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Abstract

The biology driving individual patient responses to SARS-CoV-2 infection remains ill understood.

Here, we developed a patient-centric framework leveraging detailed longitudinal phenotyping data,

covering a year post disease onset, from 215 SARS-CoV-2 infected subjects with differing dis-

ease severities. Our analyses revealed distinct “systemic recovery” profiles with specific progres-

sion and resolution of the inflammatory, immune, metabolic and clinical responses, over weeks

to several months after infection. In particular, we found a strong intra-patient temporal covari-

ation of innate immune cell numbers, kynurenine- and host lipid-metabolites, which suggested

candidate immunometabolic pathways putatively influencing restoration of homeostasis, the risk

of death and of long COVID. Based on these data, we identified a composite signature predic-

tive of systemic recovery on the patient level, using a joint model on cellular and molecular pa-

rameters measured soon after disease onset. New predictions can be generated using the online

tool http://shiny.mrc-bsu.cam.ac.uk/apps/covid-systemic-recovery-prediction-app, de-

signed to test our findings prospectively.
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Introduction

The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coron-

avirus 2 (SARS-CoV-2), has a wide spectrum of clinical manifestations and has led to over 6 million

deaths worldwide by mid-May 20221. When acute infection is resolved, health is restored in most

individuals, yet some develop prolonged symptoms (long COVID)2–4. Previous work demonstrated

that SARS-CoV-2 can induce a significant acute phase reaction (systemic inflammation), profound

changes in metabolism, and alterations across many elements of the immune system5,6. Evolution

over time of these parameters is highly heterogeneous between patients, with cellular and molecular

perturbations persisting for months after the acute phase of the infection and viral clearance in

some individuals7,8. How failure to restore (immune) homeostasis relates to recovery from acute

infection and development of long COVID remains unclear.

Disentangling the interrelation between the individual clinical disease course, and immune cell-,

metabolic- and inflammatory alterations is needed to acquire a systemic understanding of COVID-

19, both in its acute and chronic form. Such insight may also point at predictors of risk for short

and long-term complications of infection, and could help devise strategies for personalized, early

intervention.

In this study, we exploited existing and new data from a previously described COVID-19 co-

hort9, for which immunophenotypes, molecular measurements (including inflammatory markers,

polar metabolites, glycoproteins and lipoproteins) and patient questionnaires addressing long-term

symptoms of disease have been collected over an extended follow-up period of 12 months. We de-

vised a statistical framework integrating patients’ longitudinal profiles using a two-stage approach.

We first evaluated how classical descriptive analyses on the overall disruption of available biological

parameters at the population level supported the findings from the initial study and published

studies based on independent cohorts. We then estimated the trajectories of the disrupted pa-

rameters at the patient level, using longitudinal joint models to borrow strength across data types

and patient profiles, and assess coordinated changes over time. Specifically, we deployed a func-

tional principal component (FPC) analysis that examined the cellular, metabolic and inflammatory

drivers of inter- and intra-patient variability. We also employed supervised and unsupervised mixed

modeling approaches to evaluate parameter recovery up to one year post symptom onset, and probe

how they related with survival and self-reported long-term symptoms. Finally, we tested whether

a composite signature predictive of systemic recovery could be identified, that would permit risk

stratifying new patients. The ambition of this work was to provide actionable insight on individual

disease courses to guide future development aimed at improving clinical decision making.
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Results

Patient data and study design

The study recruited 215 SARS-CoV-2 positive individuals, who were categorized according to five

severity classes, A to E, ranging from asymptomatic to severe infection based on their hospitalization

status and oxygenation supplementation (Methods). All patients had blood samples taken at study

entry and at regular intervals up to one year from symptom onset (classes B to E) or positive

swab (class A), permitting detailed longitudinal phenotyping. Comprehensive assays were set up,

measuring immune cell subsets, polar metabolites, glycoproteins, lipoproteins, serum cytokines

and CRP levels. Follow-up questionnaires assessing long-term symptoms were also obtained from

symptomatic patients. The cohort further comprised 45 SARS-CoV-2 negative healthcare workers,

to serve as controls and for whom blood for analyses was obtained at a single timepoint.

Population-level analysis confirms widespread immune and metabolic alterations

in association with systemic inflammation

To relate the immunometabolic changes in our cohort to findings from the published literature, we

first examined the impact of SARS-CoV-2 infection across clinical, metabolic and cellular variables

over a 7-week window post positive swab or symptom onset, using simple linear mixed models

accounting for repeated subject measurements (Methods).

A differential abundance analysis between healthy controls and COVID-19 patients across all

severity groups indicated widespread systemic dysregulation (Fig. S1), in line with the initial data

on our cohort9 and with other reports on independent cohorts5,6. At the population level, there

was a metabolic signature in infected patients, where metabolic intermediates from the kynurenine

pathway (3-hydroxykynurenine, kynurenine, quinolinic acid) were elevated, while the upstream

amino acid, tryptophan, was depleted. Likewise, the abundance of several other amino acids was

reduced in plasma from infected subjects. There was also a prominent decrease in high-density

lipoproteins (in particular, apolipoproteins), and an increase in very low-density lipoproteins (in

particular, triglycerides and free cholesterol) and in the N-acetyl glycoprotein signals GlycA and

GlycB. Lastly, as also shown in our previous work9, absolute numbers of neutrophils, plasmablasts

and activated CD8+ T cells were increased in COVID-19 patients, whilst a marked decrease in

some B cell subsets, and classical and non-classical T cell subsets, was also observed in infected

individuals. Association analyses with C-reactive protein (CRP) serum concentration — an indi-

cator of the acute phase response in COVID-19 patients10,11 — further indicated significant linear

relationships with most metabolic and cellular variables (Fig. S2).
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Disease severity and recovery profiles account for most of the inter-patient vari-

ation in the systemic inflammatory response

The above analyses found marked molecular and cellular abnormalities across COVID-19 patients

and extensive covariation between systemic inflammation and disrupted parameters. Population-

level exploration fails, however, to provide patient-level longitudinal insight. To overcome this

limitation, we applied a functional principal component (FPC) framework to the parameter sig-

natures discussed above to (1) disentangle the molecular heterogeneity in patients’ response to

SARS-CoV-2, and (2) provide patient-specific longitudinal estimates of the extent and dynamics

of recovery, along with a characterization of the main factors associated with the disease course.

