An update on oral clinical courses among patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: A clinical follow-up (a prospective prevalent cohort) study

Heron Gezahegn Gebretsadik1*

1 School of Global Health & Bioethics, Euclid University, Banjul, Gambia

* Corresponding author (HGG) gezahegn.heron@gmail.com

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Introduction

Contemporary literature has revealed that Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes acute sialadenitis and related symptoms, such as discomfort, pain, swelling, and secretory dysfunction in salivary glands. The secretory dysfunction is due to SARS-CoV-2 infection-induced xerostomia and other associated clinical courses such as sore tongue, mucosal ulcer, and gingivitis in the oral cavity. Furthermore, it has been reported that COVID-19 causes the development of other oral manifestations.

Materials and Methods

A prospective clinical follow-up (a prevalent cohort) study was conducted to identify the possible oral manifestations of SARS-CoV-2 infection among patients admitted at the Eka General Hospital COVID-19 treatment center. Furthermore, the study aimed to calculate the prevalence rate of oral clinical courses in the cohorts. The study had two follow-up phases: Hospital and patient-home-based.

Results

A total of 55 patients (36 males and 19 females) met the inclusion criteria and were followed for 7.5 weeks. The 3.5 weeks’ hospital-based prospective follow-up study documented an 18% (n=10) prevalence rate of oral clinical courses among the cohorts. Twelve oral symptoms appeared in these ten patients. The manifested oral symptoms were oral mucosal lesions (n=6), xerostomia (n=5), and thickening of saliva (n=1). The oral mucosal lesions per se consisted of aphthous lesions (n=3), candidiasis (n=1), geographic tongue (n=1), and localized
gingivitis (n=1). On the other hand, the four weeks’ home-based follow-up study disclosed four newly manifested oral symptoms: hemorrhagic crust, bulla, buccal mucositis, and petechiae. These manifestations appeared among six patients (four males and two females) who had not manifested any oral symptoms during the hospital-based follow-up. Accordingly, the overall prevalence of oral clinical courses among patients presented with SARS-CoV-2 is raised from 18% (n=10) to 29% (n=16). Similarly, the number of clinical courses increased from 12 to 16 after four additional weeks of follow-up.

Discussion

The study's findings suggest the importance of initiating oral health care for patients with COVID-19. Therefore, multidisciplinary healthcare approaches should be delivered to assure optimal health outcomes. Accordingly, oral health professionals must be a substantial part of the interdisciplinary approach in caring for patients with COVID-19.
Introduction

Outbreaks of newly emerged respiratory infections are a continuing threat. Over the last two centuries, influenza pandemics occurred about once every thirty years (1). There is also a continuing threat of new respiratory infections, as illustrated by the emergence of SARS and its potential re-emergence. Outbreaks of diseases might occur over a vast area (several countries or continents) and usually affect a large proportion of the population. The Spanish Influenza pandemic in 1918 is a good example (2).

In February 2019, the World Health Organization announced the official name of the illness caused by the new coronavirus as Covid-19; the virus is named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) (3) (4). Although the new COVID-19 virus differs from SARS-CoV, it uses the same host receptor, human angiotensin-converting enzyme 2 (ACE2) (5). Following the rapid expansion of the disease globally, the world health organization declared the condition a pandemic on Mar 11, 2020 (3).

Transmission of viruses can generally occur in two ways: either through relatively large droplets of respiratory fluid (10–100 µm) or through smaller particles called aerosols (<10 µm) (6) (1). The larger droplets are pulled to the ground by gravity quickly, so transmission requires close physical proximity. In contrast, the aerosolized transmission may occur over more considerable distances and does not necessarily require infected and susceptible individuals to be co-located simultaneously (7). Respiratory and salivary droplets appear to be the main transmission routes of COVID-19 disease through inhalation, ingestion, and/or direct mucous contact (8). Indeed, it has been suggested that such droplets can travel up to four meters with an uncovered cough (9). It has also been shown that the SARS-CoV-2 virus can survive in aerosols in an experimental setting. Still, it is unclear to what extent such particles are
generated in real-life situations and whether such particles are sufficient to cause an infection (10). Therefore, the aerosol route for COVID-19 transmission requires further verification in clinical settings, considering the presence of patients and health workers, air circulation, and other environmental factors (11). The preventive disease approaches are designed to interrupt the SARS-CoV-2 virus transmission (8). Accordingly, getting a vaccine, wearing a face mask, social distancing, avoiding crowded spaces, proper handwashing, and using disinfectants are the main preventive measures to contain the disease transmission (12).

