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1 Abstract  

Background: Diagnosis and prognostication of intra-axial brain tumors hinges on invasive brain 

sampling, which carries risk of morbidity. Minimally invasive sampling of proximal fluids, also 

known as liquid biopsy, can mitigate this risk. Objective: To identify diagnostic and prognostic 

cerebrospinal fluid (CSF) proteomic signatures in glioblastoma (GBM), brain metastases (BM), 

and primary central nervous system lymphoma (CNSL). Methods: CSF samples were 

retrospectively retrieved from the Penn State Neuroscience Biorepository and profiled using 

shotgun proteomics. Proteomic signatures were identified using machine learning classifiers and 

survival analyses. Results: Using 30 µL CSF volumes, we recovered 755 unique proteins across 

73 samples. Proteomic-based classifiers identified malignancy with area under the receiver 

operating characteristic (AUROC) of 0.94 and distinguished between tumor entities with 

AUROC ≥0.95. More clinically relevant triplex classifiers, comprised of just 3 proteins, 

distinguished between tumor entities with AUROC of 0.75-0.89. Novel biomarkers were 

identified, including GAP43, TFF3 and CACNA2D2, and characterized using single-cell RNA 

sequencing. Survival analyses validated previously implicated prognostic signatures, including 

blood brain barrier disruption. Discussion: Reliable classification of intra-axial malignancies 

using low CSF volumes is feasible, allowing for longitudinal tumor surveillance. Based on 

emerging evidence, upfront implantation of CSF reservoirs in brain tumor patients warrants 

consideration.  

2 Statement of Significance 

Current approaches to diagnosing brain tumors risk morbidity. The CSF may be an ideal liquid 

biopsy matrix for mitigating this risk. We report feasibility of high-throughput CSF proteomics 

on limited volumes from brain tumor patients with intraventricular reservoirs, demonstrate 

diagnostic and prognostic utility, and explore its applications in practice. 

3 Introduction 

Advances in the management of brain malignancies have been limited and patients continue to 

face a grim prognosis.1-7 Encompassing a broad category that includes high-grade gliomas, brain 

metastases, and central nervous system lymphomas (CNSL), brain malignancies pose major 
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challenges in clinical management: i) dependence on invasive tumor tissue sampling for initial 

histopathology-based diagnosis; ii) imperfect strategies for tumor surveillance following initial 

therapy; and iii) a lack of clinically actionable, minimally invasive biomarkers. 

At presentation, clinical and imaging parameters alone are not always sufficient for 

definitively distinguishing high-grade gliomas from brain metastases and CNSL. Given the 

vastly divergent management for each entity, this necessitates direct tissue acquisition through an 

invasive neurosurgical procedure which presents with great potential for complication. Even 

minimally-invasive stereotactic brain tumor sampling has a 4-7% risk of major morbidity.8 This 

overt dependence on tumor tissue is an even greater challenge during surveillance while on 

adjuvant therapy and subsequent treatment. Radiation-based treatment regimens can lead to 

radiation necrosis (RN) in 10-15% of cases while up to 10% of glioblastoma patients can 

demonstrate pseudo-progression on imaging.9,10 Despite advances in imaging, pathological tissue 

assessment remains the gold standard approach for distinguishing RN from true tumor 

progression. Short interval imaging and clinical follow-up is recommended for differentiating 

pseudo-progression from true tumor progression. Unfortunately, rapid disease progression is not 

uncommon, at which point many regimens – including enrolment into clinical trials – are no 

longer feasible due to advanced disease. While longitudinal sampling of the tumor and its 

microenvironment is necessary for monitoring the expansion of treatment-resistant subclones or 

differentiating tumor recurrence from RN, this is simply not feasible for brain-based pathologies. 

Thus, it behooves us to develop approaches that help avoid unnecessary surgery while tailoring 

the specific approach based on tumor prognosis when surgery is necessary. 

Commonly referred to as liquid biopsy, sampling of proximal fluids has offered valuable 

insight in various systemic cancers. In Neuro-Oncology, blood and cerebrospinal fluid (CSF) are 

the most relevant proximal fluids. While acquisition of blood is associated with a theoretically 

lower risk of morbidity, the CSF is physiologically the ideal liquid biopsy source for brain 

tumors, owing to its direct contact with the tumor microenvironment in the central nervous 

system and limited obstruction by the blood-brain barrier. In routine clinical practice, CSF 

sampling is central in the management of CNSL and has been used for prognostication of 

medulloblastoma and germ cell tumors.11 In GBM and brain metastases, although CSF cytology 
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is used clinically to confirm leptomeningeal spread, molecular analyses are currently not part of 

routine clinical practice for diagnosis, prognostication, and tumor surveillance. 

Numerous liquid biopsy-based studies, utilizing a wide variety of molecular assays, have 

thus far been conducted to develop better diagnostic and prognostic signatures for GBM.11-16 

None have been clinically-validated. Circulating tumor DNA (ctDNA), shed predominantly from 

tumor cell turnover, can be used to genotype GBMs at diagnosis and over the course of the 

disease. Challenges with ctDNA include its extremely low yield in blood, with only slight 

improvements detected in the CSF11, and limited diagnostic alterations distinguishing normal and 

cancerous ctDNA.17 While providing valuable information, DNA- and RNA-level alterations are 

unable to predict protein activity, which would be necessary for establishing predictive 

biomarkers or stratification of patients for use in development of targeted therapeutics.18 Recent 

proteogenomic analyses of GBM tumor tissue have demonstrated incoherence between mRNA 

and protein expression, suggesting that the proteome serves as a better representation of disease 

state and underlying biology.19,20  

A comprehensive understanding of GBM and brain metastases through liquid biopsy-

based proteomic studies would enable a proactive approach to diagnosis, prognostication, and 

targeted therapy. This would be paradigm-shifting. As such, application of large-scale proteomic 

approaches in the realm of liquid biopsy are now imperative. In this study, we report the 

feasibility of high throughput proteomics on limited volumes of CSF samples acquired from 

patients with brain malignancies, describe its diagnostic and prognostic utility, and explore future 

applications of this approach in routine clinical practice. 

4 Results 

4.1 CSF proteomic can reliably diagnose brain malignancy 
We performed unbiased proteomic profiling of 73 CSF samples obtained from patients (mean 

age 63 years, 43.8% female) diagnosed with normal pressure hydrocephalus (NPH, n = 20), 

glioblastoma (GBM, n = 22), brain metastasis (BM, n = 17), or primary central nervous system 

lymphomas (CNSL, n = 14) (Fig 1, Table 1, Table S1). BMs were secondary to non-small cell 

lung cancer (NSCLC; lung) and invasive ductal carcinomas (breast) in 35.3% and 52.9% of 

cases, and all primary CNSL samples were diffuse large B-cell lymphomas.  
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For quality control (QC), all samples were spiked with S. cerevisiae invertase 2 (SUC2, 

internal control) and indexed retention time (iRT) peptides (chromatography control). We 

demonstrated limited variation in SUC2 intensities (Fig S1A), and consistent iRT peptide elution 

profiles, thereby indicating reliable liquid chromatography (LC) performance (Fig S1B). To 

ensure the reliability of our data, comprehensive QC samples were run after a fixed number of 

biological samples. The pooled QC samples were highly reproducible within processing (R2 = 

0.92) and technical (R2 = 0.93) replicates (Fig S1C). Correlation analysis within biological and 

random groups further confirmed the quality of our data (Fig S1C). Using this proteomic 

workflow, we recovered 1333 unique proteins and showed that CNSL and BM (but not GBM) 

samples had a significantly more diverse proteome than NPH samples (Fig S1D; p = 0.0016 and 

0.039, respectively).   

