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2. TEXT ABSTRACT AND KEYWORDS (max word count: 250 words) 1 

 2 

Background and Aims: People with monogenic familial hypercholesterolaemia (FH) are at 3 

an increased risk of premature coronary heart disease and death. Currently there is no 4 

population screening strategy for FH, and most carriers are identified late in life, delaying 5 

timely and cost-effective interventions. The aim was to derive an algorithm to improve 6 

detection of people with monogenic FH. 7 

Methods: A penalised (LASSO) logistic regression model was used to identify predictors 8 

that most accurately identified people with a higher probability of FH in 139,779 unrelated 9 

participants of the UK Biobank, including 488 FH carriers. Candidate predictors included 10 

information on medical and family history, anthropometric measures, blood biomarkers, and 11 

an LDL-C polygenic score (PGS). Model derivation and evaluation was performed using a 12 

random split of 80% training and 20% testing data. 13 

Results: A 14-variable algorithm for FH was derived, where the top five variables included 14 

triglyceride, LDL-C, and apolipoprotein A1 concentrations, self-reported statin use, and an 15 

LDL-C PGS. Model evaluation in the test data resulted in an area under the curve (AUC) of 16 

0.77 (95% CI: 0.71; 0.83), and appropriate calibration (calibration-in-the-large: -0.07 (95% 17 

CI: -0.28; 0.13); calibration slope: 1.02 (95% CI: 0.85; 1.19)). Employing this model to 18 

prioritise people with suspected monogenic FH is anticipated to reduce the number of people 19 

requiring sequencing by 88% compared to a population-wide sequencing screen, and by 18% 20 

compared to prioritisation based on LDL-C and statin use.   21 

Conclusions: The detection of individuals with monogenic FH can be improved with the 22 

inclusion of additional non-genetic variables and a PGS for LDL-C. 23 

Keywords: FH, prediction, screening, PGS, UK Biobank 24 
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3.  INTRODUCTION 1 

Familial hypercholesterolaemia (FH) is an autosomal dominant disorder caused by 2 

variants in the LDLR, APOB, PCSK9, or APOE genes. It is characterised by elevated low-3 

density lipoprotein (LDL-C) concentration and premature coronary heart disease (CHD).(1) 4 

FH-causing variants are found in about 1 in 250 individuals (95% CI: 1:345; 1:192),(2) 5 

however the condition remains highly underdiagnosed worldwide with only an estimated 1% 6 

to 10% of cases diagnosed.(3,4) Affected individuals are at increased risk of premature CHD, 7 

where early initiation of lipid-lowering treatment is paramount for risk management.(3) 8 

There is currently no systematic way of identifying new index FH cases in the general 9 

population, although cascade testing in families of affected individuals has been shown to be 10 

highly cost-effective in many countries.(5–8) Currently, patient diagnosis often happens after 11 

the development of CHD symptoms or by opportunistic measurement of lipid profile and at 12 

the discretion of clinicians. Diagnosis is made using tools such as the Dutch Lipid Clinical 13 

Network (DLCN) and the Simon Broome criteria, which have not been designed to be used 14 

as population screening tools.(1)  15 

In 2016, Wald et al. suggested screening children aged 15 months of age by 16 

measurement of total or LDL-C to systematically identify index monogenic FH cases in the 17 

general population as a prelude to testing parents and other family members.(9) Futema et al. 18 

showed that measurement of LDL-C alone at age 9 may be insufficiently accurate in reliably 19 

distinguishing FH-variant carriers from those with an elevated cholesterol as a consequence 20 

diet and lifestyle factors, or carriage of a high burden of common cholesterol-raising alleles, 21 

and suggested adding a confirmatory targeted-sequencing step to reduce the number of false 22 

positive cases detected.(10)  23 

The increased availability of routine health checks in adults either through work-place 24 

schemes or local healthcare providers offers an opportunity to systematically identify adult 25 
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carriers of FH-causing variants.(11) Positioning adult FH screening within routine health 1 

checks, which typically record a substantial number of other clinical measurements, offers 2 

the opportunity to consider additional predictors for FH. This may be important because, 3 

while the effect of FH on CHD risk is mediated through elevated circulating LDL-C 4 

concentration, it is well-known that LDL-C concentration associates with other variables 5 

such as blood and liver biomarkers, diet, and also with common, genetic variants.(12) 6 