Patients with COVID-19 are reported to manifest several clinical symptoms. The characteristic symptoms of the disease are similar to the common flu: fever, dry cough, shortness of breath, and tiredness - it’s not solely a running nose (13). Diarrhea may also manifest in some patients. These symptoms are usually mild (1). Older persons and people with pre-existing medical conditions (comorbidities) appear to develop a severe illness more often than others (Xu et al., 2020). In more severe cases, an infection can cause pneumonia, severe acute respiratory syndrome, kidney failure, and death (7).

On the other hand, most viral infections are reported to present a variety of oral manifestations (14). Oral presentations of viral infections may be a preliminary sign of disease, a vital co-symptom of viral disease, or the only sign observed in such viral illness (15). Viral infections are the most common reason for oral ulcerations and blisters (16). Blisters, ulcers, color variation, punctuated hemorrhages, bullae, erythematous plaques, surface/textural changes, and Kaposi’s sarcoma are the most typical clinical manifestations associated with different viral diseases such as HIV/AIDS, Chickenpox, and Zika (12). Hence, it is not surprising to expect potential oral clinical manifestations in patients with COVID-19 (15).
Moreover, a shred of contemporary literature has revealed the development of oral clinical courses in patients with SARS-CoV-2 infection (17). In mild cases, oral mucosal lesions developed before or at the same time as the initial respiratory symptoms; however, in those who required medication and hospitalization, the lesions developed approximately seven to 24 days after onset symptoms (5) (12). Oral mucosal lesions are more likely to present as coinfections and secondary manifestations with multiple clinical aspects (12). Furthermore, various cutaneous manifestations, including varicelliform lesions, pseudochilblain, erythema multiforme (EM)-liker lesions, urticaria form, maculopapular, petechiae and purpura, mottling, and livedo reticularis-like lesions are reported in patients with COVID-19 (18). Despite the probable relationship between the oral cavity and SARS-CoV-2, to date, many variables could influence the presence of the oral manifestations (19). Most patients take a large number of drugs that may cause oral presentations. Thus the need to evaluate COVID-19-induced oral manifestation of COVID19 in hospitalized patients should be underscored (20). Hence, this prevalent cohort follow-up study aimed to fill such a potential scientific gap.

On the other hand, the pandemic forced significant changes in the current approach to several practices globally (21). Several initiations have been enhanced to limit the spread of the virus throughout the world (22). The application of a multidisciplinary approach to tackle the pandemic successfully is one of them (23). Health professionals also need the same procedure to treat patients with COVID-19 comprehensively (2). This study aimed to suggest the importance of involving dental practitioners in the healthcare team to treat patients with SARS-CoV-2 infection.
Materials and Methods

Study design

A prospective clinical follow-up (a prevalent cohort) study was conducted to identify patients' possible oral manifestations of SARS-CoV-2 infection. Furthermore, the study aimed to calculate the prevalence rate of oral clinical courses in the cohorts. Initially, patients admitted to the Eka General Hospital were followed prospectively for an average of 3.5 weeks. Following the discharge of the patients, the follow-up continued for an additional four weeks at their homes.

Study location and population

The first follow-up study was conducted at the Eka General Hospital COVID-19 treatment center, Addis Ababa, Ethiopia. The second follow-up was carried out in an outpatient setting at the patients' homes. Fifty-five responsive and volunteer patients admitted to the Hospital were involved in both follow-up studies.