Next, we applied a 70% intra-group coverage threshold to obtain a dataset of 755 proteins 

for downstream analyses, representing an improvement in proteome coverage over the 506 

proteins recovered by Schmid and colleagues in a comparable cohort using an identical coverage 

threshold (Fig S2A-D).16 Tumor suppressor genes (e.g., PTEN, NF1, TP53) and oncogenes (e.g., 

EGFR, BRAF, PDGFRA) implicated in GBM, BM and CNSL were not reliably recovered by 

our protocol, which we attributed to our approach preferentially detecting secreted, rather than 

intracellular or membrane-bound proteins (Table S1).21 Importantly, UMAP representation of 

CSF proteomes revealed coherent separation of each diagnostic group, suggesting that CSF 

proteomics are suitable for diagnosing malignancy, and discriminating between different brain 

neoplasms (Fig 1B).  

To characterize malignancy-associated CSF biology, we performed differential protein 

analyses between NPH (non-malignant) and each brain neoplasm cohort (malignant) and 

identified 55 and 112 proteins that were consistently over- or under-represented in malignant 

CSF samples, respectively (Fig 2A, B; Table S2). Functional annotation revealed that 

malignancy was associated with apoptotic signaling, glycolysis and heme metabolism, whereas 

non-malignancy was associated with elastic fibres- and extracellular matrix (ECM)-associated 

proteins, and neuronal and glial processes (Fig 2C, D; Fig S3A). Importantly, using published 

proteomic CSF data from GBM,16 BM,16 CNSL,16 Alzheimer’s disease (AD),22 amyotrophic 

lateral sclerosis (ALS),23 and clinically-isolated syndrome of demyelination [CIS; first attack of 
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multiple sclerosis (MS)],24 we demonstrated that our malignancy and non-malignancy signatures 

are significantly more deregulated in neoplastic disease (GBM, BM, CNSL) than non-neoplastic 

disease (AD, ALS, CIS/MS) (Fig 2E, F).  

We utilized a logistic regression (LR) machine-learning classifier framework to evaluate 

the diagnostic utility of our proteomic signatures. We found that proteomic-based LR classifiers 

identified malignancy with a median AUROC of 0.94 (95% CI = 0.85 – 1.0), and this estimate 

ranged from 0.95 – 1.0 when evaluated for single neoplastic entities, demonstrating minimal 

neoplasm-specific bias (Fig 2G, Table 2; Model 1). These performance metrics were reproduced 

using L1-regularized LR classifiers (Table 2; Model 2), and feature selection using the Lasso 

procedure independently identified SERPINA3, HIST1H1E;HIST1H1D, IGFALS, HBA1, 

APOC2, FSTL3, SH3BGRL3, FCGR3A, FDPS, HLA-C, IGHM, HYOU1, REG3A, LGALS1, 

and COL4A1 as malignancy-associated protein, and GALNT2, PI16, AGA, COCH, CCL14, 

PLXDC1, IGHV1-2 and GNPTG as non-malignancy-associated protein. Despite only 38% and 

80% of proteins belonging to the malignant and non-malignant signatures being recovered in the 

Schmid cohort, respectively (Fig S3B),16 malignancy in this independent cohort was classified 

with a median AUROC of 0.82 (95% CI = 0.72 – 0.91), demonstrating the external validity of 

our signatures (Fig 2H, Fig S3C-H, Table 2).  

Upon consideration of clinical covariates, including age, sex, presence of malignant 

cytology in CSF, and leptomeningeal status, we observed a negligible 0 - 0.02 improvement in 

AUROC performance (Fig S3D, H). From the clinical covariates considered here, malignant 

cytology had the best individual diagnostic value with a median AUROC of 0.68 (95% CI = 0.58 

– 0.79); however, despite perfect specificity (median = 1.0, 95% CI = 1.0 – 1.0), its poor 

sensitivity (median = 0.37, 95% CI = 0.16 – 0.58) indicates that additional diagnostic 

investigations are required following a negative cytological finding. Here we report that our 

proteomic-based malignancy classifier is suitable for such applications, given its comparable 

median specificity of 1.0 (95% CI = 0.84 – 1.0) and superior sensitivity of 0.90 (95% CI = 0.73 – 

1.0).  
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4.2 Diagnosis of brain neoplasms using CSF proteomics is clinically feasible 

We next sought to evaluate whether CSF proteomics can discriminate between different types of 

brain neoplasms. We approached this question from two perspectives. In the first, we evaluated 

the upper-bound performance of CSF proteomics in diagnosing different types of brain 

malignancy without consideration for clinical feasibility (i.e., no restriction imposed on number 

of proteins used to construct classification model) (Fig S4; S5). However, recognizing that 

profiling large panels of proteins in a clinical setting may not be readily available in all settings, 

our second approach prioritized clinical feasibility and identified smaller subsets of diagnostic 

biomarkers in a proof-of-concept demonstration that focused CSF proteomics has diagnostic 

utility (Fig 3; Fig S6-S7).  

To evaluate the upper-bound performance of CSF proteomics in diagnosing different 

brain neoplasms, we performed pairwise differential protein analyses to identify GBM-, BM- and 

CNSL-specific proteins and used these to construct neoplasm-vs-other classifiers (Fig S4A, 

Table S2). Using the current study’s cohort, the median AUROC for GBM-vs-other, BM-vs-

other, and CNSL-vs-other LR classifiers was 0.95 (95% CI = 0.80 – 1.0), 0.98 (95% CI = 0.90 – 

1.0), and 1.0 (95% CI = 0.88 – 1.0) (Fig S4B-D, Table 2; Model 1), respectively, and these 

performance metrics were independently verified using a L1-regularized LR classifier (Table 2; 

Model 2). We also retrained this model using the subset of IDH-wt GBM samples (16/22 glioma 

samples) and found that IDH-wt GBM was classified with a similar AUROC of 0.97 (95% = 

0.88 – 1.0). Next, we assessed external validity using data from the Schmid cohort, and found the 

performance of the GBM-vs-other, BM-vs-other, and CNSL-vs-other LR classifiers to be 0.69 

(95% CI = 0.56 – 0.81), 0.71 (95% CI = 0.58 – 0.83), and 0.80 (95% CI = 0.64-0.94), 

respectively (Fig S5, Table 2; Model 1). While the performance was lower than that observed in 

our own cohort, this was attributed to the Schmid cohort recovering only 63% (107/170) proteins 

used in training the classifier (Fig S5A). We conclude that our proteome-based classifiers are 

generalizable and can discriminate between different neoplastic diseases. However, given that 

this classifier requires profiling of 170 protein, its utility in a clinical setting is limited, with the 

exception of large-scale targeted proteomic approaches [e.g., parallel reaction monitoring 