Combining multiple environmental factors and a polygenic score for LDL-C raising genetic 7 

variants may improve the detection of people with monogenic FH for prioritisation for 8 

confirmatory genetic testing.(13,14) This is because individuals with monogenic FH are 9 

likely to have a measured LDL-C concentration that is higher than can be accounted for by 10 

these other variables. 11 

In the current manuscript we utilise the UK Biobank data to evaluate the detection 12 

rate and testing burden of three prioritisation strategies to identify people with suspected FH-13 

causing variants for confirmatory genetic testing: 1) no prioritisation (i.e., referring all 14 

participants for sequencing), 2) a plasma LDL-C-based prioritisation model adjusting for 15 

statin treatment, 3) a multivariable machine learning prioritisation model. 16 

 17 

4. METHODS 18 

Available genomics data and FH ascertainment 19 

We identified 472,147 UK Biobank participants of White British ancestry (data-field 20 

21000) as part of the approved project ID 40721. After performing genomic quality control 21 

steps (see Supplementary Material page 1), 341,515 individuals remained, including 140,439 22 

with whole-exome sequencing (WES) data necessary to identify those who carry an FH-23 

causing variant. Causal FH variants were searched for in the WES data encompassing the 24 

LDLR, APOB, PCSK9 and APOE genes (Online Methods section of the Supplementary 25 
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Material and Supplementary Table 1). A total of 488 pathogenic and likely pathogenic FH 1 

variants were identified (Supplementary Table 2). Additionally, 660 participants were found 2 

to carry FH variants of uncertain significance (VUS) (Supplementary Table 3). These were 3 

excluded from the analysis because more evidence is required to interpret the effect of those 4 

VUS.  5 

 6 

LDL-C PGS generation  7 

We next generated a PGS for LDL-C concentration using an independent data subset 8 

of 173,672 White British participants without lipid-lowering medication or WES data 9 

(Supplementary Figure 1). An initial list of 10,137 genetic variants with a p-value threshold 10 

of <5x10-4 was obtained from the Global Lipids Genetics Consortium (GLGC) genome-wide 11 

association study (GWAS) summary statistics for LDL-C.(15) To reduce the number of 12 

potentially redundant variants and optimise LDL-C prediction, we next applied a least 13 

absolute shrinkage and selection operator (LASSO) regression algorithm using the biglasso 14 

package in R.(16) The degree of penalisation was determined through 15-fold cross-15 

validation, maximising the explained variance (R-squared), which resulted in a 1,466 genetic 16 

variant LDL-C PGS.  17 

 18 

Deriving a machine learning algorithm to prioritise participants with FH 19 

We extracted data on a total of 24 candidate FH predictors, specifically: LDL-C, high-20 

density lipoprotein cholesterol (HDL-C), total cholesterol, triglycerides, lipoprotein A 21 

(Lp(a)), apolipoprotein A1 (Apo-A1), apolipoprotein B (Apo-B), C-reactive protein (CRP), 22 

aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase 23 

(ALP), sex, body mass index (BMI), age, self-reported statin use, alcohol use, systolic blood 24 

pressure (SBP), diastolic blood pressure (DBP), Townsend deprivation index, smoking status, 25 
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family history of CHD, type 2 diabetes diagnosis, hypertension, and LDL-C PGS. This was 1 

expanded by including 10 product terms between: age and LDL-C, age and LDL-C PGS, 2 

LDL-C PGS and LDL-C, age2, LDL-C2, statin use and LDL-C, family history of CHD and 3 

sex, family history of CHD and statin use, family history of CHD and alcohol use, family 4 

history of CHD and hypertension. The limited missing data (Supplementary Table 4) were 5 

singly imputed using the R package MICE.(17) 6 

Model derivation was performed using the WES data, applying a 80% training data 7 

split of 111,824 subjects, retaining 20% testing data (containing 93 carriers out of 27,955 8 

subjects) to unbiasedly evaluate model performance (Supplementary Figure 1). To prevent 9 

potential model instability, highly correlated variables (i.e. multicollinear) were removed. 10 

These included Apo-B and total cholesterol (Supplementary Figure 2). Variables were 11 

standardised to mean zero and standard deviation (SD) one. Finally, we applied a binomial 12 

regression model with LASSO penalisation to derive a discrimination-optimised FH 13 

prediction model. Specifically, optimal penalisation was determined through 15-fold cross-14 

validation maximising the c-statistic (i.e., the area under the receiver operating characteristic 15 