First, we aimed to identify the main modes of variation in trajectories of CRP (i.e., systemic

inflammation) among symptomatic patients (i.e., severity classes B to E) over the first 7 weeks

post symptom onset (Methods). The first two FPC eigenfunctions jointly accounted for more than

99% of the variance and, along with their corresponding scores, they were interpretable in terms

of the patients’ disease profiles (Fig. 1A-B). Namely, the first eigenfunction acted as a proxy for

inflammation severity, with associated “severity” patient scores (x-axis, Fig. 1B): patients with

positive severity scores had higher than average CRP levels over the 7-week period (e.g., patient

CV0047 in Fig. 1B), whilst the opposite held true for patients with negative scores (e.g., patient

CV0046 in Fig. 1B). This interpretation was independently corroborated by the B-to-E severity

classes assigned to each patient based on their hospitalization and oxygenation support. The

second eigenfunction acted as a proxy for recovery from inflammation, with associated “recovery”

patient scores (y-axis, Fig. 1B): patients with large positive scores for the second eigenfunction had

a drastic improvement of their inflammatory status over time (e.g., patient CV0115 in Fig. 1B),

whilst inflammation deteriorated or resolved more slowly compared to the population mean function

in patients with negative scores (e.g., CV0212 in Fig. 1B). Hierarchical clustering of the severity and

recovery scores uncovered three patient groups with distinct inflammation trajectories (Fig. 1B-C):

absent or mild inflammation over the 7-week window post symptom onset (group i), early, resolving

inflammation (group ii), and persisting inflammation (group iii). This confirmed that the patient

FPC estimates encompass information on the magnitude and temporal profile of the systemic

inflammatory infection response as captured by CRP measurements. Sex and age distribution in

each group aligned with existing knowledge on COVID-19 risk factors12 (Fig. 1D-E). Notably, the

groups were not entirely driven by disease severity, but also by the type of recovery profile. In

particular, patients in group ii had higher than average y-axis recovery scores, and each of the

three groups was comprised of patients from multiple severity classes (Fig. 1B). We thus refer to

this new patient classification as recovery groups.
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Figure 1: Functional principal component (FPC) analysis of COVID-19 patients’ CRP levels.
A: First two eigenfunctions representing the severity of inflammation and the recovery from inflammation,
respectively, over the 7-week window of the FPC analysis, and accounting for 78.5%, respectively 20.8%
of the variability. B: Scatterplot showing the scores corresponding to the first and second eigenfunctions;
each point corresponds to one patient. Severity scores are on the x-axis (the higher the more severe the
inflammation) and recovery scores are on the y-axis (the higher the more pronounced the temporal resolu-
tion of inflammation). The legend B-to-E indicates the study severity class assigned to each patient based
on their hospitalization status and oxygenation supplementation; the grey-color gradient observed on the
x-axis suggests that these classes are reflected by the estimated severity scores. The lines delineate the three
“recovery groups” i, ii and iii, obtained by hierarchical clustering. The snippets show log-transformed CRP
trajectories for four examples of patients with extreme severity or recovery scores. The grey bands indicate
normal CRP levels: they correspond to the interquartile range of healthy controls’ (log-transformed) CRP
levels. The points correspond to the observed values, the red, green and grey curves are the trajectories
estimated using the FPC model and the dashed curves delineate the 95% confidence bands. C: CRP tra-
jectories conditional on the three recovery groups with 95% confidence bands, estimated with a longitudinal
mixed model accounting for patients’ repeated measurements (likelihood ratio tests for the baseline group
effect and group × time interaction effect). Points correspond to observed values. D: Characterization of
the recovery groups by gender (one vs all and overall Fisher exact test). E: Characterization of the recovery
groups by age (one vs all t-tests and anova).
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Joint analysis of molecular parameters sheds light on their coordinated dynamics

during acute infection and convalescence

The strong association between circulating CRP concentration and components of the immune

response to COVID-19 has been extensively characterized (see, e.g., our previous work9 or the

above population-level analyses), as has the link between inflammation and clinical severity8,10,11.

By contrast, how longitudinal post-infection profiles — e.g., as reflected by groups i, ii and iii

(Fig. 1C) — relate with organismal recovery has not been previously explored. To start addressing

this, we first examined the immune and metabolic profiles of groups i, ii and iii by analyzing

the series of available parameters longitudinally over the 7-week window following symptom onset.

Mixed-effect modeling with time encoded as a continuous variable revealed that the trajectories of

many cellular and molecular parameters largely reflected the inflammation profile that character-

ized each recovery group (examples shown in Fig. 2A). For instance, quinolinic acid levels remained

mostly unperturbed for group i, they were increased early but returned to baseline levels at later

timepoints for group ii, and they started and remained high weeks after symptom onset for group

iii. To explore the interplay between the temporal profiles of the inflammatory, immune-cell and

metabolomic responses on the patient level, we performed additional multivariate FPC analyses on

sets of parameters whose alterations were found to be signatures of active SARS-CoV-2 infection

in our above population-level analyses, namely, serum cytokines, lymphocyte subsets, apolipopro-

teins, glycoproteins and kynurenine-pathway metabolites (Methods). Trajectories reconstructed

for each patient largely co-evolved over the disease course, as illustrated on a selection of parame-

ters for three patients from group i, ii and iii (Fig. 2B). The quinolinic acid temporal profiles for

these patients broadly agreed with the group-level longitudinal estimates discussed above (Fig. 2A).

More generally, the 95% confidence bands of the estimated trajectories for group-i patient CV0261

(symptomatic but not hospitalized) covered the normal levels (healthy-control interquartile-range

grey bands), suggesting absent or mild alterations. The trajectories of group-ii patient CV0115

(with supplemental oxygen) were slightly above or below normal levels, yet with no sign of de-

terioration over time, but hints of normalization, in particular for plasmablast levels. Finally,

group-iii patient CV0212 (with assisted ventilation and who died 44 days post symptom onset)

exhibited a clear deterioration in all parameters, with the estimated trajectories departing from

normal levels. Although the parameter courses of these three patients tended to be representative

of the general parameter evolution within the groups, some patients displayed peculiar parameter

trajectories, again emphasizing the value of patient-specific estimates to resolve the covariation of

cellular/molecular parameters with inflammation at the individual level. The reconstructed cellu-

lar, molecular and inflammation trajectories for all patients, and the group-level trajectories can

be inspected online at http://shiny.mrc-bsu.cam.ac.uk/apps/covid-patient-trajectories.
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Figure 2: Group-level and patient-level estimates of cellular and molecular trajectories: cy-
tokines, CRP, lymphocytes, lipoproteins, glycoproteins and kynurenine-pathway metabolites over the first
7 weeks post symptom onset. A: Recovery-group trajectories estimated by longitudinal mixed modeling
for five parameters selected from each data type. All levels have been log-transformed and the grey bands
correspond to the interquartile range of healthy controls’ levels. Adjusted p-values from likelihood ratio tests
for baseline and interaction effects are indicated. B: Trajectories of the same parameters estimated by FPC
analysis for three COVID-19 patients, from each recovery group. C: Comparison of the severity and recovery
scores obtained from the six FPC analyses with Pearson correlation test.
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To further explore the covariation of parameters over time across data types in each recovery

group, we conducted correlation analyses on all variables analyzed by FPC (Methods), stratifying

the patient data into (1) acute-infection phase (less than 3 weeks post symptom onset) and (2)

protracted-infection/convalescence phase (3− 7 weeks post symptom onset). The correlation pat-

terns for all three patient groups in both time bins tended to be stronger than those of healthy

controls (Fig. S3). This suggested that, irrespective of disease severity, as a population, infected

individuals did not make full organismal immune and metabolic recovery at late phases of the

disease. The magnitudes of the correlation between molecular and cellular components again re-

flected the inflammation profile characterizing each recovery group (Fig. 1C). A detailed inspection

of specific pairwise patterns revealed that, for group iii, kynurenine-pathway metabolites and cy-

tokines (i.e., systemic inflammation) were positively correlated, whereas such covariation was not

observed in recovery groups i and ii. Aligning with the protracted lymphopenia typically observed

in patients with persistent inflammation, there were also significant positive pairwise correlation

patterns among lymphocytes (CD4 EMRA, CD4 Naive, CD4 Non-naive HLA-DR+CD38+ T, CD8

EMRA, CD8 Naive, CD8 Non-naive HLA-DR+CD38+ T, CD19+, plasmablasts, gd T, MAIT, NK

& NKT cells) in both time windows.