(PRM)].25-27 
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Having established that the upper-bound AUROC performance of CSF proteomics ranges 

from 0.95 - 1.0, we next sought to identify focused biomarker panels. We applied our machine-

learning-based framework to nominate individual protein with possible diagnostic value (Fig 3A; 

Fig S6A; Table S3). Using an orthogonal approach, we also identified candidate biomarkers 

using Lasso-based feature selection but found this list of proteins to be redundant with the 

approach described above. Next, we evaluated combinatorial classifiers, termed “triplex 

classifiers”, that comprised of 3-way combinations of the top proteins identified by our uniplex 

classifiers, and these classifiers were AUROC-ranked to identify the top combinations of 

diagnostic biomarkers (Fig 3A; Fig S6B; Table S3). Among the top 25 triplex classifiers, we 

focused on further characterizing GAP43 (GBM-specific), TFF3 (BM-specific), and 

CACNA2D2 (CNSL-specific) (Fig 3B). Whereas GAP43, TFF3 and CACNAD2 uniplex 

classifiers had a median AUROC of 0.69, 0.75 and 0.84, in classifying GBM, BM and CNSL, 

respectively, the combined triplex classifier performed better with a median AUROC of 0.75, 

0.88 and 0.89, respectively (Fig 3C, Table 3). We also evaluated these uniplex and triplex 

classifiers on the subset of IDH-wt GBM (16/22 glioma samples) and demonstrated AUROCs of 

0.68 (95% CI: 0.465 – 0.87, p = 0.04) and 0.75 (95% CI: 0.58 - 0.95, p = 0.01), respectively.   

To explore the biology of these biomarkers, we assessed their transcriptional profiles 

using publicly-available single cell transcriptomic (scRNAseq) profiles of GBM,28 lung 

adenocarcinoma BM,29 and CNSL (Fig S7).30 In GBM scRNAseq data, GAP43 expression was 

largely restricted to GBM cells, limited in lymphoid and myeloid cells, and entirely absent in 

BM and CNSL cells. TFF3 was exclusively expressed in BM. CACNA2D2 expression was 

absent in GBM and CNSL and detected in a subpopulation of BM tumor cells. Collectively these 

data suggest that GAP43 and TFF3 observed in CSF are derived from tumor populations, unlike 

other candidate biomarkers (e.g., SOD2, PZP, and CTSZ) that exhibit non-specific patterns of 

expression. The lack of transcriptomic CACNA2D2 expression in CNSL samples suggests a 

non-neoplastic source, or lack of correlation between transcriptomic and proteomic expression.  

4.3 Pathway-level analyses identify survival associations  
In our cohort of brain tumor patients, BM and CNSL patients had similar survival rates (564 and 

649 median days, respectively), whereas GBM patients had a median survival of 2246 days (Fig 

4A). To explore the biology associated with survival, we evaluated seven diverse cancer-
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associated signature sets in our cohort, including pan-cancer and GBM-specific signatures from 

the Clinical Proteomic Tumor Analysis Consortium (CTPAC).20,31-36 In addition to these 

signatures discriminating malignant from non-malignant samples (Fig S8A), survival analyses 

revealed that mesenchymal and invasion-associated signatures trended towards unfavorable 

survival outcomes (Fig S8B). Our small sample size limited us from identifying novel prognostic 

biomarkers (Fig S9A-D, Fig S10A). To overcome this limitation, we undertook a pathway-level 

analysis which validated previous findings reported by Schmid et al. (Fig 4B-D, Fig S9E, Fig 

S10B-E).16 Specifically, we demonstrated that markers associated with blood-brain barrier 

disruption [e.g., blood coagulation (C4BPB, COL1A1, CPB2, F10, F13B, F2, F9, FGA, FGG, 

PLG, PROS1, PROZ, SERPINA1, SERPINA5, SERPINC1, SERPIND1, VWF), and 

complement pathway activation (C2, C3, C4B, C4BPA, C4BPB, C5, C8A, C8B, C9, CFB, CFH, 

CFHR1, CFI, CPB2, CPN1, CPN2, F2, SERPING1, VTN)] (Fig 4B), angiogenesis (APOE, 

APOH, CDH5, HRG, PROC, SEMA6A, THBS1) (Fig 4C) and stemness (KIT, NOTCH2) (Fig 

4D) were associated with unfavorable survival outcomes.  

5 Discussion 

In this proof-of-concept study, we show the feasibility of high protein recovery and 

comprehensive proteomic analyses on low sample volumes, using the MStern sample processing 

approach.37 We recovered 755 proteins with as little as 30 µL of CSF per sample. Along with 

clearly distinguishing malignant from non-malignant samples, we were able to build and 

externally validate classifiers for distinguishing GBM, BM, and CNSL. With an eye toward 

relevance to clinical practice, we further developed a triplex classifier comprised of GAP43, 

TFF3, and CACNA2D2 that can together distinguish between the three disease entities. 

Prospective validation of these findings can have a profound impact on the diagnosis and 

longitudinal surveillance of these malignant entities. 

Using CSF based proteomics, we were able to distinguish malignant from non-malignant 

samples and identified pathway-level alterations of prognostic significance. These were both 

externally validated using data from the Schmid et al. cohort.16 While CSF proteomics offered 

similar diagnostic specificity to CSF cytology alone, we demonstrated that CSF proteomics 

outperformed CSF cytology with respect to sensitivity, thereby representing a significant value-
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add for distinguishing malignant from non-malignant samples. We were also able to develop 

machine learning based classifiers to reliably distinguish between the three brain tumor entities; 

this was again externally validated using the Schmid cohort.16 Since these classifiers depended 

on larger protein panels, traditional antibody-driven methods, such as Western Blotting and 

ELISA, are inefficient and represent a potential bottleneck. Selective reaction monitoring (SRM) 

and, more recent, parallel reaction monitoring (PRM) utilize stable isotope-labeled peptides as 

internal standards of previously detected candidates. Targeted proteomics assays are quantitative 

tools that enable the robust, sensitive and multiplexable quantitation of proteins without the need 

of antibodies,38,39 but require significant time for initial development, validation and 

implementation of these assays. Thus, recognizing that large-scale mass spectrometric analyses 

can be challenging in the routine clinical setting, we further built on our approach by identifying 

the top 3 biomarker proteins that can together distinguish between GBM, BM, and CNSL with 

high precision (AUROC 0.75–0.89). Further prospective validation of these biomarkers will be 

necessary.  

         Beyond simply distinguishing between the three tumor entities, the identification of 

GAP43, TFF3, and CACNA2D2 as biomarkers specifically associated with GBM, BM, and 

CNSL, respectively, can have value for longitudinal monitoring of patient during adjuvant 

therapy and surveillance as well. Specifically, in the case of GAP43 and GBM, we were able to 

show that the expression of the protein is largely restricted to tumor cells, with little expression 

in lymphoid and myeloid cells. This has significant implications in monitoring for true tumor 

recurrence and distinguishing it from other common pathological entities, such as RN. This 

further supports the need to consider upfront implantation of CSF reservoirs for routine 

monitoring of the tumor microenvironment during therapy and surveillance, through scheduled 

sampling of the CSF to assess for relevant biomarkers. Currently, such strategies have rarely 

been implemented. In 2016, Brown et al. used CSF reservoirs for the delivery of CART cell 

therapy, with regular monitoring of cytokines and immune cells within the CSF, in a patient with 

multifocal recurrence of GBM with remarkable success.40 This was part of a Phase 1 trial that is 

currently underway (NCT02208362). 

