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Abstract 

Autism spectrum disorder (ASD) is associated with high structural heterogeneity in magnetic 

resonance imaging (MRI). This work uncovers three neuroanatomical dimensions of ASD (N=307) 

using machine learning methods and constructs their characteristic MRI signatures. The presence 

of these signatures, along with their clinical profiles and genetic architectures, are investigated in 

the general population. High expression of the first dimension (A1, “aging-related”) is associated 

with globally reduced brain volume, cognitive dysfunction, and aging-related genetic variants. The 

second dimension (A2, “schizophrenia-like”) is characterized by enlarged subcortical volume, 

antipsychotic medication use, and partially overlapping genetic underpinnings to schizophrenia. 

The third dimension (A3, “classical ASD”) is distinguished by enlarged cortical volume, high non-

verbal cognitive performance, and genes and biological pathways implicating brain development 

and abnormal apoptosis. Thus, we propose a three-dimensional endophenotypic representation to 

construe the heterogeneity in ASD, which can support precision medicine and the discovery of the 

biological mechanisms of ASD. 
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1. Main 

The current definition of autism spectrum disorder (ASD) encompasses a range of social 

communication deficits and restricted, repetitive behaviors.1 In the past few decades, its diagnostic 

criteria evolved from being narrow and rare to being more inclusive and common, based on a new 

understanding of the complex cognitive and behavioral traits found in affected individuals. Its 

global prevalence is estimated to be 1%,2 but this estimate varies greatly within and across nations 

and sociodemographic groups, which may be attributed to the lack of consensus on the historical 

definition of ASD and different levels of awareness of the diagnosis. 

Autistic individuals exhibit considerable heterogeneity in clinical symptoms, brain neuroanatomy 

and function, and genetics. The broad diagnostic criteria for ASD result in a vast array of clinical 

presentations with respect to intelligence and communication abilities, as well as its severity and 

co-occurring disorders.3 Prior neuroimaging research has also demonstrated significant structural 

heterogeneity within individuals with ASD compared to typically-developing (TD) individuals.4 

Overall, enlarged total brain volume has been primarily observed in children with ASD from case-

control analyses, followed by a slow growth into adolescence and adulthood.5 However, these 

findings diverge at a localized level6 with significant inter-individual variability.7 Additionally, 

genetic heterogeneity has been evident in ASD.8 Although more than 100 genes have been 

associated with ASD, the extent to which these loci collectively or independently contribute to the 

neuroanatomical heterogeneity, under distinct mechanisms and pathways, is not yet fully 

understood.9 Therefore, treating ASD as one uniformly-defined disorder hinders precision 

medicine. 

Individuals with ASD are also at risk of developing co-occurring psychiatric conditions that further 

introduce heterogeneity, including major depressive disorder (MDD), schizophrenia (SCZ), 

bipolar disorder, obsessive-compulsive disorder (OCD), attention-deficit/hyperactivity disorder 

(ADHD), and myriad physical health conditions, including diabetes mellitus (DM), hypertension, 

gastrointestinal and pulmonary disorders.10 Among these conditions, the rates of SCZ and DM 

increase significantly with age.11 As a result, a wide variety of medications are prescribed to 

autistic individuals to manage comorbidities, while no specific pharmacological treatment exists 

for ASD itself.12 Many of these increased comorbid risks are persistent even after controlling for 

demographic and lifestyle-related factors,13 which suggests that they may share some biological 

processes with ASD. For example, ASD and many other psychiatric disorders share partially 

overlapping genetic risk factors.14  

Clustering seeks to identify distinct patterns within a population. Numerous clustering methods, 

mostly traditional unsupervised methods, have been applied to dissect neuroanatomical 

heterogeneity in ASD.15,16 One critical limitation is that these traditional models perform clustering 

in the case population alone, thereby ignoring the specific ways in which autistic individuals vary 

with respect to the norm. In contrast, semi-supervised clustering methods17-19 seek the “1-to-k” 

mapping (k is the number of clusters) from the domain of a reference group (i.e., TD) to the atypical 

group (i.e., ASD), thereby clustering the atypical group according to the deviating patterns and 

alleviating confounds unrelated to the atypicality. These methods have been successfully applied 

to Alzheimer’s Disease,19 late-life depression,20 and SCZ,21 but are currently scarce in the ASD 

literature.22,23 In addition, semi-supervised methods dissect this heterogeneity into a 

multidimensional representation on an individual basis, whereby a continuous “dimension score” 

measures the degree to which patterns deviate from the norm along the given dimension.  
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The current study aims to characterize heterogeneity in neuroimaging and clinical profiles among 

late adolescents to adults with ASD (ages between 16 and 64), condense this heterogeneity into an 

endophenotypic, multidimensional representation, and investigate the expression of the 

endophenotypes in the general population. First, the semi-supervised HYDRA (Heterogeneity 

through Discriminative Analysis) model17 was trained using T1-weighted magnetic resonance 

images (MRI) of 307 individuals with ASD and 362 TD controls from the ABIDE (Autism Brain 

Imaging Data Exchange) consortium24 and the k dimension scores were derived for each dimension 

and individual. The HYDRA model was then applied to participants from the PHENOM 

consortium21 and the UK Biobank25 to investigate the expression of these ASD neuroanatomical 

dimension scores in both individuals with a diagnosis of SCZ and the general population. We 

hypothesized that 1) multiple distinct dimensions coexist to account for the underlying 

neuroanatomical, clinical, and genetic heterogeneity in ASD, and 2) the dimension scores which 

may serve as imaging-derived endophenotypes are potentially prominent also in non-ASD 

populations. 

