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Abstract:

Background: Machine (ML) and Deep learning (DL) are subsets of artificial intelligence that
use data to build algorithms. These can be used to predict specific outcomes. To date there
have been a few small studies on post-PCNL outcomes.

Objective:
We aimed to build and internally validate ML/DL models for post-PCNL transfusion and
infection using a comprehensive national database.

Design: Machine Learning study using prospective national database. Eight machine
learning models for 11 outcomes using 43 predictors. Models were ‘complete-case’
analyses.

Setting: National database
Participants: Patients undergoing PCNL in the UK between 2014-2019.

Outcome Measurements: Diagnostic accuracy statistics including overall accuracy, area-
under-the-curve (AUC), sensitivity and specificity.

Results and Limitations:

4412 patients were included, with 3088 in the training set and 1324 in the test set. The
models predicted need for transfusion and post-operative infection with a very high degree
of accuracy (99%) and high AUC (0.99-1.00). Unfortunately, the remainder of the outcomes
did not achieve the same high levels. These two outcomes were therefore included in the
provisional web-based application:

https://endourology.shinyapps.io/PCNL Prediction tool/

Conclusions:

This is the largest machine learning study on post-PCNL outcomes to date. These models can
predict the need for post-PCNL transfusion and post-PCNL infection at an individual level
with excellent accuracy. Further work will be done on model tuning and external validation.

Patient Summary: We used a national database of people having a major kidney stone
operation (PCNL). Using this data, we built and tested 8 machine learning models for 11
different outcomes from the operation. Using this method, we can give individual
predictions for the likely need for a blood transfusion and development of an infection. We
have developed an app to allow surgeons to calculate an individual patient’s risk prior to
surgery.
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1. Introduction

Kidney stone disease is a highly prevalent and costly disease[1]. Large kidney stones
are often treated by percutaneous nephrolithotomy (PCNL)[2]. In addition to the planned
outcome of removing the stone (stone free status), PCNL has a number of known
complications including need for transfusion, post-operative infection and visceral injury[3].
Several scoring systems have been built to attempt to predict outcomes for individual
patients both in terms of stone free status and complications[4]. More recently,
(supervised) machine learning (ML) techniques have been used to attempt to predict
outcomes of PCNL[5—7]. Notably, Aminsharifi et al. compared a ML model (support vector
machines) to the more traditional nomogram based systems (Guy’s Stone score and the
CROES PCNL nomogram)[6], and demonstrated far superior accuracy of ML. To date, there
are only four outcomes for which predictive models are described: stone free status, need
for adjuvant treatment, need for stent insertion and need for blood transfusion.

We therefore aimed to utilize a large national database to develop ML and more
modern deep learning (DL) models to predict a larger number of outcomes (n=11), with
subsequent internal validation and model implementation in a web-based application for
easily accessible individualized predictions.

2. Methods:
2.1 Methodology reporting
We report this study using the TRIPOD checklist [8] (see supplementary material).

2.2 Patients and Dataset

We utilized data from the BAUS PCNL audit, the methods of data collection have
previously been reported[9], but we briefly report them here: Through advertisement at
national urologic meetings, all surgeons undertaking PCNL in the United Kingdom were
invited to submit data to the registry using an online interface. An individual record that
contained both a unique patient identifier and National Health Service(NHS) number was
created for each PCNL procedure. Data was collected between 2014-2019.