         The Trefoil Factor Family (TFF1, TFF2, and TFF3) are proteins secreted by normal 

mucous secretory epithelia.41 TFF3 transcription and translation has been reported in various 
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cancers. The oncogenic behavior of TFF3 is mediated through promotion of cancer cell 

migration and invasion, along with down regulation of apoptotic signaling.42-44 In breast cancer, 

its expression has been associated with lymph node involvement and increased propensity for 

local metastasis. Of note, its mRNA expression has been linked to higher likelihood of breast 

cancer metastases to the CSF and bones.45-47 Other cancers in which TFF3 has been associated 

with include gastric,48 pancreatic,49 colorectal,50 cervical,51 and prostate.52 As such, detection of 

TFF3 within the CSF can serve as a pan-cancer biomarker of metastases to the CSF. In addition 

to their role in diagnosis and surveillance following treatment, such biomarkers can potentially 

be used to screen for CNS involvement in patients with cancer types that are known to have a 

high propensity for CNS metastases, such as advanced non-small cell lung cancer, or triple 

negative and HER2+ breast cancer.53-55 

         We found a significant association between CNSL and CACNA2D2 expression, a 

voltage-gated calcium channel receptor found in numerous tissues including the brain.56,57 The 

role of this protein in cancer is unclear, with conflicting data on whether it is a tumor 

suppressor58 or oncogenic protein.59 While CACNA2D2 could have simply been shed from 

normal brain tissue, its specific association with CNSL warrants exploration. This is particularly 

relevant given the emerging role of extracellular vesicles (EVs), including exosomes, in cancer 

biology. EVs are cell-derived vesicles released by all cells,60 and their protective lipid 

membranes permits protected travel throughout the CSF and blood stream in the body.61 

Complex interactions by cancer cells with other cells in the tumor microenvironment can be 

mediated through EVs, via exchange of biologic factors including DNA, RNA, and proteins. 

Limitations. Our findings should be interpreted with several caveats, including the retrospective 

nature of the study precluding comprehensive correlative analyses with clinical data. 

Furthermore, given the retrospective acquisition of samples, certain sample characteristics were 

unavailable, including IDH status in 5/22 glioma samples. Similarly, most gliomas included in 

this study were classified prior to the updated 2021 WHO guidelines, thus it is possible that some 

glioma samples in which IDH status was not determined are not grade IV GBM. Within the BM 

cohort, it was not documented whether CSF was acquired while the primary tumor still existed or 

not, and this could represent a potential confounding variable. The exquisitely long survival of 

our GBM cohort (median of 2246 days), a selection of ultra-long survivors by virtue of our 
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clinical protocol for implantation of CSF reservoirs in GBM patients, also necessitates the 

cautious interpretation of our data pertaining to this tumor entity. Although our triplex classifier 

presents the opportunity for a clinically facile approach to reliably distinguishing between the 

three cancer entities and potentially surveillance for tumor recurrence, neither of GAP43, TFF3 

or CACNA2D2 were recovered in the Schmid cohort,16 thereby precluding evaluation of their 

external validity in an independent cohort. Although corroboration with tumor-derived 

scRNAseq data offered exciting insight into the potential source of proteins detected in our CSF 

samples, it must be emphasized that scRNAseq data were derived from tumor tissue and not CSF 

samples. Similarly, signatures and associations identified in this study are restricted to free 

proteins shed into the CSF and do not reflect a comprehensive snapshot of the composition of the 

tumor microenvironment. Our current analysis does not account for alternate splice site 

variations and post-translational modifications. In addition to correlative analyses with matched 

tumor and plasma, analyses of exosome cargo and incorporation of other -omic analyses, 

including phosphoproteomics, glycoproteomics, metabolomics, genomics, and lipidomics will be 

critical as well.20 Despite these limitations, our study is the first of its kind to demonstrate the 

feasibility of high protein recovery from very limited CSF sample, yielding externally validated 

diagnostic signatures that can readily be applied in the clinical setting. 

Future Directions. Given the retrospective nature of the current study, prospective validation of 

the proteomic signatures identified will be required. In parallel, development and optimization 

ELISA and PRM-based assays for small- (e.g., triplex classifiers) and large-panel protein 

signatures, respectively, will facilitate the translation of the diagnostic classifiers into a clinical 

setting.  In particular, PRM enables targeted quantification of tens to hundreds of proteins, and 

while is primarily used as a research tool, its scalability, cost-effectiveness, and information-rich 

readouts make it a promising tool for future clinical applications.  Finally, while our glioma 

cohort was predominantly comprised of IDH-wt GBM patients, we recognize the value of using 

a CSF proteomic approach to discriminate between different glioma entities, including IDH-

mutant gliomas, and future studies addressing this will be required.  

6 Materials and Methods 

The current study adhered to the Reporting Recommendations for Tumor Marker Prognostic 
Studies (REMARK) guidelines. The completed checklist is provided in Appendix 1.  
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Software. Figure preparation: CorelDRAW x8 (Corel); Bioinformatic analyses: R version 4.0.3 

(R Foundation for Statistical Computing).  

Patient Cohort 

Study eligibility. All patients with a diagnosis of a brain tumor under the care of a physician 

within the Penn State Hershey Neuroscience Institute who provided informed consented for the 

Biorepository study, were eligible. 

Patient recruitment. Any patient potentially eligible for the Penn State Hershey Neuroscience 

Institute Biorepository was first identified by the physician responsible for their care. The 

physician informed the research coordinator who then independently explained the study to the 

patient and obtained informed consent. Specimens were only acquired as residuals from samples 

being collected for routine clinical care or necessary surgical procedures. 

Ethics. The Biorepository study is approved by the Penn State IRB (#2914). Specimens and 

associated data were released to the protocol “Molecular testing of nervous system cancers as a 

classification tool” following approval of the Biorepository Data Oversight Committee (#20-

0002). Data was released in a de-identified manner via an honest broker system. The patient’s 

privacy was protected in accordance with both Penn State’s IRB and HIPAA guidelines. 