2. Results 

Table 1. Demographic and clinical summary of the datasets. 

ABIDE Dataset 
Autism Spectrum 

Disorder (ASD) 
Control P 

N 307 362  - 

Age (years) 

[mean ± SD / range] 
25.4 ± 9.8 / 16-64 25.8 ± 8.9 / 16-64 0.61 

Sex (male / female) 273 / 34 309 / 53 0.17 

Full-scale IQ [mean ± SD (N)] 108.4 ± 15.4 (289) 113.4 ± 11.2 (316) <0.001  

Verbal IQ [mean ± SD (N)] 106.4 ± 17.4 (231) 113.5 ± 12.2 (241) <0.001 

Performance IQ [mean ± SD (N)] 107.0 ± 15.5 (239) 111.8 ± 12.0 (277) <0.001 

ADOS Total [mean ± SD (N)] 11.6 ± 3.7 (230) 1.6 ± 1.6 (59) <0.001 

Currently Taking Medication 30.1% - - 

PHENOM Dataset Schizophrenia (SCZ) Control P 

N 307 364  - 

Age (years) 

[mean ± SD / range] 
30.9 ± 7.3 / 16-45 29.5 ± 7.0 / 16-45 0.01 

Sex (male / female) 199 / 108 203 / 161 0.02 

UK Biobank Dataset - Control† P 

N - 18,678 - 

Age (years) 

[mean ± SD / range] 
- 57.4 ± 4.3 / 44-64 - 

Sex (male / female) - 8,015 / 10,663 - 

*ADOS: Autism Diagnostic Observation Schedule, SD: Standard Deviation, IQ: Intelligence Quotient 
†Some of these UK Biobank participants who were labeled as cognitively normal by the study criteria may 

have other diagnoses based on the ICD-10.26 
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2.1. The neuroanatomy of ASD is heterogeneous 

Using T1-weighted MRI data from the ABIDE sample (N=669) (Table 1), we examined the 

neuroanatomical heterogeneity in ASD, via group-level comparisons of 145 regions-of-interest 

(ROIs) (Supplementary Table 1) between the ASD and TD groups, controlling for age, sex, and 

the imaging site. Group-wise differences were more prominent for the variance of the brain 

volumes than for the mean (Supplementary Fig. 1). The left lateral ventricle showed the most 

significant mean volume increase in ASD compared to TD (Cohen's d=0.32, PFDR=0.001, t-test 

without assuming equal variance), followed by the 3rd ventricle, left planum temporale, and left 

planum polare (d=0.23, PFDR<0.02), all with significantly increased variance (PFDR<1×10-5, F-test 

for equal variances).  

2.1.1. Search for a reproducible HYDRA model 

HYDRA was trained with the 145 ROIs of the ABIDE participants to define the k neuroanatomical 

dimensions of ASD. The three-dimensional (k=3) scheme was optimal to best capture the 

heterogeneity, supported by four reproducibility analyses. First, this dimensional scheme showed 

a relatively high adjusted Rand index (ARI) (0.52±0.04).27 Second, this index was the most 

significantly different from the null distribution of ARIs computed by permuting cases and controls 

(PFDR<1E-8, 100 runs) (Fig. 1a). Third, the three dimension scores computed by the HYDRA 

model exhibited relatively superior reproducibility between the cross-validated (CV) runs (Fig. 

1b). Finally, the split-sample validation showed high correspondence (Supplementary Fig. 2). 

Therefore, results from the three-dimensional HYDRA model will be discussed hereafter, with A1, 

A2, and A3 denoting the three-dimensional representation (Fig. 1c and Supplementary Video 1). 
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Fig. 1: Three reproducible neuroanatomical dimensions of ASD. (a) The three-dimensional 

(k=3) clustering scheme showed a relatively high adjusted Rand index (ARI) and exhibited the 

most significant permutation test results (100 runs). (b) Mean absolute error (MAE) between 

pairwise ASD dimension scores computed from different random initializations including all 

subjects (blue bars, 50 runs each) and computed from different cross-validation (CV) folds (20 

runs per fold) are plotted. Note that as the dimensions are aligned and labeled based on the pairwise 

MAE, a better average MAE is expected at random for a higher number of dimensions. (c) The 

three-dimensional representation of the neuroanatomical heterogeneity in ASD: both TD (N=362) 

and ASD (N=307) brains are projected onto the final three-dimensional space. The boundaries are 

drawn with the threshold of zero for visualization. (d) The color maps are based on Pearson 

correlations between dimension scores and voxel-wise regional volumetric (RAVENS) statistics 

(gray and white matters combined, without the cerebrospinal fluid) using all subjects (N=669) 

masked by PBonferroni<0.05. *PFDR<1E-3 **PFDR<1E-8 

2.1.2. Three neuroanatomical dimensions of ASD are revealed 

Neuroanatomical characteristics of the three ASD dimensions were evaluated to gain post hoc 

intuition about the most pertinent imaging patterns that constitute each dimension (Fig. 1d). A 

high A1 dimension score was associated with a widespread pattern of smaller volumes except for 

the orbital part of the inferior frontal gyrus (pars orbitalis). The volume loss in the white matter 

and the subcortex was more pronounced than the gray matter. A high A2 dimension score was 

associated with larger subcortical structures, especially the pallidum and the internal capsule. A 

high A3 dimension score was associated with a widespread pattern of larger volumes, particularly 

involving the frontal gray matter and insula. The A1 and A3 dimensions both involved 

proportionally larger gray matter, while being characterized by small and large total brain sizes 

respectively (Supplementary Fig. 3). 