2.3 Predictors and Outcomes

43 predictors taken at operation: Age, BMI, Pre-operative haemoglobin (g/L),
Charlson score (0-10), Age-related Charlson score (0-11) [10], number of tracts planned,
number of tracts performed, sex, side of stones, previous UTI treatment, pre-operative
antibiotic course, pre-operative urine culture, pre-operative urine culture result, primary
pre-operative imaging, secondary pre-operative imaging, pre-operative dimercapto-succinic
acid (DMSA) renogram, catheterization status, pre-operative estimated glomerular filtration
rate (eGFR), prophylactic antibiotics on induction, grade of main operating surgeon, type of
anaesthesia, interventional radiologist availability, secondary re-look nephroscopy, stone
dimensions {cm), number of stones, index stone location, other stone location(s), Guy’s
stone score[11], maximum Hounsfield units of index stone on CT KUB, pre-existing
nephrostomy tube status, specialty and grade of practitioner performing puncture tract,
puncture site, image guidance for renal puncture, patient position, anatomical placement of
tract, size of amplatz sheath (Fr), type of dilators used, predicted difficulty, accessory
procedures, post-operative nephrostomy, primary and secondary stone extraction
techniques.
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11 outcomes: immediate clearance on fluoroscopy, visceral injury, survival, need for
transfusion, post-operative infection, intra-operative complication, need for higher care
(high dependency unit or intensive care unit), stone free at follow-up (first outpatient
review using radiography,ultrasonography, or computed tomography according to local
practice), need for adjuvant treatment, post-operative stay duration (0, 1, 2, =23 days) and
Clavien-Dindo classification of complication [12].

2.4 Sample Size Calculation

Sample size was calculated for the least likely event i.e largest number of patients
needed (vascular injury necessitating nephrectomy ~0.1%). Sample size was calculated using
a 0.1% population proportion (margin of error +0.1%), to be n=3838. This would give a likely
representative sample adequate for ML/DL.

2.5 Missing Data

Given the known issues around the inaccuracy of imputed data [13], and therefore
the likely subsequent inaccuracy of models built on this data, patients with missing data
were excluded. This study is therefore a ‘complete-case’ analysis.

2.6 Model Selection

We constructed seven different single-outcome classification models: logistic
regression (traditional statistical technique), five classical machine learning (ML) models
chosen to be representative of differing ML techniques (random forests, extreme gradient
boosting [xgboost], Bayesian generalized linear model, partitioning and neural networks),
along with more novel deep learning (DL) neural networks using ‘keras’ with ‘tensorflow’.
Using DL neural networks, we also built a multiple-outcome classification model to predict
all 11 outcomes.

2.7 Model Building

All models were built in R (version 4.1.2, Vienna, Austria)[14] using the ‘caret’[15],
‘keras’[16] and ‘tensorflow’[17] packages. Model calibration is performed automatically by
‘caret’ for the ML models. The DL neural networks were tested/calibrated with two and
three layer nets, along with three different node layer sizes (48, 70 and 112). Full code of
final models is available as supplementary material.

2.8 Internal Validation

Datasets were randomly split into training (70% of total) and test (30%) sets. The test
set was used to internally validate the models for each outcome. We report total, training
and test set demographics.

2.9 Statistical Analysis

Summary statistics are provided for example training and test sets. Each factor is
compared between training and test sets to confirm randomisation as follows: categorical -
chi® tests, or Fisher’s exact test (n<5), normally distributed continuous - independent T-Tests
and non-normally distributed continuous - Mann Whitney U tests.

We report diagnostic accuracy statistics following internal validation for each model:
overall accuracy with 95% confidence interval, sensitivity, specificity, and area under the
curve (AUC-ROC). Negative predictive values (NPV) and positive predictive values (PPV) are
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available as supplementary material. We present receiver operator curves (ROC) for all
models. These were generated using the ‘MLeval’[18], ‘caret’[15], ‘pROC’ and ‘ggplot2’'[19]
packages.

2.10 Model Selection and Deployment

Models that were highly accurate, sensitive and specific with an AUC >0.8 were
deployed online via the ‘shiny’ package within R [20]. Model explainers using the ‘lime’
(Local Interpretable Model-Agnostic Explainer) package are utilized to give explanations as
to why the model is predicting a particular outcome [21]. Code is available as
supplementary material.

3. Results
3.1 Demographics

In the total dataset (n=4418), the mean age was 56.5(+19.4), with 2074 women
(46%), median BMI was 28.4 {IQR:25.0-33.0), median Charlson score was 1 (IQR:1-2),
n=2133 (48%) had a previous UTI, n=1214 (48%) had some form of antibiotic cover prior to
the procedure, n=3993 (90%) had a urine culture sent prior to the procedure. For further
demographics of total, training and test sets please see supplementary table 1. There were
no significant differences between training and tests sets on individual variable comparison,
thus demonstrating randomization has worked.