Proteomic Profiling 

Sample acquisition. Most CSF samples were collected from intracranially-implanted CSF 

reservoirs. For lumbar puncture-acquired samples, an atraumatic 21-gauge spinal needle was 

used. The volume withdrawn ranged from 5-15 mL per collection. Samples were aliquoted into 1 

mL polypropylene tubes and all samples were processing within 0-4 hours after collection, 

during which the samples were stored at room temperature. The tubes were then spun at 2000 g 

for 10 min at room temperature to remove cellular debris. Supernatants were maintained in 1 mL 

aliquots and stored at -80 °C. Although higher volumes were available, we only required 30 µL 

of CSF for reliable proteomics results. In addition, QC samples were created by mixing an equal 

volume of all 73 sample. Five QC samples were prepared separately, and each QC was run in 

technical duplicates on the instrument to monitor technical variabilities. 
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Proteomics. Protein concentrations were determined by BCA assay (Pierce) and a volume 

equivalent to 25 µg of protein was used for sample processing, and each sample was spiked in 

with 2 pmol of yeast invertase (SUC2) as a sample processing control. The samples were 

denatured and alkylated with DTT and iodoacetamide, respectively. CSF proteins were purified 

using an adapted MStern technique.62 The samples were bound to a PVDF 96-well MStern plate 

(Millipore) facilitated by a vacuum suction manifold (Millipore). Adsorbed proteins were 

washed with 100 mM ammonium bicarbonate (pH = 8) and digested for 4 h at 37 °C via the 

addition of 50 µL of digestion buffer (5% acetonitrile, 100 mM ABC, 1 mM CaCl2) containing 2 

µg of trypsin-LysC protease mixture (Promega). The resultant peptides were eluted from the 

membranes with 50% acetonitrile, lyophilized and desalted with C18 solid-phase extraction tips 

prepared in-house. 10 µL of purified peptides was spiked with 1 µL of indexed retention time 

(iRT) (Biognosys) peptide standard. Overall, 11 µL of peptides were loaded onto a 2 cm PepMap 

Acclaim trap column (Thermo Scientific) using an Easy1000 nanoLC (Thermo Scientific). The 

peptides were separated and detected along a two-hour reversed-phase gradient using a 50cm 

EasySpray analytical C18 column coupled by electrospray ionization to a Q-Exactive HF 

Orbitrap mass spectrometer (Thermo Scientific) operating in a Top 20 data-dependent 

acquisition mode. MS1 data was acquired at a resolution of 120,000 with an AGC target of 1e6 

ions and a maximum fill time of 40 ms. MS2 data was acquired at a resolution of 30,000 with an 

AGC target of 2e5 ions and a maximum fill time of 55 ms. A dynamic exclusion of 20 s was 

enabled, the S-lens RF was set to 59% and the normalized collision energy was set to 27%. The 

acquired raw data was searched using Maxquant (version 1.6.3.3) against a UniProt complete 

human protein sequence database (v2020_05) also including yeast invertase (SUC2) and iRT 

standard peptides.63 Two missed cleavages were permitted along with the fixed carbamidomethyl 

modification of cysteines, the variable oxidation of methionine and variable acetylation of the 

protein N-terminus. Relative label-free protein quantitation was calculated using MS1-level peak 

integration along with the matching-between-runs feature enabling a 2 min retention time 

matching window. False discovery rate (FDR) was set to 1% for peptide spectral matches and 

protein identification using a target-decoy strategy. The protein groups file was filtered for 

proteins detected by a minimum of two peptides and then used to carry out further analysis. 

Missing LFQ values were imputed with normalized iBAQ intensities.64 

Bioinformatic Analyses 
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Data sources. Proteomic data from Schmid et al. was obtained from ProteomeXchange (ID: 

PXD021984);16 Bader et al. from ProteomeXchange (ID: PXD016278);22 Bereman et al. from 

Dataset 1 file of electronic supplementary material of original publication;23 and Stoop et al. 

from Supporting Information File 2 of original publication.24 Single cell RNA seq data from Wei 

et al. (2021) was obtained from Gene Expression Omnibus (GEO; accession number 

GSE181304);30 Neftel et al. (2019) from GEO (accession number GSE131928);28 and Kim et al. 

(2020) from GEO (accession number GSE131907).29  

Data preprocessing. Protein � patient intensity matrices were loaded into a Seurat object (Seurat 

4.0.4 R package65-68) and sample normalization (column-wise) and protein scaling (row-wise) of 

log-transformed data was performed. Protein identified in at least 70% of samples within a 

diagnostic group were retained for downstream analysis.16 No imputations for missing values 

were performed. For each sample, meta data included a patient identifier, clinical diagnosis 

(NPH, GBM, BM, CNSL), age, sex, CSF cytology (presence of malignant cells), and 

leptomeningeal status, alive status and survival time. Data from the Schmid cohort were 

processed identically, however the only meta data that were available were clinical diagnosis, 

age and sex.16  

Uniform manifold approximation and projection. To generate a two-dimensional representation 

of CSF proteomes, the scaled protein � patient intensity matrix was dimensionally-reduced using 

robust principal component analysis [PcaHubert(…, k = 50, kmax = 50, maxdir = 100, signflip = 

T), rrcov v1.6-0 R package69] and the top 30 principal components were used for UMAP 

embedding [RunUMAP(…, dims = 1:30), Seurat package].  

Differential protein analysis. Differentially-expressed proteins between two groups were 

identified by two-sided unpaired Wilcoxon test (wilcoxauc function, presto v1.0.0 R package70). 

To ensure results were robust to outliers, we used a resampling procedure that involved 100 

iterations of differential expression analysis performed on 95% randomly sampled subsets of 

data. Protein that were significant at 5% false discovery rate (FDR; Benjamini-Hochberg method 

implemented using p.adjust function, stats v4.0.3 R package) across all iterations were used in 

downstream analyses.  

Functional annotation. Protein signatures were functionally annotated by performing 

hypergeometric overrepresentation analysis (fora function, fgsea v1.14.0 R package71) using 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.17.22276547doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.17.22276547


16 
 

Gene Ontology (GO) biological processes (BP) and cellular components (CC), protein 

interaction database (PID), HALLMARK gene sets72, and Reactome73 databases. Enrichments 

were ranked by Benjamini-Hochberg-adjusted p-values (q-value), and the top 5 annotations for 

each database were shown.  

Classification models. For LR classification models (Table 2; Model 1, Table 3; Model 1), 

training and testing cohorts were generated by randomly splitting CSF samples into 70% and 

30% subsets, respectively. The training set was used to train a binomial generalized linear model 

(GLM) using bayesglm(…, family = ‘binomial’, maxit = 500) (arm R package, v1.12-274) and 

the AUROC performance was evaluated in the test set (performance function, ROCR v1.1-11 R 

package).75 Given our smaller cohort size, we confirmed that performance were not influenced 

by choice of partition ratio (50:50, 60:40 and 80:20 train:test splits yielded similar results). This 

resampling procedure was repeated over 200 iterations to obtain stable estimates of the median 

AUROC and corresponding 95% confidence intervals. ROC curves for each iteration were 

generated using results from performance(…, measure = ‘tpr’, x.measure = ‘fpr’), and the 

median ROC curve summarizing overall performance was computed by aggregating the true 

positive rate (TPR) and false positive rate (FPR) estimates across all iterations. For each model, 

sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) 

estimates were obtained using cut-offs at which TPR + (1-FPR) were maximized. When 

indicated (Fig S3F-H), classifiers were also adjusted for leptomeningeal status, presence of 

malignant cytology in CSF, sex, and age. 

