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Abstract: 

 

Background: Machine (ML) and Deep learning (DL) are subsets of artificial intelligence that 

use data to build algorithms. These can be used to predict specific outcomes. To date there 

have been a few small studies on post-PCNL outcomes. 

 

Objective: 

We aimed to build and internally validate ML/DL models for post-PCNL transfusion and 

infection using a comprehensive national database. 

 

Design: Machine Learning study using prospective national database. Eight machine 

learning models for 11 outcomes using 43 predictors. Models were ‘complete-case’ 

analyses. 

 

Setting: National database 

 

Participants: Patients undergoing PCNL in the UK between 2014-2019. 

 

Outcome Measurements: Diagnostic accuracy statistics including overall accuracy, area-

under-the-curve (AUC), sensitivity and specificity. 

 

Results and Limitations: 

4412 patients were included, with 3088 in the training set and 1324 in the test set. The 

models predicted need for transfusion and post-operative infection with a very high degree 

of accuracy (99%) and high AUC (0.99-1.00). Unfortunately, the remainder of the outcomes 

did not achieve the same high levels. These two outcomes were therefore included in the 

provisional web-based application: 

https://endourology.shinyapps.io/PCNL_Prediction_tool/  

 

Conclusions: 

This is the largest machine learning study on post-PCNL outcomes to date. These models can 

predict the need for post-PCNL transfusion and post-PCNL infection at an individual level 

with excellent accuracy. Further work will be done on model tuning and external validation. 

 

Patient Summary: We used a national database of people having a major kidney stone 

operation (PCNL). Using this data, we built and tested 8 machine learning models for 11 

different outcomes from the operation. Using this method, we can give individual 

predictions for the likely need for a blood transfusion and development of an infection. We 

have developed an app to allow surgeons to calculate an individual patient’s risk prior to 

surgery. 
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1. Introduction 

 

 Kidney stone disease is a highly prevalent and costly disease[1]. Large kidney stones 

are often treated by percutaneous nephrolithotomy (PCNL)[2]. In addition to the planned 

outcome of removing the stone (stone free status), PCNL has a number of known 

complications including need for transfusion, post-operative infection and visceral injury[3]. 

Several scoring systems have been built to attempt to predict outcomes for individual 

patients both in terms of stone free status and complications[4]. More recently,  

(supervised) machine learning (ML) techniques have been used to attempt to predict 

outcomes of PCNL[5–7]. Notably, Aminsharifi et al. compared a ML model (support vector 

machines) to the more traditional nomogram based systems (Guy’s Stone score and the 

CROES PCNL nomogram)[6], and demonstrated far superior accuracy of ML. To date, there 

are only four outcomes for which predictive models are described: stone free status, need 

for adjuvant treatment, need for stent insertion and need for blood transfusion. 

 We therefore aimed to utilize a large national database to develop ML and more 

modern deep learning (DL) models to predict a larger number of outcomes (n=11), with 

subsequent internal validation and model implementation in a web-based application for 

easily accessible individualized predictions. 

 

2. Methods: 

2.1 Methodology reporting 

 We report this study using the TRIPOD checklist [8] (see supplementary material). 

 

2.2 Patients and Dataset 

 We utilized data from the BAUS PCNL audit, the methods of data collection have 

previously been reported[9], but we briefly report them here:  Through advertisement at 

national urologic meetings, all surgeons undertaking PCNL in the United Kingdom were 

invited to submit data to the registry using an online interface. An individual record that 

contained both a unique patient identifier and National Health Service(NHS) number was 

created for each PCNL procedure. Data was collected between 2014-2019. 