(AUC-ROC) curve).(16)  16 

Model performance was evaluated using the 20% testing data based on its 17 

discriminative ability (c-statistic), appropriate calibration of predicted and observed 18 

probability of having an FH variant (using calibration plots, calibration-in-the-large, and 19 

calibration slope), and classification metrics (sensitivity, specificity (or its compliment the 20 

false positive rate), positive predictive value, and the negative predicted value). 21 

 22 

Evaluating the burden of genomic sequencing for FH  23 

While genetic sequencing is the gold standard for FH diagnosis, it may often be 24 

prohibitively expensive to offer it to an entire population as a screening strategy. We 25 
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therefore explored whether prioritising people with suspected FH can reduce the screening 1 

burden with an acceptable number of false-negative results. We evaluated the following 2 

prioritisation strategies: 1) no prioritisation (i.e. referring all participants for sequencing), 2) 3 

prioritisation based on LDL-C concentration (adjusting for statin use), 3) a multivariable 4 

model built from genetic, clinical biomarkers and environmental predictors.  5 

These prioritisation strategies were evaluated on the number of subjects that would 6 

need to be sequenced, the proportion of FH carriers who would be missed, and the ratio of 7 

FH carriers correctly prioritised by the number of non-carriers unnecessarily offered 8 

sequencing. Additionally, prioritisation based on LDL-C concentrations (adjusted for statin 9 

use) was compared to prioritisation using the multivariable model with the help of a net 10 

reclassification index (NRI) analysis. 11 

 12 

5.  RESULTS 13 

Participant characteristics of our study cohort 14 

Using the UK Biobank WES data, we identified 488 pathogenic or likely pathogenic 15 

FH variant carriers (list of variants shown in Supplementary Table 2) and 139,291 non-16 

carriers; 0.35% (95% confidence interval (CI): 0.32; 0.38). FH variant carriers had a 17 

significantly higher frequency of a family history of coronary heart disease (CHD) (62.7% 18 

versus 48.1% in controls), higher prevalence (8.2% versus 2.8% in controls) and incidence 19 

(6.6% versus 3.9% in controls) of CHD (Supplementary Material and Table 1).    20 

 21 

Multivariable machine learning model to prioritise FH variant carriers 22 

14 out of the 32 variables were retained by the LASSO regression model for the 23 

prediction of FH (Figure 1.a, Supplementary Figure 3, Supplementary Table 5), including 24 

triglyceride, Apo-A1, ALT and CRP concentrations, statin use, LDL-C PGS, family history 25 
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 8 

of CHD, DBP, BMI, and prevalent T2D. Additionally, the following product terms were 1 

selected: LDL-C2, statin use and LDL-C, age and LDL-C PGS. Retention of these product 2 

terms indicated the presence of non-linear associations with FH, for example the LDL-C 3 

association with the presence of a monogenic FH variant was found to be quadratic 4 

(Supplementary Figure 4).  5 

The median predicted probability of having monogenic FH by the multivariable 6 

model was ~3 fold higher in FH carriers (0.64%, interquartile range (IQR): 0.31; 1.62) 7 

compared to non-carriers (0.23%, IQR: 0.14; 0.38), with partial overlap between FH carriers 8 

and non-carriers (Figure 1.b). The test data AUC for this model was 0.77 (95% CI: 0.71; 9 

0.83), with a training data AUC of 0.78 (95% CI: 0.75; 0.81). Calibration statistics 10 

(calibration-in-the-large: -0.073 (95% CI: -0.28; 0.13) and calibration slope: 1.02 (95% CI: 11 

0.85; 1.19)) indicated the predicted probability agreed well with the observed probability 12 

(Figure 2.a).  13 

The multivariable machine learning model outperformed a model which only consider 14 

LDL-C (AUC: 0.62, 95% CI: 0.56; 0.68), as well as a model which additionally included a 15 

statin indicator (AUC: 0.71, 95% CI: 0.65; 0.77), both evaluated in the test data. (Figure 2.b). 16 

 17 

Model FH classification  18 

Next, we evaluated the FH classification performance of the multivariable model 19 

using six cut-off values of having an FH variant (from 0.001 to 0.10) in the test dataset. The 20 

sensitivity increased from 1.1% (95% CI: 0.2; 5.8) for a predicted probability of 0.10, to 21 