On top of bringing parameter-specific insights, our additional FPC analyses more broadly de-

fined the interplay between data types in response to infection. Similarly to the CRP FPC analysis,

the first and second eigenfunctions could be interpreted as proxies for “severity” and “recovery”

(or “normalization”) of the molecular and cellular trajectories, respectively (Fig. 2C). The different

sets of severity scores were highly correlated, confirming that the inflammatory, immunologic and

metabolomic alterations were closely interlinked. Moreover, these scores again largely echoed the

clinical severity classes B-to-E, indicating that the variability in the various trajectories reflected

pathophysiologic signatures relevant to clinical disease. The correlation of recovery scores across the

different types of parameters was somewhat weaker, although still significant in most cases. This

may reflect distinct dynamics between cellular compartments or differing half-lives. Alternatively,

this could indicate persistent disruption of biologic systems despite resolution of inflammation, a

hypothesis we explored below. Nevertheless, the overall covariation across FPC scores provided a

strong rationale to (1) model all cellular and molecular data in a joint manner, in order to borrow

strength across parameters that co-evolve over time as regulated by shared biological processes,

and (2) train integrative models exploiting cellular and molecular parameters to predict organismal

recovery at the individual patient level.

9

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 19, 2022. ; https://doi.org/10.1101/2022.06.18.22276437doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.18.22276437


Long-term molecular characterization of recovery profiles: patterns of resolution

and persistent alterations

The above analyses highlighted important variability across cellular and molecular patient trajec-

tories over the first 7 weeks post symptom onset. Using mixed modeling, we next examined the

long-term dynamics of cellular and molecular recovery over one year after infection (Methods).

As expected, group i (with mild or absent inflammation) continued to show minor or absent

disruptions over this extended follow-up period (Fig. 3). There were, however, exceptions to this,

with significant differences beyond 12 weeks post symptom onset for some metabolites, compared

with healthy controls, likely driven by few individuals with persisting abnormalities (possibly as-

sociated with long-term clinical manifestations as discussed below). In group ii, many parameters

were altered early on, i.e., up to 3 weeks post symptom onset for most, and up to 7 weeks for some

(including several lipoproteins, glycoproteins and amino acids), but were later indistinguishable

from healthy controls — thus aligning with the recovery from inflammation defining the group.

Conversely, group iii (persistent inflammation) showed widespread and long-lasting cellular and

molecular alterations. These observations linked, on the population level, systemic inflammation

and immunometabolic dysregulation up to one year post infection. We also assessed the baseline

(i.e., close to symptom onset) group effect, and the group × time interaction effect, using the

group-level longitudinal mixed models discussed above (Fig. 2A). For a number of parameters,

significant baseline and/or interaction effect(s) were detected. As tested below, these parameters,

when measured early post infection, might contain information regarding a patient’s ability to

recover.

Clinical associations with recovery profiles: long-COVID symptoms and risk of

death

We next asked how the recovery profiles related to long COVID, using questionnaires on long-term

symptoms collected from patients between 2 and 11 months post symptom onset (Methods). A

comparison of the reported symptoms demonstrated significant differences across recovery groups

(Fig. 4A). In particular, patients in group iii reported more neurological symptoms (fatigue, muscle

weakness, pain, difficulty eating, drinking, swallowing) compared to group i. In group iii, fatality

implied that the reported symptoms only reflected the subpopulation of patients who were alive

several weeks after infection, and mechanical ventilation was a source of non-infection related

sequelae, which added (unavoidable) limitations. We also computed composite scores by averaging

the different severity scores, and compared these scores across recovery groups. Again, patients from

group iii had a significantly poorer composite score compared to the other two groups, while the
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Figure 3: Long-term recovery-group trajectories for immune cell subsets, polar metabolites,
main classes of glyco- & lipoproteins and diverse metabolic ratios. Comparison of the parameters
of each recovery group with the healthy control levels over a year post symptom onset, using mixed modeling.
The first 5× 3 columns indicate the t-statistics obtained for the group effect and corresponding significance
after FDR multiplicity adjustment, and the last two columns indicate the significance (− log10 adj. p-value)
of the baseline and interaction effects using the group-level longitudinal mixed models.

converse was true for patients from group i. There was, however, substantial variability within each

recovery group, in particular, a few patients in groups i and ii had high composite scores, although

their cellular, inflammatory and molecular trajectories — as estimated by our FPC analyses —

had essentially returned to normal levels within 7 weeks post symptom onset. This suggested

persistent systemic subjectively perceived sequelae for these subjects despite absent, or rapidly

resolving inflammation and cellular/molecular disruption.

Assessing how recovery profiles related to mortality showed that all 12 patients who died be-

longed to group iii (Fig. 1B). A survival analysis confirmed the significance of the increased risk of

death for this group compared to groups i and ii, when accounting for the number of observations

and drop-out events (Fig. 4B).

11

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 19, 2022. ; https://doi.org/10.1101/2022.06.18.22276437doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.18.22276437


Kruskal−Wallis, p = 0.001

* * 

0

1

2

3

i ii iii

Q
ue

s 
Sc

or
e

Ques Score
+ +++++ + +++++++ ++++++++++ + ++++ ++++++ + + ++ + + + +++++++++++ +

++++++ +++++++++++ +++++++++++++ ++++++++++

p = 0.000680.00

0.25

0.50

0.75

1.00

0 100 200 300
Days from symptom onset

Su
rv

iva
l p

ro
ba

bi
lit

y

Strata + + +df_surv[, group_type]=i df_surv[, group_type]=ii df_surv[, group_type]=iii

37 29 9 4
22 19 14 3
54 32 13 4−−−
0 100 200 300

Days from symptom onset

St
ra

ta

Number at risk

Kaplan–Meier survival curves

+ +++++ + +++++++ ++++++++++ + ++++ ++++++ + + ++ + + + +++++++++++ +
++++++ +++++++++++ +++++++++++++ ++++++++++

p = 0.000680.00

0.25

0.50

0.75

1.00

0 100 200 300
Days from symptom onset

Su
rv

iva
l p

ro
ba

bi
lit

y

Strata + + +df_surv[, group_type]=i df_surv[, group_type]=ii df_surv[, group_type]=iii

37 29 9 4
22 19 14 3
54 32 13 4−−−
0 100 200 300

Days from symptom onset

St
ra

ta

Number at riskNumber at risk

2

4

6

0 10 20 30 40 50
Days post screening or symptoms onset

lo
g2

(.+
1)

 R
at

io
 B

ra
nc

he
d 

AA
 T

au
rin

e

status
dead

discharged

hospital or facility

group_type
i

ii

iii

LR test: baseline uncor. p = 0.15, interaction uncor. p = 0.0056 (**)
Ratio Branched AA Taurine