Exclusion criteria

- Confirmed cases of SARS-CoV-2 infection with oral clinical courses before admission
- Confirmed cases with SARS-CoV-2 infection and had a recent history of viral diseases such as HIV/AIDS, Hepatitis, Chickenpox, etc
- All confirmed patients with SARS-CoV-2 infection that were not responsive or willing to voluntarily participate in the study
- All intubated patients (to avoid associated iatrogenic lesions)
- Patients taking antibiotics
• Patients with systemic diseases such as diabetic Mellitus and other patients with known immune suppression conditions

• Patients residing out of Addis Ababa

Data collection and analysis

Following the ethical approval by the responsible authorities and the Hospital Research Committee, the relevant primary data was collected by calibrated dentists using the modified World Health Organization (WHO) oral health assessment forms (MOAF) (Appendix S1). The data collectors used the required personal protective instrument (PPE), wooden spatula, and headlight to examine the cohort’s oral cavity. Patients were examined twice a week in the hospital setting and at their homes after discharge.

The completed MOAF was collected, cleaned, interpreted, and compiled into an excel sheet. The data cleaning and analysis were done using STATA syntax and STATA software, respectively. Eventually, the data were analyzed and described around the core objectives of the study.

Ethical clearance

Ethical clearance was obtained from the Addis Ababa Public Health Research and Emergency Management Directorate. The approval number of the clearance statement is “A/A/11247/227”. The Eka General Hospital Ethics Committee also approved the research. On the other hand, the study participants freely gave their consent to participate in the study. There was no form of coercion. Thus, the participants were free from any pressure related to the research.
Furthermore, the researchers informed the participants about the research's purpose and potential benefits. The brief sessions emphasized that participation was voluntary and that the participants had the right to withdraw participation at any time without prejudice. Medical information was kept confidential. Additionally, the researcher used patients’ initials in the MCRFs and excel sheet for anonymity.

Results

This cohort study had two phases of follow-up. The first follow-up phase was carried out in the hospital setting for an average of 3.5 weeks. The second follow-up phase was home-based and took four weeks. The cohorts were the same in both stages. The home-based follow-up aimed to update the previously published hospital-based findings. The findings of the two follow-ups and the overall study are presented below chronologically.

Findings pertaining to the hospital-based setting

The hospital-based study had a prevalence rate of 18% (n=10). A total of 12 oral symptoms appeared in these ten patients. More males (n=7) than females (n=3) have presented the symptoms. The symptoms were oral mucosal lesions (n=6), xerostomia (n=5), and thickening of saliva (n=1). The oral mucosal lesions include aphthous lesions (n=3), candidiasis (n=1), geographic tongue (n=1), and localized gingivitis (n=1). Two of the aphthous lesions were developed on the buccal mucosa. The other aphthous lesion was seen on the dorsal midline of the tongue. The tongue (n=3), buccal mucosa (n=2), and upper anterior gingiva (n=1) were the most common sites of presentation of the oral mucosal lesions in this follow-up study. Out of the ten cohorts who presented oral symptoms, 2 exhibited two oral manifestations each. In comparison, the remaining eight cohorts had shown only one oral symptom each.
Table 1: Oral clinical courses (√) manifested among patients with SARS-CoV-2 infection during the hospital-based follow-up

<table>
<thead>
<tr>
<th>Cohorts with oral clinical courses</th>
<th>Oral clinical courses manifested (anatomic landmark involved)</th>
<th>Total clinical courses manifested</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Xerostomia</td>
<td>Thickening of saliva</td>
</tr>
<tr>
<td>Females (n=3)</td>
<td>√ √ √</td>
<td>√</td>
</tr>
<tr>
<td>Males (n=7)</td>
<td>√ √</td>
<td>1 (tongue)</td>
</tr>
<tr>
<td>Total (n=10)</td>
<td>n=5</td>
<td>n=1</td>
</tr>
</tbody>
</table>

Findings pertaining to the home-based setting

The home-based follow-up disclosed four newly manifested oral symptoms. The manifestations include hemorrhagic crust (n=2), bulla (n=1), buccal mucositis (n=2) and petechiae (n=1). These manifestations appeared in 6 patients (four males and two females) who had not manifested any oral symptoms during the hospital-based follow-up. Accordingly, the home-based follow-up yielded a prevalence rate of 11% (n=6). Patients who had developed oral symptoms during the hospital-based follow-up were further included in the home-based follow-up study. However, none of them manifest additional oral symptoms.

