayed and more extreme seasonal pattern (both among the 377 

previously unexposed and the total population) particularly for low coverages. Continuous 378 

vaccination reduces the pool of susceptibles (level 0) leading to a low level of RSV circulation. 379 

When the total availability of susceptibles is large enough, a seasonal outbreak with a narrow 380 

and large peak is possible. These potential changes in the amplitude and peak timing of RSV 381 

following vaccination have practical implications for health services and public health strategies. 382 

Even though year-round vaccination averts cases, it may lead to undesirable disease dynamics. 383 

A large seasonal surge in paediatric cases as a result of low but continuous coverage could 384 

lead to an excess of paediatric ICU admissions or attendances to other health services, which in 385 

the worst case could result in higher paediatric mortality. Seasonal vaccination on the other 386 

hand flattens the seasonal peak in our model at most coverages, which leads to more 387 

manageable disease dynamics. However, the increase in off-season incidence would require 388 

more year-round vigilance and adjusted testing guidelines in both infants and elderly.  389 

On a more theoretical level, our results also underline the need to investigate the mechanistic 390 

drivers of seasonality more in depth. In our model, the seasonal forcing of the transmission rate 391 
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(βeff) can be interpreted as a function of the seasonally varying contact rate of people and the 392 

seasonally varying probability of transmission upon contact. Our model fit suggests a narrow 393 

peak of the seasonal forcing fits slightly better than a symmetric cosine-like behaviour for a 394 

setting like NSW. Indoor contact rates are crucial for diseases transmitted via aerosols, and the 395 

time spent indoors has a clear seasonal variation. The seasonality of indoor activities depends 396 

on the climate zone. As shown by a recent study, seasonal indoor activity in the Southern USA 397 

(which includes the same Köppen Geiger climate zone as NSW) showed a rather narrow peak 398 

in Winter and did not fit well to a cosine function [56]. Further research to disentangle and 399 

quantify the magnitude of seasonal contacts, partial host susceptibility, pathogen viability and 400 

the association with seasonally-determined factors such as meteorological conditions, school 401 

terms, time spent indoors and periodic social gatherings could provide further insight into the 402 

seasonality of RSV, and lead to more identifiable and realistic model parameters tailored to 403 

specific settings.   404 

 405 

Our study has limitations and uncertainties. Firstly, our model is not age-structured, which 406 

required us to make some simplifying assumptions about immunity and vaccination. In the 407 

continuous vaccination strategy, we assume that the never exposed, vaccinated group are 408 

babies who are vaccinated at birth. In the seasonal strategy, only those never exposed and 409 

those currently infected are vaccinated. In practice, children who are immune after infection for 410 

the first time cannot readily be identified as being immune without serology testing, and will 411 

therefore likely also be vaccinated, which may or may not further improve their immunity and 412 

decrease their susceptibility, which could influence the transmission dynamics at a population 413 

level. The active immunisation of babies at birth is likely not feasible either, and year-round 414 

vaccination will probably be done during routine check-ups in the first year of life. Our model 415 

also does not consider maternal antibodies in new-borns, which provide some level of protection 416 

during the first months of life. This type of passive immunisation depends on the number of 417 

women that are pregnant in the last trimester and recovering from RSV. A more structured 418 

model that includes age and differential contact patterns may be needed to adequately track 419 

these numbers throughout the year. An age-structured model may also improve the prediction 420 

of the incidence following vaccination because age-specific contact patterns give a better 421 

approximation of the FOI than the infection-level specific FOI in our current model. Other factors 422 

such as seasonal birth pulses [57] are known to influence the periodicity of childhood infectious 423 

diseases, but the birth rate of NSW is remarkably constant throughout the year, and thus has 424 

little to no impact on the seasonal RSV pattern in NSW. We also did not include the seasonal 425 

migration of workers since we did not have access to migration data and do not know enough 426 

about the mixing pattern with the general population. 427 

 428 

Secondly, the data we use for parameter calibration have their limitations. The attack rate data 429 

are taken from a prospective household study in Kenya where circulation of RSV may be 430 

different from NSW. A prospective study in Australia showed an attack rate of 35% in 0-1 year 431 