For protein signature-based classifiers, (Fig 2, Fig S3-S5, Models 1 and 2 in Table 2), 

signatures were aggregated separately for train and test sets using gsva(…, method = “gsva”) 

(GSVA R package, v1.36.276). Given our limited sample size and goal to also characterize 

biology associated with malignancy, signature discovery (i.e., differential expression analyses, 

described above) was performed on the total cohort (not training cohort). While in certain 

contexts such an approach risks leaking information between training and testing cohorts, the 

resampling procedure used in deriving each signature was tailored to minimize cohort-specific 

biases. Furthermore, in addition to evaluating the performance of each model on the test cohort 

derived from the current study’s patient samples, we evaluated the external validity of each 

trained model on matched samples from the entire Schmid et al. cohort.16 
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For uniplex (single-protein) and triplex (three-protein) classifiers (Fig 3, Fig S5), protein 

intensities were not aggregated prior to training the model, and instead intensity values were 

used as model inputs. For triplex classifiers, the top performing protein combinations were rank-

ordered by the average AUROC across GBM-vs-other, BM-vs-other, and CNSL-vs-other 

classifiers.  

To ensure the robustness of the LR models described above, we independently evaluated 

L1-regularized (i.e., Lasso) LR models (glmnet function, glmnet R package v1.36.2) using the 

leave-one-out cross-validation procedure implemented in caret (caret R package v6.0-88). For 

these models, AUROC estimates were calculated and 95% CI were computed using 2000 

bootstrap replicates (ci.auc function, pROC R package v1.18.0) (Table 2; Model 2, Table 3; 

Model 2).  

Survival analysis. The prognostic value of individual protein was evaluated using univariate Cox 

proportional hazards regression models (coxph function, survival v.2-13 R package). The 

resulting hazard ratios (HR) were visualized on a volcano plot, with the top hits indicated. Given 

our limited statistical power for survival analyses, p-values with no multiple testing corrections 

were reported to highlight the strongest associations with survival. Survival-associated pathways 

were determined by performing gene set enrichment analysis (GSEA; fgsea function, fgsea 

v1.14.0 R package71) on HR-ranked proteins. GSEA plots were generated using the 

plotEnrichment function (fgsea R package). Kaplan Meier survival curves showing patient 

survival between pathway-stratified groups (high vs. low; split at median) were generated by 

aggregating protein signature scores with gsva(…, method = “gsva”) (GSVA R package, 

v1.36.2)76 and visualizing survival with ggsurvplot(…) (survminer R package, v0.4.9).77  

Single cell transcriptomic analysis. ScRNAseq data sets were normalized, scaled, 

dimensionally-reduced and visualized on a UMAP using the Seurat (version 4.0.4) workflow.65-

68 In brief, count matrices were loaded into a Seurat object and normalized using 

NormalizeData(…, normalization.method = ‘LogNormalize’, scale.factor  = 10000). Variable 

features were identified using FindVariableFeatures(…, selection.method = ‘mvp’, mean.cutoff 

= c(0.1,8), dispersion.cutoff = c(1,Inf)) and then data were scaled using ScaleData(…). Principal 

component analysis and UMAP embedding was performed using RunPCA(…) and 
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RunUMAP(…, dims = 1:30), respectively. Metadata from original publications were used to 

annotate cell types, and gene expression was visualized on a UMAP using FeaturePlot(…).  

Data visualization. Unless otherwise specified, the ggplot2 R package (version 3.3.5) was used 

for data visualization. Venn diagrams were generated using either ssvFeatureEuler (seqsetvis R 

package, version 1.8.0) or ggVennDiagram (ggVennDiagram R package, version 1.1.4). 

Heatmaps were generated using pheatmap (pheatmap R package, version 1.0.12).  

Data availability. Proteomic data have been deposited to MassIVE (identifier: MSV000089062). 

The corresponding FTP link is ftp://massive.ucsd.edu/MSV000089062/.  
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10 Tables 

Table 1. Patient and sample characteristics. 
Description Statistic NPH GBM BM CNSL* Total 

Patient Characteristics 

Count n 20 22 17 14 73 

Sex %♀ 40.0 27.3 71.6 42.9 43.8 

Age, years mean (range) 73 (48, 91) 54 (24, 74) 59 (42, 84) 68 (57, 86) 63 (25, 91) 

Survival, days median n.d. 2246 564 649 n.d. 

Treated % n.a. 95.5 88.2 78.6 88.7** 

CSF Characteristics 

cell count, cells/µL mean (sd) 0 (0) 18.3 (30.6) 33.4 (65.9) 23.6 (57.9) 25.0 (51.6) 

protein content, mg/dL mean (sd) n.d. 61.7 (56.7) 70.0 (66.5) 73.1 (86.5) 67.5 (67.4)** 

malignant cytology % positive n.a. 19.0 70.6 25.0 38.0** 

Tumor characteristics 

tumor burden, cm3 mean (sd) n.a. 14.8 (19.4) 2.4 (4.6) 19.2 (17.5) 12.0 (16.8)** 

leptomeningeal % positive n.a. 63.6 64.7 42.8 58.5** 

touching ventricle % positive n.a. 63.6 23.5 85.7 56.6** 

IDH status % WT n.a. 94.1*** n.a. n.a. n.a. 

MGMT status % methylated n.a. 33.3*** n.a. n.a. n.a. 

Brain Metastasis Primary Lesion 

lung  % BMs n.a. n.a. 35.3 n.a. n.a. 

breast  % BMs n.a. n.a. 52.9 n.a. n.a. 

other % BMs n.a. n.a. 11.8 n.a. n.a. 
*all CNSL cases are primary CNSL (PCNSL) neoplasms (diffuse large B-cell lymphoma). 
**only neoplastic samples (GBM, BM and CNSL) included in calculation. 
*** IDH and MGMT status determined for 17/22 and 18/22 GBM samples, respectively. 
Abbreviations: n.a.; not applicable, n.d.; not determined, sd; standard deviation. 
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Table 2. Summary of diagnostic classifiers.   
   AUROC (median ± 95% CI) Model 1 Metrics# 

Classifier Cohort Data Model 1* Model 2** Sens Spec PPV NPV +LR -LR 

Malignancy Current 
train, 
test 

0.94 
(0.85,1.0) 

0.92 
(0.85, 0.99) 0.90 1.0 1.0 0.80 Inf 0.10 

 
Schmid test 0.82 

(0.72,0.91) 
0.81 

(0.75, 0.88) 0.74 0.88 0.97 0.44 6.2 0.30 

GBM 
(vs-other) 

Current 
train, 
test 

0.95 
(0.80,1.0) 

0.92 
(0.82, 1.0) 0.89 1.0 1.0 1.0 Inf 0.11 

 
Schmid test 0.69 

(0.56,0.81) 
0.69 

(0.61, 0.77) 0.72 0.70 0.50 0.85 2.4 0.40 

BM 
(vs-other) 

Current 
train, 
test 

0.98 
(0.90,1.0) 

0.98 
(0.95, 1.0) 1.0 1.0 1.0 1.0 Inf 0.0 

 
Schmid test 0.71 

(0.58,0.83) 
0.70 

(0.62, 0.78) 0.63 0.80 0.77 0.65 3.2 0.46 

CNSL 
(vs-other) 

Current 
train, 
test 

1.0 
(0.88,1.0) 

0.97 
(0.93,1.0) 1.0 1.0 1.0 1.0 Inf 0.0 

 
Schmid test 0.80 

(0.64,0.94) 
0.78 

(0.68,0.89) 0.80 0.80 0.40 0.96 4.0 0.25 

*Model 1: LR model. Resampling: 70/30 train/test partitions, 200 iterations. Unless otherwise specified, reported results 
refer to these models to interpret findings in the current study. 
 