 

2.3 Predictors and Outcomes 

 43 predictors taken at operation: Age, BMI, Pre-operative haemoglobin (g/L), 

Charlson score (0-10), Age-related Charlson score (0-11) [10], number of tracts planned, 

number of tracts performed, sex, side of stones, previous UTI treatment, pre-operative 

antibiotic course, pre-operative urine culture, pre-operative urine culture result, primary 

pre-operative imaging, secondary pre-operative imaging, pre-operative dimercapto-succinic 

acid (DMSA) renogram, catheterization status, pre-operative estimated glomerular filtration 

rate (eGFR), prophylactic antibiotics on induction, grade of main operating surgeon, type of 

anaesthesia, interventional radiologist availability, secondary re-look nephroscopy, stone 

dimensions (cm), number of stones, index stone location, other stone location(s), Guy’s 

stone score[11], maximum Hounsfield units of index stone on CT KUB, pre-existing 

nephrostomy tube status, specialty and grade of practitioner performing puncture tract, 

puncture site, image guidance for renal puncture, patient position, anatomical placement of 

tract, size of amplatz sheath (Fr), type of dilators used, predicted difficulty, accessory 

procedures, post-operative nephrostomy, primary and secondary stone extraction 

techniques. 
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 11 outcomes: immediate clearance on fluoroscopy, visceral injury, survival, need for 

transfusion, post-operative infection, intra-operative complication, need for higher care 

(high dependency unit or intensive care unit), stone free at follow-up (first outpatient 

review using radiography,ultrasonography, or computed tomography according to local 

practice), need for adjuvant treatment, post-operative stay duration (0, 1, 2, ≥3 days) and 

Clavien-Dindo classification of complication [12]. 

 

2.4 Sample Size Calculation 

 Sample size was calculated for the least likely event i.e largest number of patients 

needed (vascular injury necessitating nephrectomy ~0.1%). Sample size was calculated using 

a 0.1% population proportion (margin of error ±0.1%), to be n=3838. This would give a likely 

representative sample adequate for ML/DL. 

 

2.5 Missing Data 

 Given the known issues around the inaccuracy of imputed data [13], and therefore 

the likely subsequent inaccuracy of models built on this data, patients with missing data 

were excluded. This study is therefore a ‘complete-case’ analysis. 

 

2.6 Model Selection 

 We constructed seven different single-outcome classification models: logistic 

regression (traditional statistical technique), five classical machine learning (ML) models 

chosen to be representative of differing ML techniques (random forests, extreme gradient 

boosting [xgboost], Bayesian generalized linear model, partitioning and neural networks), 

along with more novel deep learning (DL) neural networks using ‘keras’ with ‘tensorflow’. 

Using DL neural networks, we also built a multiple-outcome classification model to predict 

all 11 outcomes.  

 

2.7 Model Building 

 All models were built in R (version 4.1.2, Vienna, Austria)[14] using the ‘caret’[15], 

‘keras’[16] and ‘tensorflow’[17] packages. Model calibration is performed automatically by 

‘caret’ for the ML models. The DL neural networks were tested/calibrated with two and 

three layer nets, along with three different node layer sizes (48, 70 and 112). Full code of 

final models is available as supplementary material.  

 

2.8 Internal Validation 

 Datasets were randomly split into training (70% of total) and test (30%) sets. The test 

set was used to internally validate the models for each outcome. We report total, training 

and test set demographics. 

 

2.9 Statistical Analysis 

 Summary statistics are provided for example training and test sets. Each factor is 

compared between training and test sets to confirm randomisation as follows: categorical - 

chi
2
 tests, or Fisher’s exact test (n<5), normally distributed continuous - independent T-Tests 

and non-normally distributed continuous - Mann Whitney U tests. 

 We report diagnostic accuracy statistics following internal validation for each model: 

overall accuracy with 95% confidence interval, sensitivity, specificity, and area under the 

curve (AUC-ROC). Negative predictive values (NPV) and positive predictive values (PPV) are 
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available as supplementary material. We present receiver operator curves (ROC) for all 

models. These were generated using the ‘MLeval’[18], ‘caret’[15], ‘pROC’ and ‘ggplot2’[19] 

packages. 

 

2.10 Model Selection and Deployment 

 Models that were highly accurate, sensitive and specific with an AUC ≥0.8 were 

deployed online via the ‘shiny’ package within R [20]. Model explainers using the ‘lime’ 

(Local Interpretable Model-Agnostic Explainer) package are utilized to give explanations as 

to why the model is predicting a particular outcome [21]. Code is available as 

supplementary material. 