In the total dataset the outcomes were as follows [see figure 1]: clearance on
immediate post-operative imaging n=2144 (49%), visceral injury n=13 {(0.3%), death n=7
(0.2%), post-operative transfusion n=196 (4%), post-operative infection n=966 (22%), intra-
operative complication(s) n=140 (3%, n=360 with missing outcome), need for ITU/HDU
admission n=201 (5%, n=218 with missing outcome), stone free at follow-up n=763 (70%,
n=3327 with missing outcome) and need for adjuvant treatment n=185 (17%, n=3316 with
missing outcome). Post-operative stay was subdivided into: daycase (n=52, 1%), 1 day
(n=886, 20%), 2 days (n=998, 26%) and >3 days (n=2482, 56%). Clavien-Dindo classification
of complications were as follows: | n=311 (7%), Il n=343 (8%), llla n=93 (2%), lllb n=63 {1%),
IVa n=13 (0.3%), IVb n=0 and V n=7 (0.2%). Details of outcomes in training/test sets are
detailed below.

3.2 Models for Specific Outcomes

3.2.1 Immediate clearance

The training group had n=3092 patients, n=2360 of which had immediate clearance
on fluoroscopy. On internal validation (test set: n with outcome/total; n=1015/1326), the
diagnostic accuracy statistics were: Random forests (RF) AUC=0.73, accuracy=0.77 (95%
Cl:0.74-0.79), sensitivity=0.27, specificity=0.94; Partitioning AUC=0.63, accuracy=0.71 (95%
Cl:0.69-0.74), sensitivity=0.22, specificity=0.89; Extreme Gradient Boosting (XGBoost)
AUC=0.75, accuracy=0.77 (95% Cl:0.75-0.80), sensitivity=0.27, specificity=0.94; Logistic
Regression (LR) AUC=0.63, accuracy=0.76 (95% Cl:0.73-0.78), sensitivity=0.12,
specificity=0.97; Classical Neural Network {(NN) AUC=0.74, accuracy=0.75 (95% CI:0.73-0.78),
sensitivity=0.23, specificity=0.94; Bayesian Generalised Linear Model (BGLM) AUC=0.75,
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accuracy=0.77 (95% Cl.0.75-0.80), sensitivity=0.29, specificity=0.94; Deep Neural Network
(DNN) Single-outcome model AUC=0.59, accuracy=0.77 (95% Cl:0.75-0.79), sensitivity=0.57,
specificity=0.79; DNN Multiple-outcome model AUC=0.53, accuracy=0.77 (95% Cl:0.75-
0.79), sensitivity=0.60, specificity=0.78 [see figure 2 and supplementary table 2].

3.2.2 Visceral Injury

The training group (n=3092 patients) had n=11 with visceral injury. On internal
validation (test set: n with outcome/total; n=5/1326), the diagnostic accuracy statistics
were: RF AUC=0.72, accuracy=0.99 (95% Cl:0.99=1.00), sensitivity=1.00, specificity=0.00;
Partitioning AUC=0.46, accuracy=0.99 (95% Cl.0.99=1.00), sensitivity=1.00, specificity=0.00;
XGBoost AUC=0.66, accuracy=0.99 (95% ClI:0.99=1.00), sensitivity=1.00, specificity=0.00; LR
AUC=0.56, accuracy=0.99 (95% Cl:0.99=1.00), sensitivity=1.00, specificity=0.00; NN
AUC=0.47, accuracy=0.99 (95% C1:0.99=1.00), sensitivity=1.00, specificity=0.00; BGLM
AUC=0.77, accuracy=0.99 (95% C1:0.99=1.00), sensitivity=1.00, specificity=0.00 ; DNN Single-
outcome model AUC=0.50, accuracy=0.99 (95% Cl:0.99-1.00), sensitivity=0.99,
specificity=N/A; DNN Multiple-outcome model AUC=0.50, accuracy=0.99 (95% CI:0.99-1.00),
sensitivity=0.99, specificity=N/A [see supplementary table 3].