2

4

6

0 10 20 30 40 50
Days post screening or symptoms onset

lo
g2

(.+
1)

 R
at

io
 B

ra
nc

he
d 

AA
 T

au
rin

e

status
dead

discharged

hospital or facility

group_type
i

ii

iii

LR test: baseline uncor. p = 0.15, interaction uncor. p = 0.0056 (**)
Ratio Branched AA Taurine

2

4

6

0 10 20 30 40 50
Days post screening or symptoms onset

lo
g2

(.+
1)

 R
at

io
 B

ra
nc

he
d 

AA
 T

au
rin

e

status
dead

discharged

hospital or facility

group_type
i

ii

iii

LR test: baseline uncor. p = 0.15, interaction uncor. p = 0.0056 (**)
Ratio Branched AA Taurine

i 
ii 
iii 

BComposite scoreA

Fatigue

Anosmia or dysgeusia

Chest Pain on exertion, palpitations or swollen ankles

Dyspnoea

New pain in one or more parts of the body

Difficulties eating, drinking or swallowing (cough, choking, food avoidance)

Voice alteration

New skin rashes or sores

General muscle weakness, balance or range of movement of joints

New neurology in one or more limbs

Constant noisy breathing or throat whistling

Cough

New leg swelling in one leg or shortness of breath with chest pain

Cognition: memory, concentration and thinking skills

Difficulty to gain or maintain weight, loss of appetite

Persisting fever (2 months or more)

0.0 0.5 1.0
Average score

group
i

ii

iii

Long−term symptoms

Long-term symptoms Individual scores

Fa
tig

ue

An
os

m
ia

 o
r d

ys
ge

us
ia

C
he

st
 P

ai
n 

on
 e

xe
rti

on
, p

al
pi

ta
tio

ns
 o

r s
wo

lle
n 

an
kl

es

D
ys

pn
oe

a

N
ew

 p
ai

n 
in

 o
ne

 o
r m

or
e 

pa
rts

 o
f t

he
 b

od
y

D
iff

ic
ul

tie
s 

ea
tin

g,
 d

rin
ki

ng
 o

r s
wa

llo
w

in
g 

(c
ou

gh
, c

ho
ki

ng
, f

oo
d 

av
oi

da
nc

e)

Vo
ic

e 
al

te
ra

tio
n

N
ew

 s
ki

n 
ra

sh
es

 o
r s

or
es

G
en

er
al

 m
us

cl
e 

we
ak

ne
ss

, b
al

an
ce

 o
r r

an
ge

 o
f m

ov
em

en
t o

f j
oi

nt
s

N
ew

 n
eu

ro
lo

gy
 in

 o
ne

 o
r m

or
e 

lim
bs

C
on

st
an

t n
oi

sy
 b

re
at

hi
ng

 o
r t

hr
oa

t w
hi

st
lin

g

C
ou

gh

N
ew

 le
g 

sw
el

lin
g 

in
 o

ne
 le

g 
or

 s
ho

rtn
es

s 
of

 b
re

at
h 

w
ith

 c
he

st
 p

ai
n

C
og

ni
tio

n:
 m

em
or

y, 
co

nc
en

tra
tio

n 
an

d 
th

in
ki

ng
 s

ki
lls

D
iff

ic
ul

ty
 to

 g
ai

n 
or

 m
ai

nt
ai

n 
we

ig
ht

, l
os

s 
of

 a
pp

et
ite

Pe
rs

is
tin

g 
fe

ve
r (

2 
m

on
th

s 
or

 m
or

e)

0.
0

0.
5

1.
0

Av
er

ag
e 

sc
or

e

gr
ou

p i ii iii

Lo
ng
−t

er
m

 s
ym

pt
om

s

i    ii   iii

Sc
or

e

Fatigue
Anosmia or dysgeusia

Dyspnoea
Difficulties eating, drinking or swallowing

Chest Pain on exertion, palpitations or swollen ankles
Voice alteration

New pain in one or more parts of the body
Constant noisy breathing or throat whistling

General muscle weakness, balance or range of movement of joints
New neurology in one or more limbs

New leg swelling in one leg or shortness of breath with chest pain
New skin rashes or sores

Cough
Cognition: memory, concentration and thinking skills
Difficulty to gain or maintain weight, loss of appetite

Persisting fever (2 months or more)

0.0 0.5 1.0
Average score

group
i

ii

iii

Long−term symptoms

**

*

**

*
*

*

new, averaged per patient

Figure 4: Long-term symptom characterization of the recovery groups and survival probabil-
ities. A: Average individual scores for long-term symptoms with pairwise Wilcoxon test, and symptom
composite scores per recovery group with one vs all Wilcoxon tests (stars) and overall Kruskal—Wallis test.
B: Kaplan—Meier survival curves and table for the three recovery groups, with log-rank test p-value. The
curves for groups i and ii overlap (green and black).

Clinically testable predictive signatures of systemic recovery

Our FPC analyses identified the inflammation recovery groups i, ii and iii as three categories of

disease trajectory. Follow-up analyses further indicated that these groups reflected systemic recov-

ery from COVID-19, by showing that the patients’ inflammatory response to infection was tightly

linked with long-term clinical consequences and with the magnitude and temporal resolution of

immunometabolic abnormalities, over months post symptom onset. We next aimed to test whether

this insight could be leveraged to predict, soon after infection, the recovery profile of individual

patients, by training an integrative model on samples collected during the early phase of the dis-

ease. We applied a generalized canonical correlation algorithm, extended for supervised analysis,

on all cellular and molecular data jointly (Methods). The method identified composite signatures

of systemic recovery via an internal selection of parameters relevant for prediction. Specifically, it

implemented a trade-off between (1) maximizing the correlation of biological parameters (immune

cell subsets, polar metabolites, glycoproteins, lipoproteins and diverse metabolic ratios) and (2)

maximizing the discrimination between unfavorable recovery profiles (group iii) and favorable re-

covery profiles (groups i & ii merged). We used the first sample of each patient, provided it was

taken within 3 weeks from symptom onset, and relied on training-test set splits involving 70% and

30% of the samples, respectively. The signatures for the first two latent components (Fig. 5A) and

the circular plot (Fig. 5B) were obtained using the training samples, while the receiver operating

characteristic (ROC) curves (Fig. 5C) were obtained using the left-out test samples.

The sign of the average signature parameter abundances aligned with existing knowledge and

with the analyses presented in Fig. 3. Metabolic intermediates from the kynurenine pathway, and
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Figure 5: Predictive modeling for the recovery groups (i+ii and iii). A: Absolute loadings forming
early predictive signatures, for the first and second latent components of the sparse generalized canonical
correlation analysis (sGCCA) model, arranged per data types. The green and red dots indicate that the
average abundance is greater in group i+ii or group iii, respectively. B: Circular plot linking pairs of variables
from the two signatures, if their absolute Pearson correlation exceeds 0.75, with red and blue indicating a
positive and negative correlation, respectively. The external green and red lines show the relative average
abundance of the selected variables within the two categories (green: groups i+ii and red: group iii). C:
ROC curves for the predictive performance in classifying individuals from the test set into group i+ii or
group iii, using the sGCCA model. The curves show the average prediction based on the four data types
(black), and the prediction based each data type separately (colors).

corresponding ratios, again appeared as important markers of the type of recovery, corroborating

previous findings on the involvement of the pathway in immunity and inflammation13. Quinolinic

acid, tryptophan, kynurenic acid, kynurenine and 3-hydroxykynurenine were selected in the first

signature, while serotonin, a neurotransmitter derived from tryptophan catabolism, was selected

in the second signature. These metabolites appeared together with a series of innate immune cells.
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Lastly, the presence of high-density lipoproteins in the first signature and the large triglyceride

contribution in the second signature echoed the results obtained above (Fig. 3). The area under

the curve (AUC) on the test set reached 89.8% (Fig. 5C). The predictive performance was also

good when restricting the signatures to each data type (AUCs > 84.7%), further suggesting high

interdependence of the biologic processes captured in our study.