 

3. Results 

 

3.1 Demographics 

 

 In the total dataset (n=4418), the mean age was 56.5(±19.4), with 2074 women 

(46%), median BMI was 28.4 (IQR:25.0-33.0), median Charlson score was 1 (IQR:1-2), 

n=2133 (48%) had a previous UTI, n=1214 (48%) had some form of antibiotic cover prior to 

the procedure, n=3993 (90%) had a urine culture sent prior to the procedure. For further 

demographics of total, training and test sets please see supplementary table 1. There were 

no significant differences between training and tests sets on individual variable comparison, 

thus demonstrating randomization has worked. 

 In the total dataset the outcomes were as follows [see figure 1]: clearance on 

immediate post-operative imaging n=2144 (49%), visceral injury n=13 (0.3%), death n=7 

(0.2%), post-operative transfusion n=196 (4%), post-operative infection n=966 (22%), intra-

operative complication(s) n=140 (3%, n=360 with missing outcome), need for ITU/HDU 

admission n=201 (5%, n=218 with missing outcome), stone free at follow-up n=763 (70%, 

n=3327 with missing outcome) and need for adjuvant treatment n=185 (17%, n=3316 with 

missing outcome). Post-operative stay was subdivided into: daycase (n=52, 1%), 1 day 

(n=886, 20%), 2 days (n=998, 26%) and ≥3 days (n=2482, 56%). Clavien-Dindo classification 

of complications were as follows: I n=311 (7%), II n=343 (8%), IIIa n=93 (2%), IIIb n=63 (1%), 

IVa n=13 (0.3%), IVb n=0 and V n=7 (0.2%). Details of outcomes in training/test sets are 

detailed below. 

  

 

3.2 Models for Specific Outcomes 

 

3.2.1 Immediate clearance 

 The training group had n=3092 patients, n=2360 of which had immediate clearance 

on fluoroscopy. On internal validation (test set: n with outcome/total; n=1015/1326), the 

diagnostic accuracy statistics were: Random forests (RF) AUC=0.73, accuracy= 0.77 (95% 

CI:0.74-0.79), sensitivity=0.27, specificity=0.94; Partitioning AUC=0.63, accuracy=0.71 (95% 

CI:0.69-0.74), sensitivity=0.22, specificity=0.89; Extreme Gradient Boosting (XGBoost) 

AUC=0.75, accuracy=0.77 (95% CI:0.75-0.80), sensitivity=0.27, specificity=0.94; Logistic 

Regression (LR) AUC=0.63, accuracy=0.76 (95% CI:0.73-0.78), sensitivity=0.12, 

specificity=0.97; Classical Neural Network (NN) AUC=0.74, accuracy=0.75 (95% CI:0.73-0.78), 

sensitivity=0.23, specificity=0.94; Bayesian Generalised Linear Model (BGLM) AUC=0.75, 
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accuracy=0.77 (95% CI:0.75-0.80), sensitivity=0.29, specificity=0.94; Deep Neural Network 

(DNN) Single-outcome model AUC=0.59, accuracy=0.77 (95% CI:0.75-0.79), sensitivity=0.57, 

specificity=0.79; DNN Multiple-outcome model AUC=0.53, accuracy=0.77 (95% CI:0.75-

0.79), sensitivity=0.60, specificity=0.78 [see figure 2 and supplementary table 2]. 

 

 

3.2.2 Visceral Injury 

 The training group (n=3092 patients) had n=11 with visceral injury. On internal 

validation (test set: n with outcome/total; n=5/1326), the diagnostic accuracy statistics 

were: RF AUC=0.72, accuracy=0.99 (95% CI:0.99=1.00), sensitivity=1.00, specificity=0.00; 

Partitioning AUC=0.46, accuracy=0.99 (95% CI:0.99=1.00), sensitivity=1.00, specificity=0.00; 

XGBoost AUC=0.66, accuracy=0.99 (95% CI:0.99=1.00), sensitivity=1.00, specificity=0.00; LR 