3.2.3 Survival

The training group (n=3092 patients) had n=11 who died. On internal validation (test
set: n with outcome/total; n=1/1326), the diagnostic accuracy statistics were: RF AUC=0.72,
accuracy=0.99 (95% Cl:0.99-1.00), sensitivity=1.00, specificity=0.00; Partitioning AUC=0.46,
accuracy=0.99 (95% Cl:0.99-1.00), sensitivity=1.00, specificity=0.00; XGBoost AUC=0.55,
accuracy=0.99 (95% Cl:0.99-1.00), sensitivity=1.00, specificity=0.00; LR AUC=0.55,
accuracy=0.99 (95% Cl:0.99-1.00), sensitivity=1.00, specificity=0.00; NN AUC=0.46,
accuracy=0.99 (95% Cl:0.99-1.00), sensitivity=1.00, specificity=0.00; BGLM AUC=0.77,
accuracy=0.99 (95% Cl:0.99-1.00), sensitivity=1.00, specificity=0.00; DNN Single-outcome
model AUC=0.55, accuracy=0.99 (95% Cl:0.99-1.00), sensitivity=1.00, specificity=0.00. Due
to the poor predictive value as above, Survival was not included in the multi-output model
[see supplementary table 4].

3.2.4 Need for Transfusion

The training group (n=3088 patients) had n=132 who were transfused. On internal
validation (test set: n with outcome/total; n=63/1324), the diagnostic accuracy statistics
were: RF AUC=0.98, accuracy=0.99 (95% Cl:0.99-1.00), sensitivity=1.00, specificity=0.97;
Partitioning AUC=0.96, accuracy=0.99 (95% Cl:0.99-1.00), sensitivity=1.00, specificity=0.89;
XGBoost AUC=0.99, accuracy=1.00 (95% CI:0.99-1.00), sensitivity=1.00, specificity=0.97; LR
AUC=0.99, accuracy=1.00 (95% Cl:0.99-1.00), sensitivity=1.00, specificity=0.92 ; NN
AUC=0.97, accuracy=0.99 (95% Cl:0.98-0.99), sensitivity=1.00 , specificity=0.80 ; BGLM
AUC=0.97, accuracy=0.99 (95% Cl:0.99-1.00), sensitivity=1.00, specificity=0.84 ; DNN Single-
outcome model AUC=0.87, accuracy=0.99 (95% Cl:0.98-0.99), sensitivity=0.99,
specificity=0.96 ; DNN Multiple-outcome model AUC=0.77, accuracy=0.98 (95% CI.0.97-
0.99), sensitivity=0.98 , specificity=0.96 [see table 1].

3.2.5 Post-operative infection
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The training group (n=3092 patients) had n=684 who developed a post-operative
infection. On internal validation (test set: n with outcome/total; n=285/1326), the
diagnostic accuracy statistics were: RF AUC=1.00, accuracy=0.98 (95% Cl:0.97-0.99),
sensitivity=0.99, specificity=0.96; Partitioning AUC=0.97, accuracy=0.97 (95% Cl:0.96-0.98),
sensitivity= 0.99, specificity=0.93; XGBoost AUC=1.00, accuracy=0.98 (95% Cl:0.98-0.99),
sensitivity=0.99 , specificity=0.97 ; LR AUC=0.98, accuracy=0.98 (95% ClI:0.97-0.98),
sensitivity=0.98, specificity=0.95; NN AUC=0.98, accuracy=0.98 (95% CI:0.97-0.98),
sensitivity=0.98, specificity=0.94; BGLM AUC=0.97, accuracy=0.95 (95% CI:0.94-0.97),
sensitivity=0.98, specificity=0.86; DNN Single outcome model AUC=0.92, accuracy=0.96
(95% Cl:0.95-0.97), sensitivity=0.96, specificity=0.93; DNN Multiple-outcome model
AUC=0.90, accuracy=0.92 (95% Cl:0.90-0.93), sensitivity=0.96, specificity=0.78 [see table 2].