2.1.3. Three neuroanatomical dimensions show distinct clinical profiles 

The age of individuals with ASD was positively correlated with their A1 dimension score at 

uncorrected levels (r=0.13, N=307, P=0.026). Note that age and sex were regressed out from the 

ROIs before training using association parameters estimated in the TD controls. Performance IQ 

(or the non-verbal IQ; Intelligence Quotient)28 was inversely correlated with the A1 score at 

uncorrected levels (N=239, r=-0.136, PFDR=0.085) and positively with the A3 score (r=0.124, 

PFDR=0.085) (Fig. 2a and Supplementary Table 2). Variations of the administered IQ tests are 

listed in Supplementary Table 3. The ADOS (Autism Diagnostic Observation Schedule)29 total 

score was positively correlated with the A3 score at uncorrected levels (N=230, r=0.142, 

PFDR=0.095). Individuals with ASD taking antipsychotics (N=15) received significantly higher A2 

scores than the others (N=188, PFDR=0.048, Cohen's d=0.65). A similar trend was observed for 

those taking medications for OCD (N=18, PFDR=0.095, d=0.53) (Supplementary Table 4). Except 

for the ADHD medications (PFDR=0.02, two-sample t-test; younger individuals took them at a 

higher rate), age was not significantly related to the medication status in any medication type 

(P>0.05). 
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Fig. 2: Association between the A2 dimension and schizophrenia (SCZ). (a) Among 

individuals with ASD, a higher A2 score was associated with taking antipsychotics, while a higher 

A3 score was associated with both the ADOS (Autism Diagnostic Observation Schedule) total 

score and the performance IQ. (b) Correlations between the ASD and SCZ dimension scores are 

plotted by diagnosis using the combined dataset of ABIDE and PHENOM, after the scores were 

adjusted for the intracranial volume (ICV). 

2.1.4. The ASD dimensions are correlated with SCZ dimensions 

To investigate the imaging-derived dimensional correlations between ASD and SCZ, we applied 

i) the trained HYDRA model on ABIDE to the PHENOM participants and ii) the trained HYDRA 

model on PHENOM (from Ganesh et al.21; k=2) to the ABIDE participants. The latter derived 

expressions of the two SCZ dimension scores (S1 and S2) for each participant. In our previous 

work, the S1 dimension was characterized by smaller brain volumes, especially in the frontal, 

temporal and insular cortices, while the S2 dimension was characterized by larger basal ganglia 

and internal capsule.21 Supplementary Fig. 4 shows expressions of these two SCZ dimensions in 

individuals with ASD. 
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The A1 dimension score was positively correlated with the S1 dimension score (r=0.210, N=1,339, 

PFDR<1×10-8; ICV-corrected), although the A1 entailed relatively smaller white matter and 

subcortex than the S1 (Fig. 2b, Supplementary Fig. 4 and 5). The A2 dimension score was 

positively correlated with both S1 and S2 dimension scores (PFDR<1×10-8; ICV-corrected), though 

more strongly with the S2. Both the A2 and S2 dimensions demonstrated larger subcortical 

structures, especially the bilateral pallidum regions. 

2.2. Expression of the three ASD dimensions in the general population 

To examine the three neuroanatomical dimensions of ASD in the general population, we applied 

the trained HYDRA model on ABIDE to the UK Biobank participants (N=18,678)25 and derived 

the expressions of the three dimensions. The score distributions were comparable to the 

distributions of the control groups of ABIDE and PHENOM (Supplementary Fig. 6). 

2.2.1. The clinical profiles of the three ASD dimensions 

 

Fig. 3: Association between the A1 dimension and diabetes in the general population. ASD 

dimension scores in different diagnostic groups are summarized: TD and ASD groups from 

ABIDE, SCZ from PHENOM, and MDD (Major Depressive Disorder) and DM (Diabetes Mellitus) 

from the UK Biobank. Each diagnosis group was segmented into three subgroups using a score 

threshold (=0.96). For example, the High-A1 subgroup included individuals with A1>A2 and 

A1>A3, while A1>threshold. The threshold was set at where the sum of the three bars of the TD 

group would equal 10%. 

* PFDR<0.05/ ** PFDR<0.001 (Chi-squared tests based on the rate of each bar compared to TD)  

Among the UK Biobank participants, the A1 dimension score was significantly correlated with the 

brain age gap (predicted age based on the structural brain minus the chronological age,30 N=10,894, 

r=0.31, PFDR<1×10-8 with both raw and ICV-corrected A1 score) (Supplementary Table 5). 

Individuals with high A3 scores performed significantly better on four neuropsychological tests 

that were examined compared to those with low scores, especially the fluid intelligence (N=17,684, 

r=0.14) and Digit Span Forward (N=12,294, r=0.12),31 while the opposite trends were found with 
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the A1 scores (all PFDR<1×10-8). Those with diabetes mellitus (DM, N=742, 4%) received 

significantly higher A1 scores compared to those without (Cohen's d=0.34, PFDR<1×10-8; age- and 

sex-matched) (Fig. 3). Supplementary Table 2 provides the complete table for the clinical 

associations.  