AUC=0.56, accuracy=0.99 (95% CI:0.99=1.00), sensitivity=1.00, specificity=0.00; NN 

AUC=0.47, accuracy=0.99 (95% CI:0.99=1.00), sensitivity=1.00, specificity=0.00; BGLM 

AUC=0.77, accuracy=0.99 (95% CI:0.99=1.00), sensitivity=1.00, specificity=0.00 ; DNN Single-

outcome model AUC=0.50, accuracy=0.99 (95% CI:0.99-1.00), sensitivity=0.99, 

specificity=N/A; DNN Multiple-outcome model AUC=0.50, accuracy=0.99 (95% CI:0.99-1.00), 

sensitivity=0.99, specificity=N/A [see supplementary table 3]. 

 

3.2.3 Survival 

 The training group (n=3092 patients) had n=11 who died. On internal validation (test 

set: n with outcome/total; n=1/1326), the diagnostic accuracy statistics were: RF AUC=0.72, 

accuracy=0.99 (95% CI:0.99-1.00), sensitivity=1.00, specificity=0.00; Partitioning AUC=0.46, 

accuracy=0.99 (95% CI:0.99-1.00), sensitivity=1.00, specificity=0.00; XGBoost AUC=0.55, 

accuracy=0.99 (95% CI:0.99-1.00), sensitivity=1.00, specificity=0.00; LR AUC=0.55, 

accuracy=0.99 (95% CI:0.99-1.00), sensitivity=1.00, specificity=0.00; NN AUC=0.46, 

accuracy=0.99 (95% CI:0.99-1.00), sensitivity=1.00, specificity=0.00; BGLM AUC=0.77, 

accuracy=0.99 (95% CI:0.99-1.00), sensitivity=1.00, specificity=0.00; DNN Single-outcome 

model AUC=0.55, accuracy=0.99 (95% CI:0.99-1.00), sensitivity=1.00, specificity=0.00. Due 

to the poor predictive value as above, Survival was not included in the multi-output model 

[see supplementary table 4]. 

 

3.2.4 Need for Transfusion 

The training group (n=3088 patients) had n=132 who were transfused. On internal 

validation (test set: n with outcome/total; n=63/1324), the diagnostic accuracy statistics 

were: RF AUC=0.98, accuracy=0.99 (95% CI:0.99-1.00), sensitivity=1.00, specificity=0.97; 

Partitioning AUC=0.96, accuracy=0.99 (95% CI:0.99-1.00), sensitivity=1.00, specificity=0.89; 

XGBoost AUC=0.99, accuracy=1.00 (95% CI:0.99-1.00), sensitivity=1.00 , specificity=0.97; LR 

AUC=0.99, accuracy=1.00 (95% CI:0.99-1.00), sensitivity=1.00 , specificity=0.92 ; NN 

AUC=0.97, accuracy=0.99 (95% CI:0.98-0.99), sensitivity=1.00 , specificity=0.80 ; BGLM 

AUC=0.97, accuracy=0.99 (95% CI:0.99-1.00), sensitivity=1.00 , specificity=0.84 ; DNN Single-

outcome model AUC=0.87, accuracy=0.99 (95% CI:0.98-0.99), sensitivity=0.99 , 

specificity=0.96 ; DNN Multiple-outcome model AUC=0.77, accuracy=0.98 (95% CI:0.97-

0.99), sensitivity=0.98 , specificity=0.96 [see table 1]. 

 

3.2.5 Post-operative infection 
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The training group (n=3092 patients) had n=684 who developed a post-operative 

infection. On internal validation (test set: n with outcome/total; n=285/1326), the 

diagnostic accuracy statistics were: RF AUC=1.00, accuracy=0.98 (95% CI:0.97-0.99), 

sensitivity=0.99, specificity=0.96; Partitioning AUC=0.97, accuracy=0.97 (95% CI:0.96-0.98), 

sensitivity= 0.99, specificity=0.93; XGBoost AUC=1.00, accuracy=0.98 (95% CI:0.98-0.99), 

sensitivity=0.99 , specificity=0.97 ; LR AUC=0.98, accuracy=0.98 (95% CI:0.97-0.98), 

sensitivity=0.98, specificity=0.95; NN AUC=0.98, accuracy=0.98 (95% CI:0.97-0.98), 

sensitivity=0.98, specificity=0.94; BGLM AUC=0.97, accuracy=0.95 (95% CI:0.94-0.97), 

sensitivity=0.98, specificity=0.86; DNN Single outcome model AUC=0.92, accuracy=0.96 