94.6% (95% CI: 88.0; 97.7) for a predicted probability of 0.001; with the false positive rate 22 

similarly increasing from 0.1% (95% CI: 0.0; 0.1) to 87.0% (95% CI: 86.6; 87.4) (Table 2). 23 

We further compared the performance of these thresholds to a simpler model of LDL-C 24 

concentration adjusted for statin, which underperformed (Table 2).   25 
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The net reclassification index (NRI) comparing the LDL-C and statin use model to the 1 

multivariable model, indicated that the improved performance of the latter was due to it 2 

assigning a higher predicted probability to FH variant carriers. At a predicted probability 3 

threshold of 0.006, the probability for FH carriers being reclassified as having an FH variant 4 

was equal to 0.097 (95% CI: 0.038; 0.159), as opposed to the probability of 0.075 (95% CI: 5 

0.026; 0.130) of being down-classified as not having an FH variant (Table 3). 6 

 7 

Prioritising individuals for FH genomic testing in a two-stage population screening 8 

strategy 9 

Finally, we evaluated the performance of a two-stage population screen for 10 

identifying new index FH cases, were the second stage consisted of targeted sequencing of 11 

FH variants (Supplementary Figure 5). The multivariable and LDL-C with statin use models 12 

were compared using a common threshold of 0.006, where on average, seven additional FH 13 

carriers would be detected for 100,000 individuals screened when using the multivariable 14 

model compared to the LDL-C and statin use model. Per 100,000 individuals screened, the 15 

multivariable model would refer 12,033 individuals (12%) for genetic sequencing, compared 16 

to 14,730 (15%) with the LDL-C and statin use model, resulting in a 18% reduction in 17 

genetic testing. 18 

Furthermore, if we assume that FH has a population prevalence of 1 in 286 (equal to 19 

our cohort’s prevalence) and that one FH case has on average 1.5 first-degree relatives ((2 20 

children + 1 sibling) / 2) who are also affected by FH (discovered through cascade 21 

testing),(18) then overall one FH case would be identified for every ~219 people screened 22 

when using the multivariable model, compared to one FH case for every ~228 individuals 23 

screened with the LDL-C and statin use model.  24 

 25 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.17.22276540doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.17.22276540
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10

6.  DISCUSSION 1 

In the current manuscript we derived a multivariable machine learning model to 2 

identify people with suspected FH for confirmatory DNA sequencing in the context of 3 

population screening. Using LASSO regression, we derived a 14-feature model consisting of 4 

LDL-C, Apo-A1, triglyceride, ALT, and CRP concentrations, self-reported statin use, family 5 

history of CHD, DBP, BMI, type 2 diabetes diagnosis, three product terms, and an LDL-C 6 

PGS. The multivariable algorithm was able to discriminate between FH and non-FH carriers 7 

with an AUC of 0.77 (95% CI: 0.71; 0.83), with good calibration, outperforming a simpler 8 

model consisting of LDL-C and an indicator for statin prescription.  9 

Independent of the classification threshold applied, the multivariable algorithm was 10 

able to substantially decrease the number of subjects referred to genetic sequencing (e.g. from 11 

100,000 individuals without any prioritisation, to 14,730 with prioritisation using the LDL-C 12 

and statin use model, and to 12,033 with prioritisation using the multivariable model for a 13 

predicted probability threshold of carrying a variant for monogenic FH of 0.006; equivalent 14 

to approximately a 18% decrease in individuals needed to be sequenced between the last two 15 

models). These differences become especially significant if extrapolating the values to a 16 

population-wide scale comprising of millions of participants screened. Our results provide 17 

support for opportunistic screening and seeding of cascade testing for FH, which could be 18 

integrated within existing health checks offered to employers or local healthcare 19 

providers.(11)  20 

Previously, Banda et al. used a machine learning method to detect monogenic FH 21 

cases from electronic health records (EHR).(19) While their model showed an impressive 22 