2.2.2. Differences in genome-wide associations.  

Table 2. Genomic risk loci for the three ASD dimensions in the general population (UK Biobank) 

ASD Dimension Lead SNP P Minor 

Allele 

β Previously 

reported 

A1 rs10706986 2.63×10-11 T -0.08 No 

A2 rs1062034 3.29×10-9 G -0.08 No 

 rs1160248 3.09×10-8 C 0.06 Yes 

A3 rs72810098 3.10×10-8 C -0.19 Yes 

The A1 dimension was significantly associated with one novel lead SNP (rs10706986; single 

nucleotide polymorphism); the A2 dimension, two lead SNPs (rs1062034, novel; rs1160248); the 

A3 dimension, one lead SNP (rs72810098) (Table 2 and Fig. 4a-c). The candidate SNPs in the 

two previously identified genomic loci were reported to be associated with a wide range of clinical 

traits, including brain volumetric measures (A1 and A2), schizophrenia (A2), cognitive 

performance (A2), and sex hormone-binding globulin levels (A3) in the GWAS Catalog32 

(Supplementary Files 1-3). The GWAS results for the schizophrenia S1 and S2 dimensions are 

also presented for comparison in Supplementary Fig. 7. Quantile-quantile plots are presented in 

Supplementary Fig. 8. The definitions of the lead, candidate, and independent significant SNPs, 

and genomic risk loci are presented in Supplementary Notes 1. 

For gene-level associations, the A1 dimension was significantly associated with the CDC20, MPL, 

GMNC, HYI, and FOXO3 genes; the A2 dimension, the DEFB124, FOXO3, REM1, PAPPA, 

DEFB119, STX6, and SELO genes; the A3 dimension, the C20orf112 and METTL16 genes (gene-

level P<2.64×10-6) (Supplementary Table 6). Gene-level Manhattan plots are presented in 

Supplementary Fig. 9. 

From the gene-set enrichment analysis (a hypothesis-free approach),33 the A2 dimension was 

enriched in the biological pathway of hydrogen peroxide-mediated programmed cell death (gene-

set-level P=3.78×10-6, β=2.86); the A3 dimension, the biological pathway regulating the intrinsic 

apoptotic signaling pathway in response to DNA damage by p53 class mediator (P=4.22×10-6, 

β=0.83). For the A2 dimension, the expression levels were significantly enriched in many tissue 

types (a prioritized gene approach),34 including brain (e.g., cerebellum) and tibial nerves, for the 

following genes: FOXO3 and SESN1 (Supplementary Fig. 10).  

2.2.3. ASD dimensions are highly heritable in the general population 

The three dimension scores of ASD showed highly significant SNP-based heritability estimates 

(h2): 0.38±0.04, 0.71±0.04, and 0.55±0.04, respectively (all P<10-4). For the SCZ dimensions, they 

were 0.40±0.04 and 0.51±0.04, respectively (P<10-4). 
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Fig. 4: Genetic architecture of the three ASD dimensions in the general population. We refer 

to a lead SNP as novel (bold and italic) if it has not been associated with any clinical traits in the 

GWAS Catalog. The genome-wide default P-value threshold (P<5×10-8, dotted red lines) was used 

for all GWAS. (a) Genomic loci/lead SNP of the A1 dimension. (b) Genomic loci/lead SNPs of 

the A2 dimension. (c) Genomic loci/lead SNP of the A3 dimension. (d) Genetic correlations 

between ASD dimensions, SCZ dimensions, and other brain disorders. Genetic correlations were 

estimated using LDSC35 (unbiased from population overlaps). In particular, the GWAS summary 

statistics of ASD and SCZ dimensions were derived from the current study, and those of the other 

disease traits were from previous GWAS studies (see elsewhere36 for details of the inclusion 

criteria.) 

*P<0.05 in the genetic correlation estimates. ADHD: attention-deficit/hyperactivity disorder; AD: 

Alzheimer's Disease; BIP: bipolar disorder; MDD: major depressive disorder; DB: diabetes 

mellitus.  

2.2.4. Genetic covariance between ASD dimensions and other clinical traits 

The A2 dimension showed positive genetic correlations with both S1 (rg=0.37, P=0.001) and S2 

dimension (rg=0.56, P<10-8), and a negative genetic correlation with ASD (rg=-0.15, P<0.01). The 

A3 dimension showed a positive genetic correlation with ASD (rg=0.16, P<0.02) (Fig. 4d). 

3. Discussion 

We propose a three-dimensional endophenotypic representation to distill the neuroanatomical and 

clinical heterogeneity in the ASD population. Furthermore, we have investigated the expression of 

the three ASD dimensions in a population with a diagnosis of SCZ and the general population. 

Our results substantiate considerable neuroanatomical and clinical heterogeneity across the three 

ASD dimensions, their partially overlapping imaging patterns and genetic underpinnings 

compared to the two SCZ dimensions, and their heterogeneous expressions in the general 

population.   
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3.1. Three-dimensional representation of ASD neuroanatomical heterogeneity 

We discovered three machine learning-derived, reproducible neuroanatomical dimensions of ASD. 

The dimension most significantly associated with cognitive impairment (A1) was characterized by 

smaller brain size except for the orbital part of the inferior frontal gyrus (pars orbitalis). The 

inferior frontal gyrus is a primary language processing region that has been extensively studied in 

ASD37 and the differential role of the pars orbitalis compared to the rest of the inferior frontal 

gyrus in ASD has been reported from case-control studies.38 The A1 dimension may facilitate the 

future investigation of this abnormality. While both the A1 and S1 dimensions showed a 

widespread brain volume loss, the atrophy was more severe in the subcortex and the white matter 

for the A1 dimension. This difference in the gray-to-white matter volume ratio was previously 

observed in comparisons of ASD and SCZ.39 

The second dimension (A2) showed enlarged subcortical volumes, which resembled a previously 

reported S2 neuroanatomical dimension of SCZ.21 ASD as combined group has been associated 

with smaller subcortical volumes,6 and thus, examining the individuals with high A2 scores 

separately may be useful, potentially revealing transdiagnostic characteristics between ASD and 

SCZ. Overlapping regions of structural alteration are commonly seen between many 

neuropsychiatric disorders, including ASD and SCZ at the group level.40 However, these analyses 

were most likely complicated by the underlying heterogeneity in the ASD neuroanatomy. A 

relatively large proportion of affected individuals with a given neuroanatomical signature may 

dominate an analysis when averaged across a group exhibiting different structural patterns.  