(95% CI:0.95-0.97), sensitivity=0.96, specificity=0.93; DNN Multiple-outcome model 

AUC=0.90, accuracy=0.92 (95% CI:0.90-0.93), sensitivity=0.96, specificity=0.78 [see table 2]. 

 

3.2.6 Intra-operative complication 

The training group (n=2840 patients) had n=93 who had an intra-operative 

complication. On internal validation (test set: n with outcome/total; n=47/1218), the 

diagnostic accuracy statistics were: RF AUC=0.72, accuracy=0.96 (95% CI:0.95-0.97), 

sensitivity=1.00, specificity=0.00; Partitioning AUC=0.56, accuracy=0.96 (95% CI:0.95-0.97), 

sensitivity=1.00, specificity=0.00; XGBoost AUC=0.69, accuracy=0.96 (95% CI:0.96-0.95-

0.97), sensitivity=1.00, specificity=0.00; LR AUC=0.58, accuracy=0.96 (95% CI:0.95-0.97), 

sensitivity=1.00, specificity=0.04; NN AUC=0.60, accuracy=0.96 (95% CI:0.95-0.97), 

sensitivity=1.00, specificity=0.00; BGLM AUC=0.72, accuracy=0.96 (95% CI:0.95-0.97), 

sensitivity=1.00, specificity=0.02; DNN Single-outcome model AUC=0.50, accuracy=0.96 

(95% CI:0.96-0.97), sensitivity=0.96, specificity=N/A; DNN Multiple-outcome model 

AUC=0.50, accuracy=0.97 (95% CI:0.95-0.97), sensitivity=0.97, specificity=N/A [see 

supplementary table 5]. 

 

3.2.7 Need for HDU/ITU 

 The training group (n=2940 patients) had n=128 who required higher care. On 

internal validation (test set: n with outcome/total; n=73/1260), the diagnostic accuracy 

statistics were: RF AUC=0.63, accuracy=0.94 (95% CI:0.93-0.95), sensitivity=1.00, 

specificity=0.00; Partitioning AUC=0.54, accuracy=0.94 (95% CI:0.93-0.95), sensitivity=1.00, 

specificity=0.00; XGBoost AUC=0.60, accuracy=0.94 (95% CI:0.93-0.95), sensitivity=1.00, 

specificity=0.00; LR AUC=0.52, accuracy=0.94 (95% CI:0.93-0.95), sensitivity=1.00, 

specificity=0.00; NN AUC=0.49, accuracy=0.94 (95% CI:0.93-0.95), sensitivity=1.00, 

specificity=0.00; BGLM AUC=0.54, accuracy=0.94 (95% CI:0.93-0.95), sensitivity=1.00, 

specificity=0.00; DNN Single-outcome model AUC=0.50, accuracy=0.94 (95% CI:0.93-0.95), 

sensitivity=0.94, specificity=N/A; DNN Multiple-outcome model AUC=0.50, accuracy=0.95 

(95% CI:0.94-0.96), sensitivity=0.95, specificity=N/A [see supplementary table 6]. 