Finally, we developed an interactive tool to browse predictions based on selected mark-

ers from the two systemic recovery signatures: http://shiny.mrc-bsu.cam.ac.uk/apps/

covid-systemic-recovery-prediction-app (Methods). Each new prediction obtained for a

patient presented to the clinic also entails an estimated prediction score to convey the level of

confidence in the predicted recovery profile, and the predictive performance on the test set is re-

evaluated based on the subset of markers supplied. This pilot tool aims to facilitate the planning

of prospective studies for testing the generalizability and clinical actionability of our findings.

Discussion

COVID-19 is a heterogeneous disease with strong patient-to-patient variability of the immune,

metabolic and inflammatory response over time. A growing literature reports widespread cellular

and molecular abnormalities in association with systemic inflammation in different study cohorts,

yet population-level analyses are unable to resolve individual patient disease courses. Here, we

deployed a patient-level framework on longitudinal immunophenotyping, metabolic and clinical

data from patients with differing disease severity to study recovery from COVID-19 in a broad,

systemic sense.

Estimating the cellular and molecular dynamics and their interplay at the patient level sheds

light on recovery profiles. Our framework relied on a multi-data-type FPC approach, which

refined conventional population-level analyses in several respects. First, it allowed reconstructing

the inflammatory, metabolic or immune trajectories of each patient during acute infection and

convalescence using multivariate modeling, thereby borrowing strength across parameter temporal

coregulation patterns. Second, it estimated scores that captured the inter-patient parameter

variability over time, in relation with the individual severity and recovery profiles; this estimation

was completely data-driven, i.e., it made no use of predefined severity classes or any other ad-hoc

information. Third, a clustering analysis of the CRP FPC scores uncovered three types of

patient profiles that were distinctive not only in the dynamics of inflammation, but also across

a range of cellular and metabolic parameters over months post symptom onset, as well as in

terms of risk of death and long-term symptoms. These profiles therefore constituted distinct
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patient systemic recovery categories, that characterized disease courses beyond clinical severity

(for which molecular correlates and risk factors have already been extensively described by us

and others5,9,11,14). The patient trajectories, scores and correlation functions can be visualized

interactively (http://shiny.mrc-bsu.cam.ac.uk/apps/covid-patient-trajectories).

Systemic inflammation, perturbed kynurenine-pathway and innate immune activity, and

incomplete recovery. The estimated temporal covariation patterns across data types suggested

that acute-phase inflammation is a common denominator interlinked with incomplete clini-

cal and immunometabolic recovery, up to a year post disease onset. While this observation

unsurprisingly adds COVID-19 to the long list of diseases in which inflammation plays a

central role15, our analyses highlighted that the coordinated dynamics of the innate immune

system, kynurenine and host lipid metabolism are likely pivotal in restoring overall homeosta-

sis. In particular, our data suggested that a limited number of pathophysiological processes

impact many of the parameters appearing together in the composite predictive signatures

(http://shiny.mrc-bsu.cam.ac.uk/apps/covid-systemic-recovery-prediction-app). For

instance, natural killer (NK) cells, with the largest weight in the first signature, play a central

role in anti-viral immunity through the secretion of pro-inflammatory cytokines and cytotoxic

activity16. The clear reduction of NK cells in peripheral blood from subjects with unresolving

CRP (group iii) suggests an inflammation-driven perturbation of the NK cell compartment. The

kynurenine pathway is also intricately associated with inflammation, as it is activated through

indoleamine 2,3-dioxygenase (IDO) induction by pro-inflammatory cytokines. It has also been

suggested as a key pathway involved in mechanisms linking inflammation and central nervous

system alterations, by favoring the degradation of tryptophan towards 3-hydroxykynurenine and

quinolinic acid (both appearing in the first predictive signature), and by reducing serotonin

production (second signature). Tryptophan catabolism into neuroactive kynurenine metabolites

and serotonin highlights its importance in regulation of neural function. Kynurenine can be

metabolized into 3-hydroxykynurenine and further processed into quinolinic acid (QA). QA is

an NMDA receptor agonist that exhibits similar potency as endogenous agonists, glutamate and

aspartate. Binding of QA to NMDA receptors results in substantial Ca2+ flux into neurons, which

characteristically results in cell death. By contrast serotonin or 5-hydroxytryptamine (5-HT) is

a neurotransmitter derived from tryptophan catabolism involving tryptophan hydroxylation and

decarboxylation. In patients with unresolved inflammation, the marked reduction in serotonin over

the course of the disease suggests that tryptophan degradation is skewed towards the kynurenine

pathway. Hence, it is plausible that abnormal levels of kynurenine pathway intermediates coupled

with the significant reduction of serotonin abundance may contribute to the neurologic sequelae
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(e.g., fatigue, weakness, chronic pain) of long COVID, as reported by patients in the poorest

recovery group iii.

Early, individual-patient prediction of unfavorable disease course and of long COVID. Whilst

mechanistic insight will require additional dedicated research, an important finding of our work

is that kynurenine-pathway metabolites measured early post symptom onset tend to have, alone,

very good predictive value for the type of systemic recovery profile. In particular, high levels of

quinolinic acid, kynurenic acid, kynurenine, 3-hydroxykynurenine, low levels of tryptophan (first

signature) and low levels of serotonin (second signature) appeared to be early markers of poor

prognosis, hence following the same lines as known associations with clinical severity. Moreover, the

predictive performance was further increased by a simultaneous inspection of cellular, metabolic

and glyco- & lipoproteomic parameters from the composite signatures. Of note, however, our

internal performance assessment on a left-out test set also indicated that minimal subsets from

these signatures (involving 3 − 4 parameters) may achieve sufficient predictive accuracy to

distinguish favorable from unfavorable disease trajectories. These findings also suggested that

complementing routine blood test panels with a limited set of parameters, identified here to be

of relevance for predicting disease progression, may be of clinical value. We stress however that

our prediction framework should not be used as a diagnostic tool, but rather as a pilot study

to guide future implementation. The excellent performance in our cohort warrants independent

validation; it suggests that such predictive modeling, solely based on early cellular and molecular

measurements, could effectively estimate the probability of becoming severely ill or of developing

long COVID, and ultimately help support, e.g., decisions on whether to administer antiviral drugs

to patients with risk factors, etc.