3.2.6 Intra-operative complication

The training group (n=2840 patients) had n=93 who had an intra-operative
complication. On internal validation (test set: n with outcome/total; n=47/1218), the
diagnostic accuracy statistics were: RF AUC=0.72, accuracy=0.96 (95% Cl:0.95-0.97),
sensitivity=1.00, specificity=0.00; Partitioning AUC=0.56, accuracy=0.96 (95% Cl:0.95-0.97),
sensitivity=1.00, specificity=0.00; XGBoost AUC=0.69, accuracy=0.96 (95% Cl:0.96-0.95-
0.97), sensitivity=1.00, specificity=0.00; LR AUC=0.58, accuracy=0.96 {95% Cl:0.95-0.97),
sensitivity=1.00, specificity=0.04; NN AUC=0.60, accuracy=0.96 (95% CI:0.95-0.97),
sensitivity=1.00, specificity=0.00; BGLM AUC=0.72, accuracy=0.96 (95% CI:0.95-0.97),
sensitivity=1.00, specificity=0.02; DNN Single-outcome model AUC=0.50, accuracy=0.96
(95% C1:0.96-0.97), sensitivity=0.96, specificity=N/A; DNN Multiple-outcome model
AUC=0.50, accuracy=0.97 (95% Cl:0.95-0.97), sensitivity=0.97, specificity=N/A [see
supplementary table 5].

3.2.7 Need for HDU/ITU

The training group (n=2940 patients) had n=128 who required higher care. On
internal validation (test set: n with outcome/total; n=73/1260), the diagnostic accuracy
statistics were: RF AUC=0.63, accuracy=0.94 (95% Cl:0.93-0.95), sensitivity=1.00,
specificity=0.00; Partitioning AUC=0.54, accuracy=0.94 (95% Cl:0.93-0.95), sensitivity=1.00,
specificity=0.00; XGBoost AUC=0.60, accuracy=0.94 (95% Cl:0.93-0.95), sensitivity=1.00,
specificity=0.00; LR AUC=0.52, accuracy=0.94 (95% ClI:0.93-0.95), sensitivity=1.00,
specificity=0.00; NN AUC=0.49, accuracy=0.94 (95% CI:0.93-0.95), sensitivity=1.00,
specificity=0.00; BGLM AUC=0.54, accuracy=0.94 (95% Cl:0.93-0.95), sensitivity=1.00,
specificity=0.00; DNN Single-outcome model AUC=0.50, accuracy=0.94 (95% Cl:0.93-0.95),
sensitivity=0.94, specificity=N/A; DNN Multiple-outcome model AUC=0.50, accuracy=0.95
(95% C1:0.94-0.96), sensitivity=0.95, specificity=N/A [see supplementary table 6].

3.2.8 Stone Free at Follow-up

The training group (n=778 patients) had n=535 who were stone free at follow-up. On
internal validation (test set: n with outcome/total; n=228/328), the diagnostic accuracy
statistics were: RF AUC=0.69, accuracy=0.70 (95% Cl:0.64-0.0.74), sensitivity=0.00,
specificity=1.00; Partitioning AUC=0.55, accuracy=0.70 (95% Cl:0.64-0.74), sensitivity=0.00,
specificity=1.00; XGBoost AUC=0.70, accuracy=0.65 (95% Cl:0.60-0.70), sensitivity=0.20,
specificity=0.87; LR AUC=0.61, accuracy=0.62 (95% Cl:0.56-0.67), sensitivity=0.30,
specificity=0.78; NN AUC=0.50, accuracy=0.70 (95% CI:0.64-0.74), sensitivity=0.00,
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specificity=1.00; BGLM AUC=0.67, accuracy=0.69 (95% Cl:0.63-0.74), sensitivity=0.30,
specificity=0.88; DNN Single-outcome model AUC=0.62, accuracy=0.59 (95% Cl:0.54-0.65),
sensitivity=0.43, specificity=0.78; DNN Multiple-outcome model AUC=0.60, accuracy=0.44
(95% Cl:0.41-0.46), sensitivity=0.92, specificity=0.21 [see supplementary table 7].