The third dimension (A3) was characterized by larger cortical volume, especially the frontal gray 

matter and insula. Increased frontal gray matter is consistent with reports from many case-control 

studies of ASD,5 while the increased insular volume has been less evident.6 However, numerous 

studies report atypical activation and connectivity of the insular cortices,41 and therefore, future 

studies may benefit from examining the individuals with high A3 scores separately. In the context 

of the developmental trajectory of ASD brains,5 the A3 dimension may be interpreted as the degree 

of resilience to the impaired growth that follows the initial overgrowth.  

Detailed comparison of these three dimensions to the few previously identified neuroanatomical 

dimensions or clusters of ASD is premature.15,16 This is, in part, due to the inconsistencies 

regarding the age ranges of the sample, imaging modalities, and clustering techniques. Despite 

these discrepancies, some convergence in findings has been noted.16 First, most sets of 

neuroimaging dimensions of ASD indicate a combination of both increases and decreases in 

structural and functional neuroimaging signatures, instead of pointing in a uniform direction. 

Second, most dimensions are characterized by spatially distributed imaging patterns, instead of 

isolated or focal patterns. Our findings corroborate the significant neuroanatomical heterogeneity 

in individuals with ASD, distilling such heterogeneity into a three-dimensional representation. 
This representation quantifies disease susceptibility scores at the individual level – a prototype for 

precision medicine if extensively validated – and provides an instrument to elucidate distinct 

mechanisms of ASD.  

3.2. Clinical profiles of the three dimensions 

One major challenge of building a heterogeneity-aware multidimensional representation of a 

clinical population is the lack of ground truth — all clustering methods lead to a solution. Thus, 

cross-validation, replications using unseen data, and cross-domain validations (e.g., defining the 
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dimensions in neuroimaging and applying them to clinical or genomic variables) are indispensable 

for any claims.42 The final dimensions must ideally be meaningful by adding value to 

understanding the symptoms or the etiology. To this end, we investigated the clinical profiles of 

the three ASD dimensions.   

The expression of the A1 dimension was correlated with age and lower performance IQ. Similarly, 

in the general population, it was associated with cognitive impairment, as well as the brain age gap 

and the rate of DM, which have been linked to a wide range of age-related brain deteriorations.43 

There are numerous reports of clusters based on clinical symptoms of ASD, and most indicate at 

least one cluster exhibiting lower cognitive performance or intelligence, which may correspond to 

the A1 dimension.15 ASD also carries many co-occurring psychiatric and physical health 

conditions.10 This study suggests that individuals with high A1 scores, both ASD and non-ASD 

alike, may be prone to developing some of these conditions, due to partially overlapping 

neurobiological processes. 

The A2 dimension score was significantly correlated with the use of antipsychotics among 

individuals with ASD. Further, this dimension was significantly correlated with both the S1 and 

S2 dimensions derived from SCZ samples. This strong phenotypic association across ASD and 

SCZ offers a basis to study the known genetic and neurocognitive overlap between the two 

diagnoses.44 

The A3 dimension was associated with a high performance IQ and a high ADOS score: trends 

opposite to the A1 dimension. While individuals with ASD, under the same umbrella, have been 

found to show impaired cognition at the group level, a significant heterogeneity has been noted 

with reports suggesting potential clusters based on IQ.45 Although not a formal category in the 

current diagnostic manuals of ASD, approximately two thirds of individuals on the autism 

spectrum have a normal to high IQ.46 Investigating individuals with high A3 scores separately may 

better explain this distinctive phenomenon. 

3.3. Genetic architecture of the three endophenotypic dimensions in the general 

population 

The three ASD dimensions were significantly heritable: 38-71% SNP-based heritability estimates. 

This implicated the genetic underpinnings of the neuroanatomical endophenotypes – premised on 
heritability – associated with ASD in the general population. Comorbidities with other psychiatric 

or mood disorders, such as SCZ and anxiety disorders in the UK Biobank population, might 

partially account for expressing the three dimensions due to overlapping genetic architecture. ASD 

is highly heritable, with most estimates ranging from 50–90% in the literature.47 Our dimensional 

representation may highlight potentially high-risk individuals in the general population without 

being clinically diagnosed with ASD. 

The three ASD dimensions demonstrated distinct genetic associations at the SNP, gene, and gene-

set pathway levels. The A1 dimension was identified with one novel genomic locus, with its 

candidate SNPs being previously associated with various imaging-derived measures (e.g., brain 

volume).48 None of the identified genes were associated with ASD, but the FOXO3 gene is a well-

known factor of human longevity and aging.49 The A1 dimension was positively correlated with 

the S1 dimension and negatively with S2: confluent evidence from both genetic (Fig. 4d) and 

imaging-dimensional correlations (Fig. 2b). Taken together, we speculate that this “aging-related” 
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A1 dimension is driven by individuals with an ASD behavioral phenotype profile who also suffer 

non-ASD-specific brain atrophy associated with advanced brain aging. 