A basis for monitoring changes in new patient recovery profiles — immunity status and new

variants. Our cohort involved unvaccinated patients infected by the Wuhan wild type variant

and therefore constituted a clean floor for studying the immunometabolic response triggered by

the original strain of the SARS-CoV-2 virus. As new variants emerge, however, and immune

systems of individuals are influenced by their own history of vaccination and disease, integrative

longitudinal studies such as ours should be repeated to evaluate the stability of the identified

cellular and molecular signatures in this new context, monitor the changes in specific biomarkers

and in patient profiles, and understand the drivers of these changes. Our patient-level methodology

is transferable to any new cohort, which permits such systematic comparative work.
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Altogether, our framework constitutes a setup for studying the molecular and clinical corre-

lates of organismal recovery. It offers patient-centric lenses to dissect the heterogeneity of the

immune and metabolic responses to SARS-CoV-2 infection, formulate mechanistic hypotheses on

their orchestrated action in driving systemic recovery, and develop personalized early intervention

strategies.

Methods

Cohort and samples

The cohort and initial sampling timeline have been previously described in earlier work9. Late-

timepoint samples have subsequently been collected and new metabolic data have been quantified.

Briefly, study participants were patients attending Addenbrooke’s Hospital, Royal Papworth Hos-

pital NHS Foundation Trust or Cambridge and Peterborough Foundation Trust with a confirmed

diagnosis of SARS-CoV-2 infection, as well as SARS-CoV-2 positive health care workers recruited

from a staff screening program. The initial sampling program collected blood samples for 201 pa-

tients at study entry (first samples collected 31/3/2020) and at regular intervals up to three months

post symptom onset. Late-timepoint samples were then obtained up to a year post symptom onset,

approximately at 3, 6 and 12 months following recruitment. For this long-term follow-up, 14 addi-

tional hospitalized patients were included alongside the original cohort, after their discharge from

Addenbrooke’s Hospital. Each participant was assigned to one of following categories of clinical

severity: (A) asymptomatic healthy workers (18 individuals); (B) symptomatic healthy workers

(still working or self-isolating, 40 individuals); (C) patients who presented to hospital but never

required oxygen supplementation (50 individuals); (D) patients who were admitted to hospital and

whose maximal respiratory support was supplemental oxygen (38 individuals); and (E) patients

who at some point required assisted ventilation (69 individuals). Controls (45 individuals) were

SARS-CoV-2 negative hospital staff members with a negative serology. Blood samples were drawn

in EDTA, sodium citrate, serum and PAXgene Blood RNA tubes (BD Biosciences) and processed

by the CITIID-NIHR COVID BioResource Collaboration group. All study participants provided

written informed consent prior to enrolment. Ethics approval was obtained from the East of Eng-

land – Cambridge Central Research Ethics Committee (“NIHR BioResource” REC ref 17/EE/0025,

and “Genetic variation AND Altered Leucocyte Function in health and disease - GANDALF” REC

ref 08/H0308/176).
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CRP and cytokines

High sensitivity C-reactive protein (CRP) and serum cytokines (IL-6, IL-10, IL-1β, TNF and IFN-

γ) were quantified by laboratories in Cambridge using standard assays9.

Flow immunophenotyping and CyTOF assays

The assays are detailed in previous work on the early follow-up of the study cohort9. Briefly,

peripheral blood mononuclear cells (PBMCs) were obtained from peripheral venous blood collected

in 10% sodium citrate tubes (up to 27 mL per sample). They were isolated using Leucosep tubes

(Greiner Bio-One) with Histopaque 1077 (Sigma) by centrifugation at 800x g for 15 min at room

temperature. PBMCs at the interface were collected, rinsed twice with autoMACS running buffer

(Miltenyi Biotech) and cryopreserved in FBS with 10% DMSO. All samples were processed within

4 hours of collection.

An aliquot of whole blood (50µl) was added to BD TruCount tubes with 20µl BD Multitest

6-color TBNK reagent (BD Biosciences) for direct enumeration of T, B and NK cells, and was

processed as per the manufacturer’s instructions. Samples were gated in FlowJo v10.2 and the

number of cells falling within each gate was recorded. For analysis, these were expressed as an

absolute concentration of cells per µl, calculated using the proportions of daughter populations

present within the parent population determined using the BD TruCount system.

The protocol used to isolate PBMCs led to an impaired recovery of the monocyte populations,

specifically intermediate and non-classical monocytes. Measurements were extended to these and

other granulocyte populations using a mass cytometric assay for a subgroup of patients and healthy

controls (249 samples).

NMR spectroscopy and mass spectrometry based quantitative metabolic pheno-

typing

1H NMR sample preparation: Sample processing was performed according to Bruker IVDr proto-

cols17 and previously published recommended procedures for IVDr metabolic analysis of COVID-19

plasma samples18. Plasma samples were stored at −80◦C until required, after defrosting the sam-

ples were centrifuged at 13 000g for 10 min at 4◦C. The plasma supernatant was mixed with buffer

(75 mM Na2HPO4, 2 mM NaN3, 4.6 mM sodium trimethylsilyl propionate-[2,2,3,3-2H4] (TSP) in

80% D2O, pH 7.4± 0.1) (1:1). 600µL of the plasma/buffer mixture was transferred into a Bruker

SampleJetTM NMR tube (5mm) and sealed with POM balls added to the caps.

1H NMR spectroscopy data acquisition and processing parameters: NMR measurements were

performed on a Bruker 600 MHz Avance III HD spectrometer (IVDr) equipped with a BBI probe
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and fitted with Bruker SampleJetTM robot with the cooling system set to 5◦C. A quantitative

calibration was completed prior to the analysis19. For each sample a 1H 1D experiment with sol-

vent pre-saturation (32 scans, 98 304 data points, spectral width of 18 028.85 Hz) was completed

in automation with an experiment time of 4.5 mins. Lipoprotein reports itemising 112 lipoprotein

parameters for each plasma sample were generated using the Bruker IVDr Lipoprotein Subclass

Analysis (B.I.LISATM) method. This was completed by quantifying the -CH2 (δ = 1.25) and -CH3

(δ = 0.8) peaks of the 1D spectrum after normalization to the Bruker QuantRefTM manager within

TopspinTM using a PLS-2 regression model. The lipoprotein subclasses included different molecu-

lar components of very low-density lipoprotein (VLDL, 0.950–1.006 kg/L), low-density lipoprotein

(LDL, density 1.09–1.63 kg/L), intermediate-density lipoprotein (IDL, density 1.006–1.019 kg/L),

and high-density lipoprotein (HDL, density 1.063–1.210 kg/L). The LDL subfraction was further di-

vided into 6 density classes (LDL-1 1.019–1.031 kg/L, LDL-2 1.031–1.034 kg/L, LDL-3 1.034–1.037

kg/L, LDL-4 1.037–1.040 kg/L, LDL-5 1.040–1.044 kg/L, LDL-6 1.044–1.063 kg/L), and the HDL

subfractions placed in 4 different density classes (HDL-1 1.063–1.100 kg/L, HDL-2 1.100–1.125

kg/L, HDL-3 1.125–1.175 kg/L, and HDL-4 1.175–1.210 kg/L). Upon completion of the standard

1D experiment, the DIRE experiment was run (64 scans, 98 304 data points, spectral width of

18 028.85 Hz) with a total experiment time 4 minutes 25 seconds per sample20.