On the other hand, out of the six cohorts who presented oral symptoms during the home-based follow-up, one male exhibited two oral manifestations (palatal petechiae and lower lip hemorrhagic crust). In contrast, the remaining five cohorts had shown only one oral symptom.
each. In this follow-up study, lower lip and buccal mucosa were the most frequently (n=2) involved anatomical landmarks. The other additional sites that present the oral symptoms are the tongue, corner of the mouth, and palate.

Table 2: Oral clinical courses manifested among patients with SARS-CoV-2 infection during the home-based follow-up

<table>
<thead>
<tr>
<th>Cohorts with oral clinical courses</th>
<th>Oral clinical courses manifested (anatomic landmark involved)</th>
<th>Total clinical courses manifested</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hemorrhagic crust</td>
<td></td>
</tr>
<tr>
<td>Females (n=2)</td>
<td>1 (corner of the mouth)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1 (tongue)</td>
<td></td>
</tr>
<tr>
<td>Males (n=4)</td>
<td>1 (lower lip)</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2 (buccal mucosa)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 (palatal)</td>
<td></td>
</tr>
<tr>
<td>Total (6)</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

Updated findings

A total of 55 patients (36 males and 19 females) fulfilling the inclusion criteria were included in the cohort. The age of the cohorts ranged from 8 to 90 years. However, 78.2% of the cohorts were older than 40 years. The cohorts were followed for an average of 3.5 and 4 weeks in the Hospital and home settings, respectively. The overall prevalence of oral clinical courses after both follow-up studies was 29% (n=16). The oral clinical courses include
xerostomia (n=5), thickening of saliva (n=1), aphthous lesions (n=3), candidiasis (n=1), geographic tongue (n=1), localized gingivitis (n=1), hemorrhagic crust (n=2), bulla (n=1), petechiae (n=2), and buccal mucositis (2). Xerostomia (n=5) and aphthous lesions (n=3) were the most common oral manifestations among patients with COVID-19. At the same time, the most common anatomical landmarks involved were the tongue (n=4) and buccal mucosa (n=4). The oral clinical courses were exhibited in 5 females and 11 males. The females to male ratio (5:11) who had manifested oral clinical courses were comparable to the overall gender proportion of the cohort (34.5% females and 65.5% males). The proportion of cohorts (25%) who had presented oral clinical courses under the age of 40 was also comparable to their overall contribution (21.8%) to the total cohorts. Out of the total 16 cohorts who had presented oral symptoms, three had exhibited two oral manifestations each. In comparison, the remaining 13 cohorts had shown only one oral symptom each.