AUC of 0.94, one of their most important features was referral to a cardiology clinic, which 23 

is in very close proximity to confirmatory FH testing, limiting the model’s utility as a 24 

prospective tool for FH diagnosis. Besseling et al. developed a multivariable model to 25 
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identify FH carriers validated in study participants consisting of FH cases and their relatives, 1 

again limiting applicability to the general population.(20) Our model instead considers FH 2 

prioritisation in a non-GP-referred population and is more generalisable as a systematic 3 

population screening tool. 4 

Our multivariable model included three terms for LDL-C (LDL-C itself, LDL-C 5 

squared, and an interaction with statin prescription), which combined makes it the most 6 

important predictor. Additionally, our model also identified novel predictors for FH such as 7 

triglyceride and Apo-A1 concentrations, with triglycerides having the largest absolute OR per 8 

SD (0.60). High triglyceride levels are often linked to poor diet and a sedentary lifestyle.(21–9 

24) Here we find that FH carriers had lower triglyceride concentrations than non-carriers 10 

(Table 1), which resulted in a protective association, indicating that triglyceride 11 

concentrations can be useful in discriminating between individuals who have 12 

hypercholesterolaemia due to lifestyle factors as opposed to an FH-causing variant. We also 13 

found that higher Apo-A1 concentrations, a protein found on HDL particles, was associated 14 

with a decreased probability of FH. Finally, we note that our multivariable FH model retained 15 

a squared term for LDL-C, suggesting that LDL-C is not linearly related with carrying an FH 16 

variant, but rather has a quadratic relationship (Supplementary Figure 4).  17 

The variables included in our multivariable algorithm should not be interpreted as 18 

causal risk factors for monogenic FH; they simply help to distinguish non-monogenetic 19 

sources of variation in LDL-C concentrations from monogenic causes (as was discussed in 20 

more detail previously with triglyceride concentrations). This also provides the rational for 21 

including an LDL-C PGS in the model: a large discrepancy between predicted LDL-C 22 

concentrations (by the LDL-C PGS) and observed LDL-C concentrations might be indicative 23 

of FH carriership,(13,14) demonstrated here by a negative coefficient for LDL-C PGS in the 24 

model (Supplementary Table 5). We note that a previous LDL-C PGS by Wu et al. had a 25 
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substantially larger R-squared (0.21 (95% CI: 0.20-0.22)) than reported here (0.14 (95% CI: 1 

0.13-0.15)).(25) Unlike Wu et al. who identified genetic variants from an internal UK 2 

Biobank LDL-C GWAS overlapping with the PGS training data; we identified variants based 3 

on an independent dataset from GLGC,(15) guarding against overfitting through ‘data-4 

leakage’ between the training and testing datasets and providing a more robust estimate of 5 

explained variance.  6 

A study limitation to consider is the exclusion of individuals with VUS from our 7 

study cohort. There is conflicting evidence as to the causal effects of these VUS in FH. We 8 

anticipate that some are likely to be FH-causing while others are not, but more research is 9 

needed. As more VUS are classified as either FH-causing or not, the model can be readily 10 

updated to reflect our growing understanding of FH. Additionally, it is impossible to know 11 

whether some study participants have been genetically tested for carrying an FH variant, and 12 

whether they might have modified their behaviour (e.g. diet) following their diagnosis. This 13 

could potentially impact the accuracy of the multivariable model developed here; however, 14 

considering that only approximately 7% of FH cases have been diagnosed in the UK,(26) this 15 

low number of diagnoses is unlikely to have a significant effect on the model and results 16 

presented here. Currently, PGS information is not routinely used or collected in clinical 17 

practice, which is why we also derived a penalised multivariable model without an LDL-C 18 

PGS, which did not meaningfully decrease performance (Supplementary Table 6). Previous 19 

studies have suggested that PGS could be used to identify individuals with a rare variant for 20 

certain diseases, such as FH.(13,14) Our study confirms the utility of the PGS for FH 21 

prioritisation; however given its correlation with environmental variables (e.g. lipid levels), 22 

this genetic information can be readily replaced with information from non-genetic data.  23 

We have tested our multivariable model in a dataset which was independent from the 24 

training data, with no significant difference between training and testing AUC (difference of 25 
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0.01), suggesting limited model overfitting to the current sample. Nevertheless, considering 1 

the health discrepancies observed between the UK Biobank and the general UK 2 

population,(27) we suggest that this model is locally validated and updated before applying it 3 

to distinct settings. Model validation should especially be conducted when considering 4 

populations of non-European ancestry. Irrespective of the important considerations regarding 5 

model transferability, prior to integrating the model in clinical care, an informed decision 6 

should be made on the optimal predicted probability threshold for monogenic FH 7 

classification. We wish to highlight that our choice of 0.006 as a threshold is purely 8 

pragmatic, and a more optimised threshold could further increase benefit. Given that 9 

monogenic FH is relatively rare in the general population, we would expect the optimum 10 

probability threshold to be low, similar to the one employed here. While Youden’s J statistic 11 

can be used to identify the optimal threshold balancing sensitivity and specificity, this implies 12 

equal costs between false-positive and false-negative predictions which is unlikely to be true. 13 