3.2.9 Need for Adjuvant Treatment

The training group (n=771 patients) had n=126 who needed adjuvant treatment. On
internal validation (test set: n with outcome/total; n=59/331), the diagnostic accuracy
statistics were: RF AUC=0.69, accuracy=0.82 (95% Cl:0.77-0.86), sensitivity=0.99,
specificity=0.02; Partitioning AUC=0.61, accuracy=0.83 (95% Cl:0.78-0.87), sensitivity=0.98,
specificity=0.12; XGBoost AUC=0.67, accuracy=0.82 (95% CI:0.78-0.86), sensitivity=1.00,
specificity=0.02; LR AUC=0.59, accuracy=0.79 (95% Cl:0.75-0.84), sensitivity=0.94,
specificity=0.14; NN AUC=0.49, accuracy=0.82 (95% CI:0.78-0.86), sensitivity=1.00,
specificity=0.00; BGLM AUC=0.67, accuracy=0.83 (95% Cl:0.78-0.87), sensitivity=0.98,
specificity=0.14; DNN Single-outcome model AUC=0.53, accuracy=0.83 (95% CI:0.78-0.87),
sensitivity=0.83, specificity=0.67; DNN Multiple-outcome model AUC=0.50, accuracy=0.96
(95% Cl:0.95-0.97), sensitivity=0.96, specificity=N/A [see supplementary table 8].

3.2 10 Post-operative Stay

On internal validation (test set, n=1326), the overall diagnostic accuracy statistics
were: RF AUC=0.79, accuracy=0.66 (95% Cl:0.63-0.69); Partitioning AUC=0.68,
accuracy=0.66 (95% Cl:0.63-0.68); XGBoost AUC=0.78, accuracy=0.68 {95% Cl:0.65-0.70); LR
AUC=0.75, accuracy=0.67 (95% Cl:0.64-0.69); NN AUC=0.75, accuracy=0.68 (95% Cl.0.65-
0.70); BGLM AUC=0.73, accuracy=0.56 (95% Cl:0.53-0.59); DNN Single-outcome model
AUC=0.62, accuracy=0.72 (95% Cl:0.71-0.73); DNN Multiple-outcome model AUC=0.76,
accuracy=0.82 (95% Cl:0.81-0.83).

Sensitivity, specificity, PPV and NPV for each length of stay (0,1,2 and >3 days) are
detailed in supplementary table 9.

3.2.11 Clavien Dindo Classification

On internal validation (test set, n=1326), the diagnostic accuracy statistics were: RF
AUC=0.90, accuracy=0.85 (95% Cl:0.83-0.87); Partitioning AUC=0.66, accuracy=0.83 (95%
Cl:0.81-0.85); XGBoost AUC=0.88, accuracy=0.85 (95% CI:0.83-0.87); LR AUC=0.82,
accuracy=0.86 (95% Cl:0.84-0.88); NN AUC=0.50, accuracy=0.82 (95% CI:0.80-0.84); BGLM
AUC=0.79, accuracy=0.82 (95% Cl:0.80-0.84); DNN Single-outcome model AUC=0.89,
accuracy=0.95 (95% Cl:0.95-0.96); DNN Multiple-outcome model AUC=0.89, accuracy=0.95
(95% ClI:0.95-0.96).

Sensitivity, specificity, PPV and NPV for each outcome (CD grade 0-V) are detailed in
supplementary table 10.

3.3 Model Selection and Deployment

Two RF models (transfusion and post-operative infection) selected for deployment in
the online application. The application can be visualized at:
https://endourology.shinyapps.io/PCNL Prediction tool/. Each model has a ‘Local
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Interpretable Model-Agnostic Explainer’ (‘lime’), this details and ranks by weight the
variables the model is using to predict a particular outcome [see figure 3].