NMR data analysis: ERETIC correction21 was applied to all DIRE spectra to ensure the

observed intensities are quantitative. All DIRE spectra were calibrated by setting the spectral

reference value to 0 (SR = 0). Integration of the α 1-acid glycoprotein N-acetyl signals GlycA and

GlycB, and supramolecular phospholipid composite (SPC) was performed using scripts for the R

Statistical Software22 using standard functions. GlycA was cut at the following region δ 2.05−2.09,

GlycB δ 2.09− 2.12, SPC δ 3.15− 3.35.

Biogenic amines, amino acids and tryptophan metabolic pathway analysis: Plasma samples

were thawed at 4◦C and prepared for analysis following previously reported methods for biogenic

amines and amino acids23 and tryptophan and associated catabolites24. For the quantification of

biogenic amines and amino acid metabolites, separation was performed by ultra-high-performance

liquid chromatography (UHPLC) using an Acquity UPLC (Waters Corp., Milford, MA) coupled

to a Bruker impact II QToF mass analyzer (Bruker, Daltonics, Billerica, MA). Resulting data files

were processed for peak integration and quantification using Target Analysis for Screening Quan-

tification (TASQ) software v2.2 (Bruker Daltonics, Bremen, Germany) where calibration curves

were linearly fitted with a weighting factor of 1/x. For the measurement of tryptophan and asso-

ciate catabolites, separation was performed using an Acquity UPLC (Waters Corp., Milford, MA)

coupled to Waters Xevo TQ-XS mass spectrometer (Waters Corp., Wilmslow, U.K.). Obtained raw

files were processed for peak integrations and metabolite quantification using TargetLynx package
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within MassLynx v4.2 (Waters Corp., Milford, MA) where calibration curves were linearly fitted

using a weighting factor of 1/x. Resulting data matrices were combined and quality control checked

prior to statistical analysis13,23.

Three patients had at least a subset of their samples collected while being on parenteral nutrition

(seven samples in total), which likely altered their lipid levels. Sensitivity analyses without these

patients indicated that their exclusion leave our observations are unchanged.

Data preprocessing and quality control

All statistical analyses were conducted using the R software22. Except for ratios for which no

systematic transformation was applied, CRP, cytokines and all other cellular and molecular vari-

ables were log-transformed for variance stabilization, using x 7→ log2(x + 1) (with the offset “+1”

accounting for zero counts while ensuring positivity). For each molecular dataset, the presence

of extreme measurements and/or batch effects was assessed using principal component analysis

(PCA) visualization. No batch effect was observed. A standard boxplot rule was applied to discard

extreme samples, i.e., with > 20% of their measurements falling outside the Tukey outer fences.

Following this procedure, 2 immune cell type samples (1.1%) and 10 metabolomic samples (1.6%)

were removed from all downstream analyses (all glyco- and lipoprotein samples were retained).

Differential abundance analysis and association with CRP

Differential abundance analysis between COVID-positive patients and healthy controls was con-

ducted using linear mixed modeling to account for serial subject measurements over a window of 7

weeks post symptom onset or positive swab. Analyses also included gender and age as fixed effects.

The following model was implemented using lmerTest R package (R notation):

dep_var ∼ covid_status + age + gender + (1 | subject_id),

where the different molecular variables were taken in turn as the dependent variable dep_var and

covid_status is a binary variable coding for “COVID positive” or “COVID negative”. Significance

of the covid_status effect was assessed using a type 3 F test and Satterthwaite’s method (to

estimate the degrees of freedom for fixed effects), and adjustment for multiple testing across each

molecular dataset was performed using a false discovery rate (FDR) correction of 5%. When

significance was reached, the molecular variable was called “upregulated” or “downregulated” based

on the sign of the fold change.

The same linear mixed model framework was employed to test the association between CRP and

each cellular/molecular variable, replacing the covid_status categorical variable with the quanti-

tative (log-transformed) CRP variable.
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Unless specified otherwise, all the analyses described hereafter are adjusted for multiple testing

per data type, using an FDR correction of 5%.

Functional principal component analysis

Functional principal component (FPC) analysis was conducted to characterize the inter- and intra-

patient variability and estimate individual disease trajectories using parameters reflecting inflamma-

tion, as well as the immunometabolic response to infection. These parameters were CRP levels, five

cytokines (IFN-γ, IL10, IL1B, IL6 and TNF), twelve lymphocyte subsets (CD4 EMRA, CD4 Naive,

CD4 Non-naive HLA-DR+CD38+ T, CD8 EMRA, CD8 Naive, CD8 Non-naive HLA-DR+CD38+

T, CD19+, plasmablasts, gd T, MAIT, NK and NKT cells), three lipoproteins (HDA1, HDA2 and

VLAB), two glycoprotein signals (GlycA and GlycB) and four metabolites from the kynurenine

pathway (3-hydroxykynurenine, kynurenine, quinolinic acid and tryptophan).

The R packages face25 and mfaces26 were used to implement the univariate FPC analysis

(for CRP levels), respectively multivariate FPC analysis (for all other groups of parameters listed

above), thereby leveraging shared signals across molecular markers of a same type. Briefly, this

analysis aimed at disentangling the main contributions to the data variability while estimating

subject-level trajectories based on sparse observations. The method was unsupervised and made

full use of the longitudinal measurements collected for each patient. The patient-level trajectory

of each parameter was modeled as mean function plus a truncated sum of random deviations from

the mean. These deviations were expressed as a linear combination of orthonormal eigenfunctions,

weighted by patient-specific scores. The eigenfunctions accounted for the principal sources of

variation in the data, and the scores conveyed how each patient’s trajectory deviated from the

population mean. In the multivariate setting, each molecular parameter had a corresponding set

of eigenfunctions but the scores were common to all parameters (and were not indexed by time).

In many situations including ours, the first FPC eigenfunctions capture nearly all of the varia-

tion. These eigenfunctions may also be interpretable; for all the above parameters, the major mode

of variation pertained to disease severity (first eigenfunction and corresponding scores), while the

second mode of variation reflected the type of “recovery profile” or recovery of the analyzed param-

eter(s) (second eigenfunction and corresponding scores). The FPC method also inferred smooth

estimates of variance and auto-correlation functions. Cross-correlation functions could also be

estimated in the multivariate case and provided insights on the covariation of different related

molecular parameters over time. Asymptomatic patients (severity class A) were not considered for

FPC analyses and all downstream analyses to avoid ambiguity when discussing recovery, and FPC

trajectories were estimated over a time window of 7 weeks post symptom onset.
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Hierarchical clustering

Hierarchical clustering was performed on the CRP scores corresponding to the first two eigenfunc-

tions to uncover groups of patients with similar disease trajectories. Complete linkage clustering

was employed and the number of clusters was assessed using three diagnostics (Fig. S4): the gap

statistics (suggested 3 clusters), the average silhouette width (suggested 2 clusters) and the total

within sum of square (suggested 2 or 3 clusters). The three clusters corresponded to groups i, ii

and iii, as defined in the Results section, and the two clusters corresponded to group iii and group

i+ii, i.e., to merging the two groups with favorable evolution (the latter two clusters were employed

for prediction modeling of systemic recovery).