The choice of threshold should be supported by (local) health-technology assessments 14 

incorporating direct and indirect costs.  15 

In conclusion, we derived a multivariable classification model for detecting monogenic 16 

FH variant carriers that outperformed a model based on LDL-C concentration (adjusted for 17 

statin use) for FH screening, and that offers an opportunity to prioritise suspected FH carriers 18 

for genetic sequencing.  19 
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 1 

11. FIGURE LEGENDS 2 

 3 

Figure 1. Feature importance of the variables retained by LASSO regression predicting 4 

monogenic FH, and the density predicted probability distributions from this model for 5 

unaffected and affected FH individuals in White British participants of the UK 6 

Biobank. a) The 14 predictors retained by LASSO regression ordered by absolute log odds 7 

ratio (OR) per standard deviation (SD). The “x” sign is used to indicate an interaction term. 8 

Abs = absolute; LDL-C = low-density lipoprotein cholesterol; Apo-A1 = apolipoprotein A1; 9 

PGS = polygenic score; CHD = coronary heart disease; DBP = diastolic blood pressure; ALT 10 

= alanine aminotransferase; BMI = body mass index; CRP = C-reactive protein; T2D = type 11 

2 diabetes. b) The density predicted probability distributions for affected (in orange) and 12 

unaffected (in blue) FH participants in our test cohort as predicted by the multivariable 13 

model. 14 unaffected individuals had a monogenic FH predicted probability above 0.12 and 14 

are not shown on the plot for legibility purposes. The vertical dotted lines represent the 15 

various FH predicted probability thresholds evaluated in Table 2. 16 

 17 

Figure 2. Discrimination and calibration of a multivariable algorithm predicting FH 18 

carriership using independent testing data. a) The calibration plot for the multivariable 19 

model where the mean predicted and mean observed probability for each decile of the test 20 

data are depicted by the datapoints with their 95% confidence intervals (CI). Perfect 21 

calibration is indicated by the vertical black line. The calibration-in-the-large (CIL) and the 22 

calibration slope (CS) values are indicated on the plot with their 95% CI in brackets. The 23 

loess line was fitted with FH-causing variant status as the outcome and mean predicted 24 

probability as the predictor. b) The receiver operating characteristic (ROC) curves for the 25 
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multivariable model (in red), LDL-C concentration and statin model (in green), and LDL-C 1 

concentration only model (in blue). The area under the curve (AUC) for each of these models 2 

are equal to 0.77 (95% CI: 0.71; 0.83), 0.71 (95% CI: 0.65; 0.77) and 0.62 (95% CI: 0.56; 3 

0.68) respectively.  4 

 5 

12. TABLES 6 

 7 

Table 1. UK Biobank participant characteristics stratified by carrying a familial 8 

hypercholesterolaemia (FH)-causing variant. The p-values shown in the table are from the 9 

Kruskal-Wallis Rank Sum test for continuous variables, and from the Man-Whitney U test 10 

for binary variables. IQR = interquartile range; BMI = body mass index; CHD = coronary 11 

heart disease; LDL-C = low-density lipoprotein cholesterol; HDL-C = high-density 12 

lipoprotein cholesterol; CVD = cardiovascular disease; PGS = polygenic score. 13 

 14 
 FH-variant negative FH-variant positive p-value  Missing 

(%) 

n 139291 488   

Sex (male) (%) 63382 (45.5) 207 (42.4) 0.187 0.0 

Age (median [IQR]) 58.0 [51.0, 63.0] 58.0 [51.0, 63.0] 0.803 0.0 

Townsend deprivation index (median [IQR]) -2.4 [-3.8, 0.0] -2.2 [-3.7, 0.2] 0.346 0.1 

BMI, kg/m2 (median [IQR]) 26.7 [24.1, 29.8] 27.1 [23.9, 29.8] 0.689 0.3 

Smoking status (%)   0.685 3.7 

   Non-smoker 76862 (57.3) 262 (56.2)   