4. Discussion

This is the largest machine learning study in PCNL to date, with the largest number of
predicted outcomes (n=13), although only 2 of our outcomes (need for transfusion and
post-operative infection) are well predicted in our internal validation dataset with high
accuracy, sensitivity, specificity and AUC. These two have therefore been included in the
online application for external validation. The post-operative stay and Clavien-Dindo (CD)
complication classification also had high AUCs, but were not included as they do not
accurately predict specific outcomes.

There are several limitations with this study, the main being the rarity of particular
outcomes e.g visceral injury or death. This leads to poor prediction of these particular
outcomes. There are methods of artificially increasing these outcomes (i.e duplicating
entries with particular outcome), but this often to leads to the model overestimating the
adverse outcome [22,23]. The addition of imaging data may increase the predictability of
visceral injury. Previous studies have demonstrated the use of neural networks to identify
renal tumours and their vasculature, which aids operative planning[24].

For most outcomes we demonstrate high accuracies and AUCs. These can be
misleading. For example, the visceral injury models mostly report accuracies of 99%, with a
maximum AUC of 0.77 (BGLM). This is because the models predict every participant as
having ‘no’ visceral injury (sensitivity=1.00, specificity=0.00). With rare outcomes, visceral
injury is seen in just 0.3% of patients, summary figures such as ‘accuracy’ and AUC should be
discounted in favour of sensitivity and specificity.

Stone free status was poorly predicted. This may be due to loss of data, but more
likely, due to differing methods of follow-up imaging. The gold standard of stone free status
ascertainment is with CT[25]. In the UK, patients are often followed up with ultrasound or x-
ray, which overestimate stone free status[26]. It is also unclear as to the ‘stone free’
definition. Historically, <4mm or <2mm fragments were deemed acceptable and included in
the definition of ‘stone free’. However, more recently, this has been challenged. These
residual fragments are likely to become clinically significant [27], and therefore the
definition of ‘stone free’ has been redefined to ‘no fragments’. This ambiguity about stone
free ascertainment and definition are the likely reasons behind poor prediction.

Future studies should externally validate our models for transfusion and post-
operative infection. Studies aiming to build machine learning tools for post-PCNL outcome
prediction may benefit from the inclusion of imaging data.

5. Conclusions
Machine/Deep learning can provide useful tools for prediction of particular
outcomes (transfusion/infection) to high levels of diagnostic accuracy. However, in this
study, some outcomes are poorly predicted, which suggests an incomplete dataset in some
cases, and a very rare outcome in others. Future ML studies should utilize imaging data as
well as clinical data.
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Table Legends

Table 1. Diagnostic accuracy statistics for 'Need for Transfusion'. PPV=positive predictive value, NPV=negative predictive
value, XGBoost=Extreme Gradient Boosting, NN=Neural network. Truncated model included: Stone free status, Need for
transfusion and post-operative infection.

Table 2. Diagnostic accuracy statistics for Post-operative Infection. PPV=positive predictive value, NPV=negative predictive
value, XGBoost=Extreme Gradient Boosting, NN=Neural network. Truncated model included: Stone free status, Need for
transfusion and post-operative infection.

Figures
Original dataset
12,810
Exclude those with
missing predictors
Total dataset Exclude patients with Multiple output model,
N=4418 missing outcomes N=4418*

Separate dataset into Single —

outcomes and exclude patients Training set, N=3092;

with missing outcome Test Set, N=1326
Immediate Visceral Survival Need for Post- Intra-Operative Need for Stone Free Need for Post- Clavien-Dindo
Clearance Injury N=4418 Transfusion operative Complication HDU/ITU at Follow-up Adjuvant Operative Classification
N=4418 N=4418 N=4412 Infection N=4418 N=4200 N=1106 Treatment Stay N=4418

N=4418 N=1102 N=4418
Training Training Training Training set Training Training set Training Training set Training set Training set Training set
set set set N=3088 set N=2840 set N=778 N=771 N=3092 N=3092
N=3092 N=3092 N=3092 N=3092 N=2940
Test Set Test Set Test Set Test Set Test Set Test Set

Test Set Test Set Test Set N=1324 Test Set N=1218 Test Set N=328 N=331 N=1326 N=1326
N=1326 N=1326 N=1326 N=1326 N=1260