 

3.2.8 Stone Free at Follow-up 

 The training group (n=778 patients) had n=535 who were stone free at follow-up. On 

internal validation (test set: n with outcome/total; n=228/328), the diagnostic accuracy 

statistics were: RF AUC=0.69, accuracy=0.70 (95% CI:0.64-0.0.74), sensitivity=0.00, 

specificity=1.00; Partitioning AUC=0.55, accuracy=0.70 (95% CI:0.64-0.74), sensitivity=0.00, 

specificity=1.00; XGBoost AUC=0.70, accuracy=0.65 (95% CI:0.60-0.70), sensitivity=0.20, 

specificity=0.87; LR AUC=0.61, accuracy=0.62 (95% CI:0.56-0.67), sensitivity=0.30, 

specificity=0.78; NN AUC=0.50, accuracy=0.70 (95% CI:0.64-0.74), sensitivity=0.00, 
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specificity=1.00; BGLM AUC=0.67, accuracy=0.69 (95% CI:0.63-0.74), sensitivity=0.30, 

specificity=0.88; DNN Single-outcome model AUC=0.62, accuracy=0.59 (95% CI:0.54-0.65), 

sensitivity=0.43, specificity=0.78; DNN Multiple-outcome model AUC=0.60, accuracy=0.44 

(95% CI:0.41-0.46), sensitivity=0.92, specificity=0.21 [see supplementary table 7]. 

 

3.2.9 Need for Adjuvant Treatment 

 The training group (n=771 patients) had n=126 who needed adjuvant treatment. On 

internal validation (test set: n with outcome/total; n=59/331), the diagnostic accuracy 

statistics were: RF AUC=0.69, accuracy=0.82 (95% CI:0.77-0.86), sensitivity=0.99, 

specificity=0.02; Partitioning AUC=0.61, accuracy=0.83 (95% CI:0.78-0.87), sensitivity=0.98, 

specificity=0.12; XGBoost AUC=0.67, accuracy=0.82 (95% CI:0.78-0.86), sensitivity=1.00, 

specificity=0.02; LR AUC=0.59, accuracy=0.79 (95% CI:0.75-0.84), sensitivity=0.94, 

specificity=0.14; NN AUC=0.49, accuracy=0.82 (95% CI:0.78-0.86), sensitivity=1.00, 

specificity=0.00; BGLM AUC=0.67, accuracy=0.83 (95% CI:0.78-0.87), sensitivity=0.98, 

specificity=0.14; DNN Single-outcome model AUC=0.53, accuracy=0.83 (95% CI:0.78-0.87), 

sensitivity=0.83, specificity=0.67; DNN Multiple-outcome model AUC=0.50, accuracy=0.96 

(95% CI:0.95-0.97), sensitivity=0.96, specificity=N/A [see supplementary table 8]. 

 

3.2 10 Post-operative Stay 

 

On internal validation (test set, n=1326), the overall diagnostic accuracy statistics 

were: RF AUC=0.79, accuracy=0.66 (95% CI:0.63-0.69); Partitioning AUC=0.68, 

accuracy=0.66 (95% CI:0.63-0.68);  XGBoost AUC=0.78, accuracy=0.68 (95% CI:0.65-0.70); LR 

AUC=0.75, accuracy=0.67 (95% CI:0.64-0.69); NN AUC=0.75, accuracy=0.68 (95% CI:0.65-

0.70); BGLM AUC=0.73, accuracy=0.56 (95% CI:0.53-0.59); DNN Single-outcome model 

AUC=0.62, accuracy=0.72 (95% CI:0.71-0.73);  DNN Multiple-outcome model AUC=0.76, 

accuracy=0.82 (95% CI:0.81-0.83).  

 Sensitivity, specificity, PPV and NPV for each length of stay (0,1,2 and ≥3 days) are 

detailed in supplementary table 9. 

 

3.2.11 Clavien Dindo Classification 

 

On internal validation (test set, n=1326), the diagnostic accuracy statistics were: RF 

AUC=0.90, accuracy=0.85 (95% CI:0.83-0.87); Partitioning AUC=0.66, accuracy=0.83 (95% 

CI:0.81-0.85);  XGBoost AUC=0.88, accuracy=0.85 (95% CI:0.83-0.87); LR AUC=0.82, 

accuracy=0.86 (95% CI:0.84-0.88); NN AUC=0.50, accuracy=0.82 (95% CI:0.80-0.84); BGLM 

AUC=0.79, accuracy=0.82 (95% CI:0.80-0.84); DNN Single-outcome model AUC=0.89, 

accuracy=0.95 (95% CI:0.95-0.96);  DNN Multiple-outcome model AUC=0.89, accuracy=0.95 

(95% CI:0.95-0.96).  