   Former smoker 49302 (36.7) 171 (36.7)   

   Light smoker (<10 cigarettes/day) 1952 (1.5) 6 (1.3)   

   Moderate smoker (10-19 cigarettes/day) 3296 (2.5) 13 (2.8)   

   Heavy Smoker (>20 cigarettes/day) 2796 (2.1) 14 (3.0)   

Alcohol use (%)   0.492 0.0 

   Prefer not to answer 88 (0.1) 1 (0.2)   

   1/day 29719 (21.3) 93 (19.1)   

   3-4 times/week 34015 (24.4) 135 (27.7)   

   1-2 times/week 36823 (26.4) 130 (26.6)   

   1-3 times/month 15498 (11.1) 54 (11.1)   
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   Special occasions 14383 (10.3) 45 (9.2)   

   Never 8765 (6.3) 30 (6.1)   

Family history of CHD (%) 67013 (48.1) 306 (62.7) <0.001 0.0 

Systolic blood pressure, mmHg (median [IQR]) 136.5 [125.0, 149.5] 135.0 [124.5, 148.5] 0.119 0.2 

Diastolic blood pressure, mmHg (median [IQR]) 82.0 [75.0, 89.0] 81.0 [74.0, 87.0] 0.024 0.2 

Statin use (%) 18139 (13.0) 165 (33.8) <0.001 0.0 

Hypertension (median [IQR]) 7946 (5.7) 35 (7.2) 0.195 0.0 

LDL-C PGS (median [IQR]) 3.7 [3.5, 3.9] 3.7 [3.5, 3.9] 0.652 0.0 

Biomarkers     

   LDL-C (unadjusted for statin use), mmol/L 
(median [IQR]) 

3.5 [3.0, 4.1] 3.9 [3.2, 4.9] <0.001 5.0 

   HDL-C, mmol/L (median [IQR]) 1.4 [1.2, 1.7] 1.4 [1.2, 1.6] 0.086 12.5 

   Total cholesterol, mmol/L (median [IQR]) 5.7 [4.9, 6.4] 6.1 [5.2, 7.3] <0.001 4.8 

   Lipoprotein(a), nmol/L (median [IQR]) 20.0 [9.3, 59.8] 27.6 [10.3, 59.2] 0.083 24.3 

   Apolipoprotein A1, g/L (median [IQR]) 1.5 [1.4, 1.7] 1.5 [1.3, 1.6] <0.001 13.0 

   Apolipoprotein B, g/L (median [IQR]) 1.0 [0.9, 1.2] 1.2 [1.0, 1.4] <0.001 5.3 

   Triglycerides, mmol/L (median [IQR]) 1.5 [1.1, 2.2] 1.3 [0.9, 1.9] <0.001 4.9 

   C-reactive protein, mg/L (median [IQR]) 1.3 [0.7, 2.7] 1.2 [0.6, 2.3] 0.065 5.1 

   Aspartate aminotransferase, um (median 
[IQR]) 

24.4 [21.0, 28.8] 25.1 [21.0, 29.6] 0.111 5.2 

   Alanine aminotransferase, um (median [IQR]) 20.1 [15.4, 27.3] 20.2 [15.6, 27.2] 0.848 4.9 

   Alkaline phosphatase, um (median [IQR]) 80.1 [67.1, 95.4] 80.6 [66.8, 96.1] 0.506 4.8 

Disease prevalence & incidence     

   CHD prevalence (%) 3890 (2.8) 40 (8.2) <0.001 0.0 

   CHD incidence (%) 5370 (3.9) 32 (6.6) 0.003 0.0 

   CVD prevalence (%) 5686 (4.1) 45 (9.2) <0.001 0.0 

   CVD incidence (%) 9038 (6.5) 46 (9.4) 0.011 0.0 

   Type 2 diabetes prevalence (%) 3593 (2.6) 11 (2.3) 0.757 0.0 

   Type 2 diabetes incidence (%) 4948 (3.6) 19 (3.9) 0.776 0.0 

  1 
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Table 2. The classification accuracy of an algorithm for predicting monogenic familial 1 

hypercholesterolaemia (FH) using the multivariable model and LDL-C concentration 2 

accounting for statin use. There are 93 FH-causing variant positive participants in the test 3 

data comprising of a total of 27,955 participants.  4 

 5 
Predicted 
probability 
cut-off  

% sensitivity 
(95%CI) 