**Model 2: L1-regularized LR model (Lasso). Resampling: leave-one-out cross-validation.  
 
# Model 1 performance metrics were determined at cutoff at which sensitivity + specificity was maximized.  
 
Abbreviations: +LR; positive likelihood ratio, -LR; negative likelihood ratio, CI; confidence interval, Inf; infinite 
(resulting from division by zero), LR; logistic regression, n.d.; not determined, NPV; negative predictive value, PPV; 
positive predictive value, sens; sensitivity, spec; specificity.  
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Table 3. Performance of uniplex and triplex classifiers using GAP43, TFF3 and CACNA2D2 

  AUROC  
(median ± 95% CI) Model 1 Metrics# 

Classifier Predictors Model 1* Model 2** Sens Spec PPV NPV +LR -LR 
GBMa 

(vs-other) 
GAP43 

0.69  
(0.55, 0.84) 

n.d. 0.82 0.60 0.63 0.81 2.1 0.30 

BMa  
(vs- other) 

TFF3 
0.75  

(0.58, 0.92) 
n.d. 0.63 0.94 0.83 0.85 11.0 0.39 

CNSLa  
(vs- other) 

CACNA2D2 
0.84  

(0.72, 0.96) 
n.d. 0.71 0.89 0.75 0.90 6.5 0.33 

GBMb  
(vs- other) 

GAP43 + TFF3 + 
CACNA2D2 

0.75  
(0.61, 0.89) 

0.74  
(0.59, 0.88) 

0.73 0.87 0.78 0.80 5.6 0.31 

BMb 
(vs- other) 

GAP43 + TFF3 + 
CACNA2D2 

0.88  
(0.74, 1.0) 

0.88  
(0.79, 0.97) 

0.88 0.81 0.67 0.94 4.6 0.15 

CNSLb 
(vs- other) 

GAP43 + TFF3 + 
CACNA2D2 

0.89  
(0.72, 1.0) 

0.85  
(0.75, 0.95) 

1.0 0.84 0.67 1.0 6.3 0.0 

*Model 1: LR model. Resampling: 70/30 train/test partitions, 200 iterations. Unless otherwise specified, reported 
results refer to these models to interpret findings in the current study. 
 
**Model 2: L1-regularized LR model (Lasso). Resampling: leave-one-out cross-validation.  
 
# Model 1 performance metrics were determined at cutoff at which sensitivity + specificity was maximized.  
 
auniplex classifier. 
btriplex classifer. 
 
Abbreviations: +LR; positive likelihood ratio, -LR; negative likelihood ratio, CI; confidence interval, LR; logistic 
regression, n.d.; not determined, NPV; negative predictive value, PPV; positive predictive value, sens; sensitivity, 
spec; specificity. 

 
Table S1. Protein intensities and clinical characteristics.  

Table S2. Protein Signatures.  

Table S3. Uniplex and triplex classifier model results.  
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11 Figure Legends 

 

Figure 1. Proteomic characterization of CSF from brain neoplasm patients. (A) Schematic 
representation of study workflow. (B) UMAP showing 2D representation of proteomic profiles, 
with each small node representing individual sample and large nodes representing median 
position of each patient cohort. BM; brain metastasis, CNSL; central nervous system lymphoma, 
FPR; false positive rate, GBM; glioblastoma, LC-MSMS; liquid chromatography with tandem 
mass spectrometry, NPH; normal pressure hydrocephalus, TPR; true positive rate, UMAP: 
uniform manifold approximation and projection. 
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Figure 2. CSF proteomics reliably diagnose malignancy. (A) Schematic representation of 
approach to evaluate value of CSF proteome in classifying malignancy. (B) Venn diagram of 
over- and under-represented protein in brain neoplasms. Malignant and non-malignant protein 
signatures were derived from the indicated intersections. (C, D) Heatmap of scaled intensities of 
protein associated with malignancy (C) and non-malignancy (D) signatures. Functional 
annotations are indicated. (E, F) Malignant (E) and non-malignant (F) index differences (Δ) 
between disease and control samples. Discovery cohorts include data from current study, and 
validation cohorts include previously published proteomic data from Schmid et al. (GBM, BM, 
CNSL)16, Bader et al. (AD)22, Bereman et al. (ALS)23, and Stoop et al. (CIS/MS)24. Difference 
between neoplastic (ND) and non-neoplastic disease (NND) in validation cohorts was assessed 
by Student’s t-test.  (G) ROC curve assessing sensitivity and specificity of non-malignant and 
malignant indices as diagnostic biomarkers in current (discovery) cohort and Schmid (validation) 
cohort16. The indicated performance metrics correspond to Model 1 in Table 1. Red ROC curve: 
median. Black ROC curves: each iteration. AD: Alzheimer’s disease, ALS; amyotrophic lateral 
sclerosis, CIS/MS; clinically-isolated syndrome of demyelination/multiple sclerosis, FPR; false 
positive rate, ROC; Receiver operating characteristic, TPR; true positive rate.  
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Figure 3. Identification of diagnostic brain neoplasm-specific biomarkers. (A) Schematic 
representation of approach to construct and evaluate uniplex and triplex diagnostic classifiers. 
(B) Relative frequencies of protein co-occurrences among top 25 triplex classifiers. Individual 
proteins are color coded by neoplasm specificity (green: GBM, blue: BM, red: CNSL). 
Circumference of circle occupied by a protein is proportional to the number of top triplex 
classifiers utilizing that protein, and width of cord connecting two protein is proportional to the 
number of top triplex classifiers in which both proteins are utilized. (C) Comparison of ROC 
curves for uniplex and triplex classifiers, using GAP43, TFF3 and CACNA2D2. Uniplex 
classifiers use one protein as a predictor, whereas triplex classifiers use all three proteins as 
predictors. Performance metrics indicated in plots correspond to Model 1 in Table 3. Red ROC 
curve: median. Black ROC curves: each iteration. FPR; false positive rate, TPR; true positive 
rate. 
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Figure 4. Survival analyses.  (A) Kaplan Meier survival curve of patient cohort stratified by 
brain neoplasm diagnosis. (B-C) Kaplan Meier survival curves showing patient survival between 
pathway-stratified groups (high vs. low; split at median) using blood coagulation- (B), 
angiogenesis- (C), and stemness- (D) associated proteins. BM; brain metastasis, GBM; 
glioblastoma, NPH; normal pressure hydrocephalus, CNSL; central nervous system lymphoma. 
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12 Supplemental Figure Legends 

 