 Sensitivity, specificity, PPV and NPV for each outcome (CD grade 0-V) are detailed in 

supplementary table 10.  

 

3.3 Model Selection and Deployment 

 Two RF models (transfusion and post-operative infection) selected for deployment in 

the online application. The application can be visualized at: 

https://endourology.shinyapps.io/PCNL_Prediction_tool/. Each model has a ‘Local 
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Interpretable Model-Agnostic Explainer’ (‘lime’), this details and ranks by weight the 

variables the model is using to predict a particular outcome [see figure 3]. 

 

 

4. Discussion 

 

 This is the largest machine learning study in PCNL to date, with the largest number of 

predicted outcomes (n=13), although only 2 of our outcomes (need for transfusion and 

post-operative infection) are well predicted in our internal validation dataset with high 

accuracy, sensitivity, specificity and AUC. These two have therefore been included in the 

online application for external validation. The post-operative stay and Clavien-Dindo (CD) 

complication classification also had high AUCs, but were not included as they do not 

accurately predict specific outcomes.  

 There are several limitations with this study, the main being the rarity of particular 

outcomes e.g visceral injury or death. This leads to poor prediction of these particular 

outcomes. There are methods of artificially increasing these outcomes (i.e duplicating 

entries with particular outcome), but this often to leads to the model overestimating the 

adverse outcome [22,23]. The addition of imaging data may increase the predictability of 

visceral injury. Previous studies have demonstrated the use of neural networks to identify 

renal tumours and their vasculature, which aids operative planning[24].  

 For most outcomes we demonstrate high accuracies and AUCs. These can be 

misleading. For example, the visceral injury models mostly report accuracies of 99%, with a 

maximum AUC of 0.77 (BGLM). This is because the models predict every participant as 

having ‘no’ visceral injury (sensitivity=1.00, specificity=0.00). With rare outcomes, visceral 

injury is seen in just 0.3% of patients, summary figures such as ‘accuracy’ and AUC should be 

discounted in favour of sensitivity and specificity. 

 Stone free status was poorly predicted. This may be due to loss of data, but more 

likely, due to differing methods of follow-up imaging. The gold standard of stone free status 

ascertainment is with CT[25]. In the UK, patients are often followed up with ultrasound or x-

ray, which overestimate stone free status[26]. It is also unclear as to the ‘stone free’ 

definition. Historically, <4mm or <2mm fragments were deemed acceptable and included in 

the definition of ‘stone free’. However, more recently, this has been challenged. These 

residual fragments are likely to become clinically significant [27], and therefore the 

definition of ‘stone free’ has been redefined to ‘no fragments’. This ambiguity about stone 

free ascertainment and definition are the likely reasons behind poor prediction. 

 Future studies should externally validate our models for transfusion and post-

operative infection. Studies aiming to build machine learning tools for post-PCNL outcome 

prediction may benefit from the inclusion of imaging data. 

 

5. Conclusions 

 Machine/Deep learning can provide useful tools for prediction of particular 

outcomes (transfusion/infection) to high levels of diagnostic accuracy. However, in this 

study, some outcomes are poorly predicted, which suggests an incomplete dataset in some 

cases, and a very rare outcome in others. Future ML studies should utilize imaging data as 

well as clinical data. 
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Table Legends 

 
Table 1. Diagnostic accuracy statistics for 'Need for Transfusion'. PPV=positive predictive value, NPV=negative predictive 

value, XGBoost=Extreme Gradient Boosting, NN=Neural network. Truncated model included: Stone free status, Need for 

transfusion and post-operative infection.  

 
Table 2. Diagnostic accuracy statistics for Post-operative Infection. PPV=positive predictive value, NPV=negative predictive 

value, XGBoost=Extreme Gradient Boosting, NN=Neural network. Truncated model included: Stone free status, Need for 

transfusion and post-operative infection. 