% false 
positive rate 

(95%CI) 

% positive 
predictive 

value 
(95%CI) 

% negative 
predictive 

value (95%CI) 

FH-
causing 
variants 
below 

threshol
d 

FH-
causing 
variants 
above 

threshol
d 

Controls 
above 

threshol
d 

Multivariable model 

0.1 1.1 (0.2;5.8) 0.1 (0.0;0.1) 5.6 
(1.0;25.8) 

99.7 
(99.6;99.7) 

92 1 17 

0.05 7.5 (3.7;14.7) 0.2 (0.1;0.2) 13.0 
(6.4;24.4) 

99.7 
(99.6;99.8) 

86 7 47 

0.02 20.4 
(13.5;29.7) 

1.1 (0.9;1.2) 6.0 (3.9;9.2) 99.7 
(99.7;99.8) 

74 19 296 

0.01 41.9 
(32.4;52.1) 

4.5 (4.2;4.7) 3.0 (2.2;4.1) 99.8 
(99.7;99.8) 

54 39 1244 

0.006 54.8 
(44.7;64.6) 

11.9 
(11.5;12.3) 

1.5 (1.2;2.0) 99.8 
(99.8;99.9) 

42 51 3311 

0.001 94.6 
(88.0;97.7) 

87.0 
(86.6;87.4) 

0.4 (0.3;0.4) 99.9 
(99.7;99.9) 

5 88 24240 

Model: LDL-C concentration + statin use 

0.1 0.0 (0.0;4.0) 0.0 (0.0;0.1) 0.0 
(0.0;35.4) 

99.7 
(99.6;99.7) 

93 0 7 

0.05 1.1 (0.2;5.8) 0.1 (0.1;0.2) 3.2 
(0.6;16.2) 

99.7 
(99.6;99.7) 

92 1 30 

0.02 12.9 
(7.5;21.2) 

1.1 (1.0;1.2) 3.8 (2.2;6.5) 99.7 
(99.6;99.8) 

81 12 304 

0.01 38.7 
(29.4;48.9) 

5.6 (5.4;5.9) 2.2 (1.6;3.1) 99.8 
(99.7;99.8) 

57 36 1574 

0.006 52.7 
(42.6;62.5) 

14.6 
(14.2;15.0) 

1.2 (0.9;1.6) 99.8 
(99.8;99.9) 

44 49 4067 

0.001 90.3 
(82.6;94.8) 

84.0 
(83.5;84.4) 

0.4 (0.3;0.4) 99.8 
(99.6;99.9) 

9 84 23393 

        

 6 

 7 

  8 
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Table 3. Net reclassification index (NRI) table and estimates for a predicted probability 1 

threshold of 0.006 comparing the multivariable model to a simpler model of LDL-C 2 

concentration and statin use. The predicted probability threshold of 0.006 was chosen to 3 

illustrate the NRI analysis between the multivariable model and the LDL-C with statin use 4 

model. This threshold choice was chosen as it had a false positive rate close to 10% (11.9%). 5 

The test dataset of 27,955 participants was used, which included 93 FH variant carriers. NRI 6 

estimates were obtained via percentile bootstrap method. Pr = probability; Up = reclassified 7 

to the higher category; Down = reclassified to the lower category; Case = FH-causing variant 8 

positive; Ctrl = control (negative for an FH-causing variant).  9 

 10 
 Multivariable model  

LDL-C + statin use 
model 

< 0.006 predicted probability 
threshold 

>= 0.006 predicted probability 
threshold 

Total 

< 0.006 predicted 
probability 
threshold 

22,846 993 23,839 

>= 0.006 predicted 
probability 
threshold 

1,747 2,369 4,116 

Total 24,593 3,362 27,955 

NRI estimates 

NRI: 0.049 (-0.037; 0.131) 

Event NRI:  0.022 (-0.063; 0.104) 

Non-event NRI: 0.027 (0.023; 0.031)  

Pr(Up|Case) 0.097 (0.038; 0.159) 

Pr(Down|Case) 0.075 (0.026; 0.130) 

Pr(Down|Ctrl) 0.062 (0.060; 0.065)  

Pr(Up|Ctrl) 0.035 (0.033; 0.037)  

 11 
 12 

 13 
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