Overall and one vs all Fisher’s exact tests were used to characterize the groups based on gender,

and anova and one vs all t-test were used to assess differences in age. Unless otherwise specified,

p-value-based significance was labelled as follows on plots: **** if p < 0.0001, *** if p < 0.001,

** if p < 0.01 and * if p < 0.05. For all subsequent analyses, significance labels are based on

FDR-adjusted p-values.

Correlation tests

Correlation between the parameters analyzed by FPC (lymphocytes, lipoproteins, glycoproteins,

kynurenine-pathway metabolites, cytokines and CRP levels) was assessed during acute infection

(0 − 21 days post symptom onset) and convalescence (22 − 49 days post symptom onset). For

each time window and each subject, the multiple measurements per subject were averaged, prior

to computing correlation within recovery groups. For healthy controls, samples were available at

a single timepoint for each subject so a single correlation matrix was computed. FDR-adjusted

correlation tests were performed using the R package TestCor separately for each recovery group

and for the healthy controls.

Pairwise Pearson correlation tests among the severity and recovery FPC scores for lymphocytes,

lipoproteins, glycoproteins, metabolites from the kynurenine pathway, as well as cytokines and CRP

were also conducted.

Longitudinal modeling

Univariate mixed models were employed to estimate the temporal profile of each cellular/molecular

parameter for the recovery groups i, ii and iii, i.e., with random effects to account for serial

measurements of patients. Polynomial splines of degree 2 were used to model the parameters with

respect to the interaction between the time from symptom onset (time) and the recovery groups

(group). The following model was fitted for each molecular variable (dep_var):
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dep_var ∼ time * group + (1 | subject_id).

The significance of baseline effects (i.e., difference between groups at time zero) and interaction

effects (i.e., difference in the group temporal courses) were tested using likelihood ratio tests and

adjusted for multiplicity across all variables of same data type.

Direct comparisons with healthy control levels were also conducted using mixed models whereby

samples were grouped into five time windows (involving similar numbers of samples): (0, 3], (3, 7],

(7, 12], (12, 27] and (27, 52] weeks post symptom onset. For each molecular variable and each time

window, the following model was fitted:

dep_var ∼ category + (1 | subject_id),

where category is a categorical variable coding for the healthy control and three recovery groups,

with the former used a reference factor level. To assess the discrepancy between each group’s

parameters and healthy control parameters, the significance of the category levels was examined,

adjusting for multiplicity over all parameters of same data type. Significance was not reported if

≤ 15 samples were available in the group and the time window under consideration.

Long-term symptoms

Long-term symptoms were collected under the form of questionnaires given to patients between 2

and 11 months post symptom onset (average: 6 months). Patients were asked to rank the severity

of a list of symptoms on an ordinal scale. These scales were recoded so the scores range from 0 (no

symptom) to 5 (extreme manifestation of the symptom) and a composite score was computed as the

average of the individual symptom scores. The list of symptoms was: dyspnoea; cough; chest pain

on exertion; palpitations or swollen ankles; persisting fever (2 months or more); new leg swelling in

one leg or shortness of breath with chest pain; new skin rashes or sores; voice alteration; difficulties

eating, drinking or swallowing; constant noisy breathing or throat whistling; anosmia or dysgeusia;

difficulty to gain or maintain weight, loss of appetite; new neurology in one or more limbs; new pain

in one or more parts of the body; muscle weakness, balance or range of movement of joints; fatigue;

cognition: memory, concentration and thinking skills. Up to three questionnaires per patient were

collected, but most patients completed a single questionnaire; the scores of patients with more than

one questionnaire were averaged prior to the analysis. Non-parametric tests were used for overall

comparison across recovery groups (Kruskall—Wallis rank sum test), as well as for pairwise tests

(Wilcoxon rank sum tests).
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Survival analysis

The risk of death was studied by Kaplan—Meier survival analysis, using the three recovery groups

i, ii and iii as strata. Difference in survival between the groups was assessed using a log-rank test.

Predictive modeling

Predictive modeling of systemic recovery was carried out to classify patients, shortly after disease

onset, in terms of unfavorable (group iii) or favorable disease progression (groups i and ii, merged).

An integrative sparse generalized canonical correlation (sGCCA) approach, adapted for supervised

analysis, DIABLO27, was applied on the first sample of each patient from the cohort, provided

that this sample was taken within 3 weeks post symptom onset. Patients were randomly assigned

to a training set or a left-out test set, according to a 70%− 30% split (using the R package caret

to balance the recovery-category distributions within the training and test sets). sGCCA accounts

jointly for the different data types (here: immune cell-types, polar metabolites, glyco- and lipopro-

teins, and selected metabolic ratios) and estimates integrative predictive signatures under the form

of sparse latent components. The features composing these signatures might represent important

molecular drivers of the type of recovery profile and their selection within a same signature might

reflect shared underlying biological responses to infection, that simultaneously mobilize or affect

features from the immune system, the metabolome and the lipidome.

Here the sGCCA method was trained to maximize the correlation between the different data

types (cellular/molecular candidate predictors) as well as the discrimination between the recovery

groups i+ii and iii. The training procedure used 3-fold cross-validation to select the numbers of

candidate predictors within each latent component; the first two components were sufficient to

achieve high discrimination between the recovery groups, and adding a third component didn’t

yield further improvement.

Systemic recovery prediction tool

The predictive model based on Cambridge patients’ early samples allows generating pre-

dictions for new samples collected when a patient presents to the clinic. An interactive

tool to browse recovery prognoses is provided at http://shiny.mrc-bsu.cam.ac.uk/apps/

covid-systemic-recovery-prediction-app. For a new patient, each marker from the two signa-

tures identified by the model (Fig. 5A) can be set in terms of percentiles of the empirical distribution

formed by all Cambridge cohort patient and healthy control measurements. The colors appearing

on the bar suggest normal ranges (grey, corresponding to the healthy controls’ interquartile range),

low values (blue, smaller than the healthy controls’ first quartile) or high values (red, larger than
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the healthy controls’ third quartile). The initial values correspond to the median of healthy con-

trols’ measurements. The tool runs the prediction based on the input values and it outputs the

systemic recovery prognosis (i+ii or iii), along with a predicted score ranging from 0.5 to 1 and

conveying the degree of confidence about the prediction (the larger, the higher the confidence).

As only a subset of markers from the two signatures may be quantified from blood tests collected

in the clinic, the prediction can be based on a selection of markers chosen from the drop-down

menus; the deselected markers are omitted in the linear combination corresponding to their latent

component. To assess the expected performance of the model when restricted to a subset of markers,

ROC curves are recomputed based on this subset using the Cambridge left-out test set (the curves

are updated when selecting or deselecting markers). A poor performance on the test set (e.g.,

AUC < 0.7) suggests that the selection of markers is insufficient to provide reliable predictions for

the new patient. In that case, the predicted category should be disregarded and values for additional

markers should be supplied where possible. As Vg9Vd2(hi) gd T appears in both signatures, its

slider bar is displayed in the first column only.

Data availability

The data and metadata for the early (0-3 months) follow-up9 are available at NIHR CITIID

COVID-19 Cohort (https://www.covid19cellatlas.org/patient/citiid/).
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