Figure 1. Flow Diagram of patient selection. The 'N' refers to total number of patients in dataset at particular stage of flow
diagram, it does not relate to number with specific outcome. Outcomes split by 70% (training) and 30% (testing). *=Larger
N for multiple output model despite small numbers of total patients with data on ‘Stone Free’ and ‘Need for Adjuvant
Treatment’ as missing data were coded as a ‘0’ i.e ‘no’.
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Figure 2. ROC curves for each model
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Likely Need for Transfusion

Case: 1

Label: No
Probability: 0.99
Explanation Fit: 0.72
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NumberOfStones = Single

Feature

OtherStonelocation = N/IA

GradeOfMainOperatingSurgeon = Consultant
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Figure 3. Example explanatory plot using a 'lime’ explainer. Label = predicted outcome (in this case unlikely to need
transfusion), Probability=probability according to the model, Explanation fit=how the particular patient’s characteristics
compare to the model’s ideal characteristics for prediction of the outcome. Y-axis=Features ranked by weighting. X-
Axis=weighting according to model.
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ML (all Single Outcome) Deep NN
Need for Transfusion L. BayeSIafl ] ) ) Trunn.:ated
Random Logistic Neural Generalised Linear | Single Multiple | Multiple
Forests Partitioning | XGBoost | Regression | Network | Model Outcome | Outcome | Outcome
AUC 0.98 0.96 0.99 0.99 0.97 0.97 0.87 0.77 0.85
0.99 1.00 0.99 0.99 0.98
Overall accuracy (95% (0.99- 0'9f C()cc)),)gg_ (0.99- 1'05 (()%')99_ (0.98- 0.99 (0.99-1.00) (0.98- (0.97- | 0.99(0.98-0.99)
ql) 1.00) ' 1.00) ' 0.99) 0.99) 0.99)
Sensitivity 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.99
Specificity 0.97 0.89 0.97 0.92 0.80 0.84 0.96 0.96 0.97
PPV 1.00 0.99 1.00 1.00 0.99 0.99 1.00 1.00 1.00
NPV 0.98 1.00 1.00 0.97 0.99 0.98 0.75 0.54 0.70
N with outcome/Total
N (Training group) 132/3088
N with outcome/Total 63/1324

N (Test group)

Table 1. Diagnostic accuracy statistics for 'Need for Transfusion'. PPV=positive predictive value, NPV=negative predictive value, XGBoost=Extreme Gradient Boosting, NN=Neural network.
Truncated model included: Stone free status, Need for transfusion and post-operative infection
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ML (all Single Outcome) Deep NN

Post-Operative Bayesian Truncated
Infection Random Logistic Neural Generalised Linear | Single Multiple | Multiple

Forests Partitioning | XGBoost | Regression | Network | Model Outcome | Outcome | Outcome
AUC 1.00 0.97 1.00 0.98 0.98 0.97 0.92 0.90 0.90

0.98 0.98 0.98 0.96 0.92

Overall accuracy (95% | (0.97- 0'9g é%')%' (0.97- 0'9§ é%')w' (0.97- | 0095(0.94097) | (095 | (0.90- | 0.91(0.90-0.93)
cl) 0.99) ' 0.99) ' 0.98) 0.97) 0.93)
Sensitivity 0.99 0.99 0.99 0.98 0.98 0.98 0.96 0.96 0.96
Specificity 0.96 0.93 0.97 0.95 0.94 0.86 0.93 0.78 0.78
PPV 0.99 0.98 0.99 0.99 0.98 0.96 0.98 0.93 0.92
NPV 0.95 0.95 0.95 0.94 0.94 0.92 0.87 0.88 0.89
N wnth_ o.utcome/TotaI 684/3092
N (Training group)
N with outcome/Total 285/1326

N (Test group)

Table 2. Diagnostic accuracy statistics for Post-operative Infection. PPV=positive predictive value, NPV=negative predictive value, XGBoost=Extreme Gradient Boosting, NN=Neural network.
Truncated model included: Stone free status, Need for transfusion and post-operative infection
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