Discussion

Scholars have identified oral clinical courses in patients with HIV, Hepatitis, and Zika virus infections (24). Candidiasis, periodontitis, salivary gland disease, sarcoma, Kaposi’s sarcoma, oral hairy leukoplakia, and aphthous ulcers are some of the oral clinical manifestations of HIV infection (25) (26). Oral lesions such as petechiae and ulcers have been reported but scarcely described among patients with Zika virus infection (27). Similarly, oral mucosal manifestations have occasionally been described in published literature for dengue cases, including gingival ulcers and petechiae and blisters at the junction of the hard and soft palate (28). Furthermore, hepatitis virus infections have also demonstrated significant oral manifestations such as gingivitis and gingival bleeding, pseudo-pocket formation, and a mucosal ulcer (29). On the other hand, several pieces of literature have outlined ACE2 as an essential member of the
renin-angiotensin system (30). ACE2 is widely distributed in the vasculature and participates in regulating blood pressure (31). ACE2 protein can also be found in other organs, such as the small intestine, testes, adipose tissue, thyroid gland, kidneys, heart muscle, colon, ovaries, and salivary glands (19) (32). Accordingly, salivary glands could be the invasive target of SARS-CoV-2 (33). Moreover, the salivary gland cells with ACE2 receptors may become host cells for the virus and cause inflammatory reactions in related organs and tissues, such as the tongue, the periodontal tissues, and oral mucosa (30) (34). Furthermore, scholars have revealed oral clinical courses such as dysgeusia, petechiae, gingivitis, candidiasis, traumatic ulcers, geographical tongue, and thrush-like ulcers among patients with SARS-CoV-2 infection (35) (36). Other contemporary literature has ruled out acute sialidases, which cause salivary gland dysfunction and related discomfort, pain, and swelling (37). On the other hand, chronic sialadenitis causes xerostomia, sore tongue, mucosal ulcer, and gingivitis in patients with COVID-19 (38). Xerostomia has been found mainly among COVID-19 patients due to the neuroinvasive and neurotropic potential of SARS-CoV-2 (28). On the other hand, a couple of observational studies across the world have reported several oral clinical courses in patients with COVID-19 (39) (12) (40). Chinese researchers have identified xerostomia in a relatively high proportion of patients (41). Similarly, a cross-sectional survey of 108 patients with confirmed SARS-CoV-2 in China observed that 46% reported dry mouth, among other symptoms. A human observational study of 20 patients has revealed nearly 30% of xerostomia during hospitalization (42). Other related research works have reported that dry mouth, dysgeusia, oral ulcerations, and opportunistic infections are the most common oral manifestations expressed in COVID-19-positive patients (43) (44). Similarly, the findings of this prevalent cohort study have revealed a considerable report of xerostomia. The prevalence of xerostomia was 9% (n=5) among the cohorts involved in this follow-up study.
Another literature review found aphthous-like lesions, herpetiform lesions, candidiasis, and oral lesions of Kawasaki-like disease as the most common oral manifestations of COVID-19 disease (45). Iranmanesh et al. (2020) have also reported tongue (38%), labial mucosa (26%), and palate (22%) as the most common sites of oral clinical course presentation. Similarly, the tongue 25% (n=4) and buccal mucosa 25% (n=4) were identified as the most common sites of presentation of the oral mucosal lesions in this prevalent cohort study.

In a case report, a 67-year-old Caucasian man who tested positive for coronavirus had presented with multiple oral manifestations such as recurrent herpes simplex, candidiasis, and geographic tongue (12). Similarly, out of the total 16 patients who developed oral clinical courses, three were found to develop two symptoms each. Another systematic review and meta-analysis have also reported a 10%, 33%, and 44% prevalence rate of aphthous lesions, oral lesions, and xerostomia, respectively (46). The findings of this cohort study also disclosed 62.5% (n=10) and 31% (n=5) prevalence rates of oral lesions and xerostomia, respectively. Another systematic review that evaluated the association between oral health and COVID-19 reported the occurrence of hemorrhagic crust, bulla, buccal mucositis, and petechiae among patients with SARS-COV-2 infection (47).

Similarly, petechiae, buccal mucositis, hemorrhagic crust, and bulla were identified in this prospective cohort study. In general, as much of the oral clinical course presentations reported in several works of literature are obtained through interviewing patients (48), the findings of this prevalent cohort study could play a substantial role in filling the gap in observational clinical reality in the subject matter (39). This crucial reality might explain the variation in various prevalence data (49). Moreover, many of the oral afflictions seen in COVID-19 patients might not be directly caused by SARS-CoV-2 infection and, thus, should not
be classified as oral manifestations of this disease (50). Iatrogenic complications that occur in
the course of the treatment of COVID-19 could be notable examples (51). This group includes
lesions caused by mechanical trauma of prolonged intubation and other invasive procedures
employed (52). The other factor that could potentially justify the variation in prevalence data
is a drug; drug reactions might also present in the form of oral lesions (53). Another group of
oral lesions seen in patients with COVID19, but not directly related to the pathologic
processes of SARS-CoV-2 infection, are opportunistic coinfections that involve the oral cavity
(46). In those regards, this prevalent cohort study has executed rigor inclusion criteria to avoid
potential confounding. Of note, the necessity of conducting further in-depth observational
studies needs to be underlined.