The A2 dimension was associated with one novel genomic locus and one candidate SNP 

(rs1127905) that was associated with SCZ.50 Moreover, it was neuroanatomically and genetically 

correlated with both S1 and S2 dimensions. Given also its association with antipsychotic 

medication use, we speculate that this “schizophrenia-like” A2 dimension is driven by individuals 

with a high risk of developing psychiatric conditions as adults, while exhibiting autistic symptoms 

at younger ages. The significant correspondence between A2 and S2 with their shared imaging 

patterns, clinical profiles, and genetic architecture indicate a possibility of identifying common 

biological mechanisms across these mental health diagnoses.51 As of October of 2021, 719 unique 

SNPs  have been mapped to “Autism Spectrum Disorder” on the GWAS Catalog,32 while 573 

(80%) of them have also been mapped to “Schizophrenia”. 

One of the associated genes of the A2 dimension (DEFB119) was previously associated with the 

pathway of the innate immune system in individuals with ASD.52 Furthermore, the A2 dimension 

was overrepresented in the biological pathway of hydrogen peroxide-mediated programmed cell 

death. Many studies have shown that oxidative stress, partly due to hydrogen peroxide (H2O2), is 

elevated in individuals with ASD.53 ASD has been considered more than a brain condition. For 

example, its links to the immune system or nervous system abnormalities have been highlighted.10 

Genes associated with the A2 dimension demonstrated stable, high expression in cerebellum and 

other nervous tissues, supporting the hypothesis that the effects of ASD extend beyond the brain.   

The lead SNP (rs72810098) of the A3 dimension was previously associated with the sex hormone-

binding globulin levels.54 The C20orf112 gene was speculated to be involved in brain development. 

This dimension implicated the biological pathway regulating the intrinsic apoptotic signaling 

pathway. Programmed cell/neuron death (i.e., apoptosis) is critical to influencing the morphology 

of the human brain by disconnecting the proper neural wiring and a possible connection between 

neural cell death and ASD has been demonstrated.55 In addition, the synaptic formation was found 

to be disrupted in individuals with ASD.56 Lastly, our genetic correlation result – A3 is positively 

correlated with ASD – supports the claim that the A3 dimension represents the “classical ASD” 

mechanism. Our genetic analyses complement the imaging and clinical findings of characterizing 

the heterogeneity of the three ASD dimensions, supporting the well-known “Cheverud's 

Conjecture” – the observation that genetic correlations usually mirror phenotypic correlations.57   

3.4. Limitations and Future Work  

ASD is more prevalent in males, with a male-to-female ratio of around four.2 Consequently, in this 

study, only 12% of individuals with ASD and 15% of TD controls were females. However, the 

CV showed that the ASD models trained with only male participants still reliably predicted the 

dimension scores for the females, supporting the effectiveness of the sex-wise harmonization. 

For 34% of the individuals with ASD (N=104), all three ASD dimension scores were less than 

zero, indicating that their brains were not significantly different than the TD controls. 

Neurodevelopmentally, their structural brains have either been normal since birth, or have 

converged to look similar to those of the TD controls at the time of their scan. To better characterize 

this considerable proportion of ASD, we may need to seek other imaging modalities or investigate 

their longitudinal developmental trends. 
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In summary, this work characterizes the brain structural heterogeneity within the late adolescent 

to adult ASD population by offering an endophenotypic three-dimensional representation with 

three novel neuroanatomical signatures. These findings pave an important research avenue for 

understanding the intricate variations and diverse underlying etiological mechanisms within the 

ASD population. 

4. Methods 

4.1. Study sample and image acquisition  

A demographic summary of the samples used in this study is presented in Table 1. Analyzed 

imaging data included T1-weighted brain MRI of 307 individuals with ASD (25.4±9.8 years, 273 

males) and 362 age- and sex-matched TD controls (25.8±8.9 years, 309 males) between the ages 

of 16 and 64 shared by the ABIDE (Autism Brain Imaging Data Exchange) consortium.24 Only 

data from 16 sites with more than 10 controls within the age range were included to ensure robust 

site-wise image harmonization, as outlined in 4.3. A summary of the 16 sites can be found in 

Supplementary Table 7.   

For comparison, data from the PHENOM consortium that were used to derive neuroanatomical 

dimensions of SCZ21 were also investigated: 307 individuals with SCZ (30.9±7.3 years, 199 males) 

and 364 TD controls (29.5±7.0 years, 203 males). Additionally, 18,678 individuals (57.4±4.3 years, 

8,015 males) from the UK Biobank cohort25 representing the general population were investigated. 

A broad range of disease diagnoses based on the clinical history was also provided 

(https://biobank.ctsu.ox.ac.uk/crystal/coding.cgi?id=19&nl=1). All participants recruited in the 

above studies provided informed written consent according to the protocol approved by each of 

their Institutional Review Boards.  

4.2. Image preprocessing and quality assurance  

All raw T1-weighted MRI (182×218×182 voxels) from the ABIDE (N=778 individuals initially) 

were manually examined for head motion, image artifacts, or restricted field-of-view. Two 

individuals were excluded due to significant noise in the images. Images were then corrected for 

magnetic field inhomogeneity, and a multi-atlas segmentation58 was applied to obtain brain 

volumes in 145 anatomical ROIs (Supplementary Table 1). Two individuals were further excluded 

due to under-segmentation. The final sample (N=669) after matching the two groups for mean age 
and sex has been outlined above. The MR images of PHENOM and UK Biobank followed the 

same quality assurance procedure and were detailed elsewhere.21,36  

4.3. Image harmonization  

Site-wise differences in the 145 ROI volumes were linearly harmonized using ComBat59, while 

preserving effects of age, sex, and ICV, based on the control group of the ABIDE sample. For the 

control-based site-wise harmonization purposes, only cognitively normal UK Biobank participants 

without the history of depression (N=1,510), diabetes mellitus (N=742), stroke (N=123), bipolar 

disorder (N=60), or any mental, behavioral, neurodevelopmental disorders (code F01-F99 from 

the ICD-10;26 N=1,554) were treated as the reference control group (N=15,325). Subsequently, the 