Figure Supplement 1. Quality control. (A) Boxplot showing log2 intensity per sample, with 
SUC2 intensities shown in in each sample. (B). Average retention time of 11 iRT peptides across 
each sample with a 135 mins LC gradient. (C) Density plot showing median R2 correlation 
between pooled QC samples, run as technical and processing duplicates. The median R2 

correlations within each of the biological group and within the random groups are also shown. 
(D) Boxplot showing the number of proteins quantified in each group. 
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Figure Supplement 2. CSF protein recovery. (A) Relationship between recovery threshold and 
number of unique proteins recovered. Dashed red line: 70% threshold used in current study. 
Dashed black line: Number of proteins recovered by Schmid et al. (2021) for reference. (B) 
Relationship between recovery threshold and number of proteins in current study that overlap 
with proteins recovered by Schmid et al. Dashed black line: Total number of proteins recovered 
by Schmid et al. (C) Venn diagram of overlap between proteins recovered at 70% threshold in 
current study and Schmid et al. data. (D) Heatmaps illustrating scaled intensities of protein at 0% 
(all protein, left), 70% (middle) and 99% (right) recovery thresholds. (E) Number of unique 
proteins recovered stratified by diagnostic group. *p<0.05 and ***p<0.001 comparison versus 
NPH determined by t-test. BM; brain metastasis, GBM; glioblastoma multiforme, NPH; normal 
pressure hydrocephalus, CNSL; central nervous system lymphoma.  
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Figure Supplement 3. Characterization of malignant and non-malignant signatures. (A) 
Functional annotation of malignant and non-malignant signatures using gene ontology (GO), 
protein interaction database (PID), HALLMARK, and Reactome. Dashed vertical line: 5% false 
discovery rate (FDR) threshold, q: Benjamini Hochberg-adjusted p-value (i.e., FDR). (B) Venn 
diagram illustrating fraction of malignant and non-malignant signature proteins identified in 
current study that were recovered in in Schmid et al. (2021) CSF data. (C) Malignant and non-
malignant indices by patient cohort. Data from current study and Schmid 2021 are shown and 
indices are aggregate Z scores for malignant and non-malignant signatures. (D) Malignant (top) 
and non-malignant indices (bottom) by malignant cytology presence (left) and leptomeningeal 
status (right). (E) Relationship between malignant and non-malignant indices in current study 
(top) and Schmid 2021 (bottom) data. (F, G) Forest plots of coefficients for crude (univariate) 
and adjusted (multivariate) LR models for current study (F) and Schmid 2021 (G). (H) AUROC 
of crude (univariate) and adjusted (multivariate) classifier models, using data from current and 
Schmid cohorts16. For F-H, adjusted models included malignant and malignant indices, 
leptomeningeal status, malignant cytology status, sex, and age as covariates. Only age was 
available as an additional covariate in the Schmid cohort. 
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Figure Supplement 4. CSF proteomics discriminate between different brain neoplasms. (A) 
Schematic representation of approach to evaluate brain neoplasm discrimination by CSF 
proteomics. (B-D) Logit regression-based classifier models were trained using brain neoplasm-
specific signatures and GBM (top), BM (middle) and CNSL (bottom) class predictions were 
generated. Analysis was performed using resampling procedure (200 iterations using random 
70:30 train:test partitions) and evaluated with ROC curves to assess sensitivity and specificity 
(B), class probabilities (C) and area under ROC (AUROC) (D). For C, the indicated performance 
metrics correspond to Model 1 in Table 2. In D, AUROCs were also evaluated in Schmid 2021 
data. Red ROC curve: median. Black ROC curves: each iteration. FPR; false positive rate, TPR; 
true positive rate. 
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Figure Supplement 5. External validation of diagnostic value of brain tumor-specific 
biomarker signatures in CSF proteomic data from Schmid et al. (2021). (A) Venn diagram 
of neoplasm-specific biomarkers identified in current study that were recovered in in Schmid et 
al. (2021) CSF data.   (B) ROC curve assessing sensitivity and specificity of brain tumor-specific 
proteomic signatures as diagnostic biomarkers (left column) and predicted class probabilities 
(right column) using Schmid et al. (2021) CSF data. The indicated performance metrics 
correspond to Model 1 in Table 2. Red ROC curve: median. Black ROC curves: each iteration. 
FPR; false positive rate, TPR; true positive rate. 
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Figure Supplement 6. Uniplex and triplex classification models. (A) Candidate neoplasm-
specific biomarkers identified using LR classifiers. For each protein, LR models were trained 
and evaluated using a resampling procedure (random 70:30 train:test partitions, 200 iterations) 
and these single-protein classifiers were termed uniplex classifiers. Top candidate proteins are 
indicated, significant hits (p < 0.05) are bolded. (B) AUROC plot ranking classification 
performance of all three-way combinations of candidate biomarkers (i.e., triplex classifier). LR; 
logistic regression.  
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Figure Supplement 7. scRNAseq expression profiles of neoplasm biomarkers. (A-G) Public 
scRNAseq profiles of GBM (left column), LUAD brain metastases (middle column), and CNSL 
(right column) were annotated according to original reports28-30 (A) and expression of SOD2 (B), 
GAP43 (C), TFF3 (D), PZP (E), CACNA2D2 (F), and CTSZ (G) were visualized using UMAPs 
(insets) for cell-level profiles, and bar plots for aggregate cell-type-specific expression. Bolded 
cell labels indicate neoplastic populations. For bar plots, bars represent fraction of expressing 
cells, and dots represent mean normalized expression. B; B cells, GBM; glioblastoma 
multiforme, LUAD; lung adenocarcinoma, NK; natural kill cells, Oligod.; oligodendrocytes, 
OPC; oligodendrocyte progenitor cells, T; T cells. 
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Figure Supplement 8. Expression and survival-associations of pan-cancer and GBM-
specific signatures. (A) Hierarchically-clustered heatmap of signature scores. GBM-specific 
signature sets were obtained from Neftel et al.,33 Richards et al.,32 Verhaak et al.,34 and Wang et 
al.;20 whereas pan-cancer signature sets were obtained from CancerSEA,36 Chen et al.,31 and 
Nirmal et al.35 (B) Heatmap of hazard-ratio z scores from univariate cox proportional regression 
models relating signature score to survival.  
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Figure Supplement 9. Predicting survival of brain neoplasm patients with CSF proteomics. 
(A) Schematic representation of work flow to characterize protein and pathways associated with 
survival. (B) Distribution of brain neoplasm-specific hazard ratios (HR) derived from univariate 
cox proportional hazards survival models for each protein. HRs are reported as Z scores, and 
positive and negative scores are associated with unfavorable and favorable prognosis, 
respectively. Shaded grey region: Non-significant survival models. (C) Venn diagram of 
significant prognostic biomarkers in brain neoplasms. (D) Spearman correlation of protein-
specific hazard ratios between brain neoplasms. (E) Heatmap of survival-associated pathways. 
Gene-set enrichment analysis (GSEA) was performed on HR-ranked protein, and pathways that 
were significantly enriched in at least one brain neoplasm type are shown. Values in heatmap are 
GSEA-derived normalized enrichment scores (NES). 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.17.22276547doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.17.22276547


36 
 

 

Figure Supplement 10. Characterization of survival-associated protein signatures. (A) 
Volcano plot of brain neoplasm-specific hazard ratios (HR) derived from univariate cox 
proportional hazards survival models for each protein. Positive and negative scores are 
associated with unfavorable and favorable prognosis, respectively, and top and bottom 15 hits 
are indicated in red. Dashed line: 5% significance level. (B) Forest plot of top GO annotations 
identified by GSEA performed on HR-ranked protein. (C-E) GSEA plots for survival-associated 
pathways for GBM (C), BM (D), and CNSL (E). ES; enrichment score, NES; normalized 
enrichment score. 
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