olds and 60% in 1-2 year olds [58]. The second estimate agrees well with the Kenyan data, 432 

while 0-1 year olds seem more protected in Australia, possibly due to maternal antibodies, 433 

which we have not modelled here. No data were available from Australia for older children or 434 

adults. Limited data from various high income settings suggest that the symptomatic attack 435 
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rates in adults may be in the range of 3-11% [59–61], which - assuming that ~78% of adults are 436 

asymptomatic [4] - corresponds roughly to an attack rate of 13-50%. A 20% overall attack rate 437 

was observed among women participating in the placebo group of a clinical trial [62]. A better 438 

understanding of the true level of circulation of RSV by age group and geographical setting 439 

would improve not only our parameter estimation but also any predictions for vaccination 440 

strategies. We also made some assumptions about the laboratory data, which represent only a 441 

small and unknown fraction of all cases. The sigmoidal increase in detection and reporting is an 442 

approximation we chose in the absence of the number of RSV tests performed. While the 443 

sigmoid function seems to describe the pre-pandemic increase well, the reported RSV incidence 444 

during the first half of 2021 was not matched very well by the model. It is conceivable that RSV 445 

testing was reduced during the pandemic compared to 2019, but we could not quantify the true 446 

time-varying underreporting with the type of data available to us. Additional seasonal variation in 447 

reporting, e.g. increased detection of cases with disease exacerbation due to seasonal pollution 448 

[63] or increased testing during RSV season because of a higher expectation, cannot be ruled 449 

out. Additional data such as bronchiolitis emergency department visits, which are routinely 450 

collected and reported and do not depend on changes in testing platforms, could help to further 451 

narrow down the parameter estimates of our model.  452 

 453 

Thirdly, Google Community Mobility data may not be the optimal proxy for the overall reduction 454 

in contacts during the COVID-19 pandemic. A limited number of surveys conducted in Australia 455 

between April and July 2020 showed that the average number of daily non-household contacts 456 

in NSW were reduced by 70% during the initial phase and remained reduced by 25% in July 457 

[64]. The fitted contact reduction based on these survey data correlates with the mobility 458 

reduction, but the Google data may underestimate the actual reduction by up to 20% (Figure 459 

S2b). To our knowledge, there are no data on the magnitude of contact reduction after July 460 

2020 for Australia. In Germany, Google mobility data were found to correlate well with the 461 

contact data collected in 2020 when weighted for home/non-home contacts [65]. A similar 1:1 462 

correlation of the reduction of mobility at workplaces with the reduction of work contacts was 463 

also found in the UK with the CoMix study (see Fig. S1 of [66]). Given the good correlation 464 

found in these other studies and the lack of individual contact data for 2021, we considered the 465 

Google Community Mobility data an acceptable proxy measure for modelling reduced 466 

transmission. A better understanding of how contact rates related to mobility during the 467 

pandemic in Australia would be helpful in narrowing down the posteriors and further improving 468 

the fit during the pandemic phase. It is possible that the increase in mobility in 2021 compared 469 

to the previous year is not a good indicator of an increase in effective contacts because of 470 

continued measures such as mask wearing, and the mismatch between the model and the data 471 

during the first half of 2021 is the result of poor correlation of mobility reduction and contact 472 

reduction.  473 

 474 

In conclusion, our study illustrates how the disruption of the seasonal pattern of endemic 475 

infectious diseases following the COVID-19 NPIs can be used to quantify the factors that govern 476 

seasonality. Immunisation strategies for RSV are unlikely to substantially alter the timing of RSV 477 

season in Australia dramatically, but the type of vaccination strategy can influence the amplitude 478 

of the seasonal incidence. However, these results may not hold for RSV transmission in climate 479 
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zones with a weaker seasonality, where the shifts in incidence might possibly be more 480 

pronounced following the introduction of a vaccine.   481 

Data availability 482 

The R/Julia code as well as all input and output data are available in a Github repository 483 

(https://github.com/fkrauer/RSV-seasonality-public). The original RSV case notification data are 484 

available on the MSW MoH website [27,28]. The Google mobility data were downloaded from 485 

[30].  486 
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