ROI volumes were linearly adjusted for age- and sex-wise differences, based on the trends in the 

TD group. For every validation or test dataset (PHENOM or UK Biobank), to prevent information 
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leakage, its harmonization was performed separately and based on the TD group of the training 

dataset (on ABIDE). Then the corrected ROIs were normalized to z-scores and were used as 

features in the HYDRA models. Supplementary Fig. 11 contains a flowchart to summarize the 

harmonization procedure. The efficacy of the harmonization was manually checked post hoc, and 

the final dimension scores of the TD controls showed insignificant site-wise variations (P>0.9, 

one-way ANOVA) (Supplementary Fig. 12) 

4.4. Finding neuroanatomical dimensions with HYDRA 

Details of the HYDRA model can be found in Varol et al.17 In essence, a HYDRA model attempts 

to find a pre-defined number of linear support vector machine (SVM) hyperplanes (i.e., the 

polytope) that together enclose the control distribution while maximally separating the control 

group from the affected group (ASD in this case). Then, each hyperplane can be considered as a 

plane that is orthogonal to a dimension in which the affected group deviates from the control 

distribution, and projections of the data points onto this dimension can be quantified (denoted here 

as a “dimension score”).  

The HYDRA model implemented in MATLAB R2020a was trained with the following default 

parameters: 10-fold nested cross-validation, initialization with determinantal point processes 

(DPP), L1 regularization, C=0.25 (regularization parameter). The number of dimensions/clusters 

(k) was varied between two and eight to find the optimal dimensional space to capture the 

heterogeneity of ASD neuroanatomy. As the estimated solution may differ depending on the 

initialization, each nested model was trained 50 times for the main model, and the derived 

dimension scores were averaged. 

To evaluate the stability of the trained models, a metric known as the adjusted Rand index (ARI)27 

was used. ARI is a measure of agreement between partitions and is frequently used in validation 

of clustering analyses for its relative insensitivity to the number of clusters. ARI was computed 

per HYDRA model by treating the neuroanatomical dimensions as clusters (i.e., a subject is 

assigned to a cluster corresponding to the dimension with the largest score received). To test the 

significance of each ARI measure, a permutation test was followed with the group labels (ASD 

versus TD) shuffled. This was repeated 100 times to build the “null distribution” of the ARI, and 

t-tests were performed to compute significance. Both a high ARI and a significant difference from 

the null distribution were desired in a stable HYDRA model. 

A set of thorough cross-validations were also performed. First, leave-one-site-out cross-validation 

was conducted for the three largest sites. Second, all female participants (N=87) were held out 

during the training and used in the testing. Third, a stratified 10-fold cross-validation was 

performed with stratification by site, sex, and diagnosis. Fourth, a stratified 2-fold (split-half) 

cross-validation was performed for the model with the optimal k to verify that the neuroanatomical 

patterns captured by the dimensions were reproducible. Each cross-validated model was trained 
20 times with different random initialization. Pairwise mean absolute error (MAE) between 

dimension scores was computed. 

The ASD dimension scores from the stratified 10-fold cross-validation were used as the final 

scores for the individuals of ABIDE. The final model that was trained with the full ABIDE dataset 

was applied to compute the ASD dimension scores for the PHENOM and UK Biobank participants. 

The raw dimension scores were adjusted for ICV using association parameters estimated in the 

control group. Both sets of the raw and the ICV-corrected dimension scores were investigated. 
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4.5. Characterizing anatomical patterns of ASD dimensions 

The T1-weighted images were transformed to the voxel-based RAVENS (Regional Analysis of 

Volumes Examined in Normalized Space) maps60 for gray and white matter and were harmonized 

using the same methods as with the ROIs. Pearson correlations between the final ASD dimension 

scores and the harmonized RAVENS maps were computed and the P-values were adjusted with 

the Bonferroni correction. Additionally, the dimension scores were correlated to the brain age gap 

(predicted age based on neuroanatomy minus the actual chronological age)30 for the individuals of 

UK Biobank. 

4.6. Associations to clinical variables and other diagnoses 

ASD dimension scores were correlated with the ADOS scores29 and three types of IQ (full-scale, 

verbal, and performance). The majority of the ABIDE participants (>82%) received variations of 

the Wechsler IQ tests.28 The correlation was computed first with all IQ scores, and then with only 

scores from the Wechsler tests to confirm whether the same trends were observed (Supplementary 

Table 3). The dimension scores were also related to the medication status for individuals with 

ASD. Out of 203 individuals who reported their medication status, 61 (30.1%) were currently 

taking related medication (within three months from the MRI scan). Supplementary Table 4 

provides the complete list of medications. A complete list of demographic and clinical variables 

investigated, including those from PHENOM and UK Biobank datasets, are summarized in 

Supplementary Table 2. All P-values were adjusted for multiple comparisons using the 

Benjamini-Hochberg false discovery rate correction when establishing significance. 

4.7. Genetic quality check protocol 

The genetic data for the UK Biobank participants (version 3) were downloaded from their website 

(https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/genetic-data) on July 2021. 