Conclusion

The findings of this cohort study suggest that oral lesions are common manifestations in
patients with COVID-19 infection. Comparatively, males were more prone to developing
COVID-19-induced oral clinical courses. This indicates the necessity of conducting further
observational studies to investigate the causal relationships between COVID-19 infection and
the development of oral lesions as well as gender. As such, the findings of this study could be
used as baseline data to conduct more comprehensive research with more study participants
and a more extended follow-up period. On the other hand, the findings could also be used as
scientific evidence to consider and initiate oral health care for patients with COVID-19. The
findings could be crucial to advocating and optimizing patients’ overall healthcare at the
COVID-19 treatment centers. Therefore, this study suggests the necessity of multidisciplinary
healthcare approaches to assure optimal health outcomes among patients diagnosed with
COVID-19. Thus, the importance of the clinical dental examination of patients with infectious
diseases in the OPD and ICU should be emphasized, considering the need for support, pain control, and quality of life. Additionally, the oral clinical courses of patients with COVID-19 could be used as potential early indicators of the SARS-CoV-2 infection.

Acknowledgment

I want to express my most profound appreciation to Dr. Abdela Oumer for his valuable recommendations and cooperation during the making of this project.

References

Appendix

Appendix S1: WHO Oral Assessment for Adults

World Health Organization
Oral Health Assessment Form for Adults, 2013

<table>
<thead>
<tr>
<th>Area (mm)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td></td>
</tr>
</tbody>
</table>

Periapical status (CPI Modified)

<table>
<thead>
<tr>
<th>Tooth</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td></td>
</tr>
</tbody>
</table>

Signs of bleeding

<table>
<thead>
<tr>
<th>Tooth</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td></td>
</tr>
</tbody>
</table>
Oral Health Assessment Form for Adults, 2013

Loss of attachment

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Index scores</th>
<th>Grammatical fluencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = 0-2 mm</td>
<td>11-16</td>
<td>(n/a)</td>
</tr>
<tr>
<td>1 = 3-4 mm</td>
<td>17-21</td>
<td>(n/a)</td>
</tr>
<tr>
<td>2 = 5-6 mm</td>
<td>22-26</td>
<td>(n/a)</td>
</tr>
<tr>
<td>3 = 7-11 mm</td>
<td>27-31</td>
<td>(n/a)</td>
</tr>
<tr>
<td>4 = 12 mm or more</td>
<td>32-36</td>
<td>(n/a)</td>
</tr>
</tbody>
</table>

Not recorded under 18 years of age

Dental erosion

Severity

- 0 = No sign of erosion
- 1 = Minimal erosion
- 2 = Dental erosion
- 3 = Severe erosion

Number of teeth affected

| (n/a) |

Oral mucosal lesions

<table>
<thead>
<tr>
<th>Lesion(s)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = no mucosal condition</td>
<td>0 = No lesion</td>
</tr>
<tr>
<td>1 = Vaginal leucorrhoea (vulval ulcer)</td>
<td>1 = Vaginal leucorrhoea</td>
</tr>
<tr>
<td>2 = Ulcerative lesions</td>
<td>2 = Ulcerative lesions</td>
</tr>
<tr>
<td>3 = Ulcerative lesions, necrotic (ulceration)</td>
<td>3 = Ulcerative lesions, necrotic</td>
</tr>
<tr>
<td>4 = Ulcerative lesions, necrotic gingival (ULG)</td>
<td>4 = Ulcerative lesions, necrotic gingival</td>
</tr>
<tr>
<td>5 = Ulcerative lesions, necrotic</td>
<td>5 = Ulcerative lesions, necrotic</td>
</tr>
<tr>
<td>6 = Other</td>
<td>6 = Other</td>
</tr>
<tr>
<td>7 = Other condition (not specified)</td>
<td>7 = Other condition (not specified)</td>
</tr>
<tr>
<td>8 = Not responded</td>
<td>8 = Not responded</td>
</tr>
</tbody>
</table>