 

Figures 

 

 
Figure 1. Flow Diagram of patient selection. The 'N' refers to total number of patients in dataset at particular stage of flow 

diagram, it does not relate to number with specific outcome. Outcomes split by 70% (training) and 30% (testing). *=Larger 

N for multiple output model despite small numbers of total patients with data on ‘Stone Free’ and ‘Need for Adjuvant 

Treatment’ as missing data were coded as a ‘0’ i.e ‘no’. 
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Figure 2. ROC curves for each model 
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Figure 3. Example explanatory plot using a 'lime' explainer. Label = predicted outcome (in this case unlikely to need 

transfusion), Probability=probability according to the model, Explanation fit=how the particular patient’s characteristics 

compare to the model’s ideal characteristics for prediction of the outcome. Y-axis=Features ranked by weighting. X-

Axis=weighting according to model.  
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Need for Transfusion 

ML (all Single Outcome) Deep NN 

Random 

Forests Partitioning XGBoost 

Logistic 

Regression 

Neural 

Network 

Bayesian 

Generalised Linear 

Model 

Single 

Outcome 

Multiple 

Outcome 

Truncated 

Multiple 

Outcome 

AUC 0.98 0.96 0.99 0.99 0.97 0.97 0.87 0.77 0.85 

Overall accuracy (95% 

CI) 

0.99 

(0.99-

1.00) 

0.99 (0.99-

1.00) 

1.00 

(0.99-

1.00) 

1.00 (0.99-

1.00) 

0.99 

(0.98-

0.99) 

0.99 (0.99-1.00) 

0.99 

(0.98-

0.99) 

0.98 

(0.97-

0.99) 

0.99 (0.98-0.99) 

Sensitivity 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.99 

Specificity 0.97 0.89 0.97 0.92 0.80 0.84 0.96 0.96 0.97 

PPV 1.00 0.99 1.00 1.00 0.99 0.99 1.00 1.00 1.00 

NPV 0.98 1.00 1.00 0.97 0.99 0.98 0.75 0.54 0.70 

N with outcome/Total 

N (Training group) 
132/3088 

N with outcome/Total 

N (Test group) 
63/1324 

Table 1. Diagnostic accuracy statistics for 'Need for Transfusion'. PPV=positive predictive value, NPV=negative predictive value, XGBoost=Extreme Gradient Boosting, NN=Neural network. 

Truncated model included: Stone free status, Need for transfusion and post-operative infection 
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Post-Operative 

Infection 

ML (all Single Outcome) Deep NN 

Random 

Forests Partitioning XGBoost 

Logistic 

Regression 

Neural 

Network 

Bayesian 

Generalised Linear 

Model 

Single 

Outcome 

Multiple 

Outcome 

Truncated 

Multiple 

Outcome 

AUC 1.00 0.97 1.00 0.98 0.98 0.97 0.92 0.90 0.90 

Overall accuracy (95% 

CI) 

0.98 

(0.97-

0.99) 

0.97 (0.96-

0.98) 

0.98 

(0.97-

0.99) 

0.98 (0.97-

0.98) 

0.98 

(0.97-

0.98) 

0.95 (0.94-0.97) 

0.96 

(0.95-

0.97) 

0.92 

(0.90-

0.93) 

0.91 (0.90-0.93) 

Sensitivity 0.99 0.99 0.99 0.98 0.98 0.98 0.96 0.96 0.96 

Specificity 0.96 0.93 0.97 0.95 0.94 0.86 0.93 0.78 0.78 

PPV 0.99 0.98 0.99 0.99 0.98 0.96 0.98 0.93 0.92 

NPV 0.95 0.95 0.95 0.94 0.94 0.92 0.87 0.88 0.89 

N with outcome/Total 

N (Training group) 
684/3092 

N with outcome/Total 

N (Test group) 

285/1326 

 
Table 2. Diagnostic accuracy statistics for Post-operative Infection. PPV=positive predictive value, NPV=negative predictive value, XGBoost=Extreme Gradient Boosting, NN=Neural network. 

Truncated model included: Stone free status, Need for transfusion and post-operative infection 
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