We used the imputed genetic data in the current study. Details regarding the imputation can be 

found in the original UK Biobank paper.25 The genotyped and imputed SNPs (single nucleotide 

polymorphisms) from the UK Biobank were preprocessed with a standard quality check (QC) 

protocol (https://www.cbica.upenn.edu/bridgeport/data/pdf/BIGS_genetic_protocol.pdf).36 

First, we extracted and excluded related individuals (2nd-degree related individuals) in the 

complete UK Biobank sample (N=488,377) via King software relationship inference.61 Duplicated 

variants from all 22 autosomal chromosomes were then removed. Subsequently, we consolidated 

datasets for participants with both imaging and genetics data to have both modalities. Participants 

were removed if they had unmatched sex identities between genetically-identified sex and self-

acknowledged sex. Lastly, subjects with i) more than 3% of missing genotypes, ii) variants with a 

minor allele frequency of less than 1%, iii) variants with larger than 3% of the missing genotyping 

rate, or iv) variants that failed the Hardy-Weinberg test at 1×10-10 were removed. Finally, 33,541 

participants and 8,469,833 SNPs passed the QC procedures to be used for the subsequent genome 

analyses. To adjust for population stratification,62 we derived the first 40 genetic principal 

components (PC) using the FlashPCA software. 

4.8. Genome-wide associations 
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After the QC, 14,786 participants with European ancestry and within the age range of the ABIDE 

sample were filtered. The three ASD dimension scores and two SCZ dimension scores were treated 

as phenotypes of interest and were fit into multiple linear regression models for GWAS using Plink 

2 (v2.0.0).63 Age (at the time of scan), age-squared, sex, age-sex interaction, age-squared-sex 

interaction, ICV, and the first 40 genetic principal components (PC) were used as covariates. The 

FUMA online platform (v1.3.7)34 was then used to annotate the genomic risk loci, lead SNPs, 

candidate SNPs, and independent significant SNPs (Supplementary Notes 1). For the lead SNPs 

identified in our GWAS, we then manually queried them in the GWAS Catalog.32 Lead SNPs that 

had not been associated with any clinical traits in the GWAS Catalog were labeled as novel. 

GCTA-GREML64 was used to estimate the SNP-based heritability of the dimension scores in the 

general population, while the same confounders used in GWAS were adjusted for. One-sided 

likelihood ratio tests were performed to derive the P-values. 

4.9. Gene-level associations and gene set pathway enrichment 

MAGMA (v1.0.8)33 was used for gene-level associations. Gene annotation was performed to map 

the valid SNPs (reference variant location from the Phase 3 of 1,000 Genomes for European 

ancestry) to genes (human genome build 37). The gene-level associations used the SNP-level 

GWAS summary statistics to obtain gene-level P-values between each phenotype and the 18,902 

protein-encoding genes. In addition, gene set enrichment analyses were conducted using gene sets 

from the MsigDB database (v6.2),65 including 4,761 curated gene sets and 5,917 ontology gene 

sets. Bonferroni correction was performed for all tested genes (P<2.64×10-6) and gene sets 

(P<4.68×10-6). All other parameters were set by default in FUMA. 

4.10. Gene expressions 

FUMA provides a core functionality (GENE2FUNC) to analyze gene expression in the phenotype 

of interest (therein A1, A2, and A3). In particular, GENE2FUNC took the prioritized, mapped 

genes (by default in FUMA) as input. The gene expression heat maps were generated using GTEx 

version 8 (54 tissue types and 30 general tissue types).66 The average expression per label (log2 

transformed in each tissue type) was displayed on the corresponding heat maps. All other 

parameters were set by default in FUMA. 

4.11. Genetic Correlations 

LDSC35 was used to estimate the pairwise genetic correlation between each dimension score and 

seven neurodegenerative and neuropsychiatric diseases, including Alzheimer's disease (AD), 

attention-deficit/hyperactivity disorder (ADHD), ASD, bipolar disorder, major depressive disorder 

(MDD), SCZ, OCD (obsessive-compulsive disorder). The details of the inclusion criteria were 

described elsewhere.36 LDSC uses the GWAS summary statistics from our study and previous 

studies for the seven selected diseases to determine the proportion of variance that two clinical 

traits share due to genetic causes. 

5. Data Availability 

The ABIDE dataset is available from the National Institute of Mental Health Data Archive 

(NDA) upon permission (https://nda.nih.gov/edit_collection.html?id=2039). The UK Biobank 
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dataset is available from their website upon permission (https://biobank.ndph.ox.ac.uk/ukb/). The 

dimension scores for both ASD and SCZ that support the findings of this study are available 

upon reasonable request. The GWAS summary statistics are available in the BRIDGEPORT web 

portal: https://www.cbica.upenn.edu/bridgeport/. The MsigDB database for gene-set enrichment 

analysis is available at: https://www.gsea-msigdb.org/gsea/msigdb/. 

6. Code Availability 

The software and resources developed by our team or by other research groups used in this study 

are all publicly available:  

• HYDRA: Matlab implementation: https://github.com/evarol/HYDRA, Python 

implementation: https://github.com/anbai106/mlni 

• Genetic quality check protocol: 

https://www.cbica.upenn.edu/bridgeport/data/pdf/BIGS_genetic_protocol.pdf 

• FUMA: https://fuma.ctglab.nl/ 

• MUSE for image segmentation: https://www.med.upenn.edu/sbia/muse.html 

• PLINK for GWAS: https://www.cog-genomics.org/plink/ 

• GCTA for heritability estimates: https://yanglab.westlake.edu.cn/software/gcta/ 

• LDSC for genetic correlation estimates: https://github.com/bulik/ldsc 

• MAGMA for gene analysis: https://ctg.cncr.nl/software/magma 
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