Intervention urgency

- 0 = No intervention needed
- 1 = Preventive or emergency intervention needed
- 2 = Preventive intervention needed due to pain or swelling
- 3 = Preventive intervention needed due to pain or swelling and/or oral hygiene
- 4 = Preventive intervention needed due to pain or swelling and/or oral hygiene and/or oral pain

* It is made available under a [CC-BY 4.0 International license](https://creativecommons.org/licenses/by/4.0/).
* This version posted June 19, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
Appendix S2: The Modified Oral Assessment Form for COVID-19 Patients

The Modified Oral Assessment Form (MOAF)

To identify the Possible Oral Clinical Course of Patients with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection: A Clinical Follow Up [Cohort] Study

By
Dr. Heron Geraehgi (IDM, MD (ImplSurp), MSc (Epid), MPH, Dr., PH, Ph.D.)
, +251911388564

Principal Investigator
Addis Ababa University, College of Health Sciences

DEMOGRAPHIC INFORMATION
Card No. _________
Age _________
Sex _________
Date of admission _________
Name and signature of the clinician in charge of admission

CLINICAL INFORMATION
History of oral diseases at admission
History of comorbidities at admission
History of tobacco and alcohol use

ORAL ASSESSMENT FOR POSSIBLE COVID-19 INDUCED CLINICAL MANIFESTATIONS

<table>
<thead>
<tr>
<th>Possible oral manifestations</th>
<th>YES, if observed</th>
<th>NO, if not observed</th>
<th>Anatomical region</th>
<th>Date observed/identified</th>
<th>Clinician's name</th>
<th>Clinician's signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xerostomia</td>
<td></td>
<td></td>
<td></td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(burning sensation in the mouth)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sore tongue</td>
<td></td>
<td></td>
<td></td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographical tongue</td>
<td></td>
<td></td>
<td></td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scalloped tongue</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candidiasis</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gingivitis</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gingival bleeding</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blisters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petechiae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vesicles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blistae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punctuated hemorrhages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrotel ulcer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aphthous ulcers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erythematous plaques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral hairy leukoplaakia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaposi's sarcoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface/texture changes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color variation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral lesion due to intubation or other procedure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other oral manifestation/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISCHARGE INFORMATION

Date of discharge: []

Name and signature of the clinician in charge of the discharge: []

GLOSSARY OF KEY TERMS

Keratosis is defined as dry mouth resulting from reduced or absent saliva flow.

The geographical tongue is a condition that causes spots on the tongue's surface, giving it a map-like appearance.
A scallipied tongue is an enlargement of the tongue, as a consequence, it pushes against the surrounding teeth creating scalliping (waving) effect.

Candidiasis is a common fungus infection; it is usually localized and mild but may spread into a generalized cutaneous eruption.

Petechiae are tiny purple, red, or brown spots that appear on the oral mucosa as a result of bleeding.

Vesicles a small fluid-filled bladder, sac, cyst, or vacuole within the body.

Bullae are large blisters containing serous fluid.

Punctuated hemorrhages are very small (0.3–2 mm) pinpoint collections of blood in the skin, sclera, conjunctivae, oral mucosa, and under serous membranes such as the pleura and pericardium.

Ulcer an open sore on an external or internal surface of the body (e.g., in the mouth), caused by a break in the skin or mucous membrane.

Aphthous ulcers are erythematous, small, round, or ovoid oral ulcers with circumscribed margins.

Erythematous plaques is a term that refers to patches of redness, generally due to irritation or inflammation.

Oral hairy leukoplakia is a condition that causes white patches on the tongue and other parts of the mouth. The patches may look hairy.

Kaposi’s sarcoma is a type of cancer that forms in the lining of blood and lymph vessels. The tumors (lesions) of Kaposi’s sarcoma typically appear as painless purplish spots in the mouth, genital areas, and on the legs, feet, or face.