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Abstract  

 This study identified early immune gene responses in peripheral blood associated with 90-day 

ischemic stroke (IS) outcomes and an early gene profile that predicted 90-day outcomes. Peripheral blood 

from the CLEAR trial IS patients was compared to vascular risk factor matched controls. Whole-

transcriptome analyses identified genes and networks associated with 90-day IS outcome (NIHSS-NIH 

Stroke Scale, mRS-modified Rankin Scale). The expression of 467, 526, and 571 genes measured at ≤3, 5 

and 24 hours after IS, respectively, were associated with poor 90-day mRS outcome (mRS=3-6), while 

49, 100 and 35 associated with good mRS 90-day outcome (mRS=0-2). Poor outcomes were associated 

with up-regulated MMP9, S100A12, interleukin-related and STAT3 pathways. Weighted Gene Co-

Expression Network Analysis (WGCNA) revealed modules significantly associated with 90-day outcome. 

Poor outcome modules were enriched in down-regulated T cell and monocyte-specific genes plus up-

regulated neutrophil genes and good outcome modules were associated with erythroblasts and 

megakaryocytes. Using the difference in gene expression between 3 and 24 hours, 10 genes correctly 

predicted 100% of patients with Good 90-day mRS outcome and 67% with Poor mRS outcome 

(AUC=0.88) in a validation set. The predictors included AVPR1A, which mediates platelet aggregation, 

release of coagulation factors and exacerbates the brain inflammatory response; and KCNK1 (TWIK-1), a 

member of a two-pore potassium channel family, which like other potassium channels likely modulates 

stroke outcomes. This study suggests the immune response after stroke impacts long-term functional 

outcomes. Furthermore, early post-stroke gene expression may predict stroke outcomes and outcome-

associated genes could be targets for improving outcomes.  
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Introduction 

 Changes in gene expression after ischemic stroke (IS) can potentially be used as biomarkers for 

causes of IS and predicting IS outcome [1–3]. Finding genes associated with long-term recovery after IS 

will improve our understanding of the pathways involved in recovery mechanisms, and may guide the 

search for treatment targets and early predictors of IS outcome [2,4–8]. 

Genetic risk factors have been associated with IS outcome [9], including PTGIS, TBXAS1, IL6, 

BDNF, CYPC19, GPIIIa, P2RY1, ITGB3, PATJ, ADAM23, GRIA1, PARK2, ABCB5 and various 

cytochrome P450 genes [10–13]. Moreover, several clinical variables have been associated with long-

term IS outcome including blood pressure [14], glucose levels/diabetes [15,16], atrial fibrillation [17], and 

hyperlipidemia [18] in addition to age [19] and sex [11]. Other variables shown to be associated with 

outcome include stroke severity [20], type of treatment [21], severe complications [22] and stroke 

etiology [23].  

Predicting functional outcome in stroke is challenging partly because of the complexity of the 

condition and lack of validated prognostic models. Clinical and demographic variables only explain a 

portion of the variance in long-term IS outcome. Thus, it is important to identify additional biomarkers to 

explain the remaining long-term outcome variance and to design accurate predictive models. Thus, we 

have studied the peripheral blood transcriptome of patients after IS to discover genes and pathways that 

associate with 90-day outcome and use them to develop a molecularly based, pilot machine learning 

model to predict long-term functional outcome after IS.  

 
Materials and Methods 

Study Subjects 



Peripheral blood was drawn from IS patients at ≤3, 5, and 24 hours (n=36 subjects, 108 samples) 

as part of the Combined Approach to Lysis Utilizing Eptifibatide and Recombinant Tissue-Type 

Plasminogen Activator (CLEAR) trial (NCT00250991 at www.Clinical-Trials.gov) [24]. IS subjects were 

treated with recombinant tissue plasminogen activator (rt-PA) with or without eptifibatide after the within 

3h blood sample was obtained. After treatment, blood samples were drawn at 5 hours and 24 hours post-

stroke onset. Control subjects included Vascular Risk Factor Control (VRFC) subjects with at least one 

cardiovascular risk factor (hypertension, diabetes mellitus, hyperlipidemia) recruited from the Sex Age 

and Variation in Vascular functionalitY (SAVVY, Cheryl Bushnell PI) study (NCT00681681) (n=18) 

[25]. The IRB at each site approved the study, and each patient or a proxy provided informed consent.   

 

Sample Processing and Data Analysis 

Whole blood was collected into PAXgene tubes (PreAnalytiX) and RNA processed as previously 

described [4]. Each RNA sample was processed and hybridized on Affymetrix Human U133 Plus 2.0 

GeneChips (Affymetrix, Santa Clara, CA). Differences in demographic data between groups were 

analyzed using a two-tailed t-test and χ2 analysis where appropriate with P <0.05 considered significant. 

Raw probe-level gene expression values imported into Partek Genomics Suite software (Partek Inc, St 

Louis, MO) were summarized to probe set-level using Median Polish summarization, and normalized 

using robust multichip averaging (RMA) and our internal-gene normalization approach [4,26]. 

 The gene expression at ≤3h, 5h, and 24h was associated with 90-day mRS outcome (modified 

Rankin Score, categorical variable), and the NIHSS (NIH Stroke Scale, continuous variable). The mRS, 

subjects with 90-day mRS scores of 0, 1, and 2 were binned into a Good Outcome group (n=26 subjects, 

78 samples), and subjects with 90-day mRS of 3, 4, and 5 into a Poor Outcome group (n=10 subjects, 30 

samples). This mRS variable is referred to as Binned mRS hereafter. No subject had the maximum 

mRS=6 (deceased) at 90 days in this dataset.  



Gene Expression associated with 90-day Binned mRS: An ANCOVA identified genes whose 

expression significantly associated with 90-day Good and Poor Outcomes (Binned mRS) at each time 

point (≤3h, 5h, and 24h) after IS compared to VRFC. The ANCOVA model for each time-point was Yi = 

μ + Diagnosis (Poor Outcome, Good Outcome, VRFC) + Hypercholesterolemia + Hypertension + 

Diabetes + Age + Sex + εi, where Yi is gene expression at ≤ 3h, 5h or 24h, μ is the common effect for the 

whole experiment, and εi is the random error. Age was a continuous variable, and Sex and vascular risk 

factors (Hypercholesterolemia, Hypertension and Diabetes) were considered as binary variables (Yes or 

No). A false discovery rate (FDR) corrected P < 0.05 and a fold change (FC) >∣2∣ were considered 

significant. We used a cut-off of (FC) >∣1.3∣ and P < 0.05 when comparing IS patients with Poor 90-day 

mRS outcome vs. IS patients with Good mRS outcome. 

 Gene Expression Associated with 90-day NIHSS: Separate analyses identified genes significantly 

correlated with 90-day NIHSS outcome using gene expression at ≤3h, 5h and 24h. P <0.005 was 

considered significant. The ANCOVA model for each time-point was Yi = μ + baseline NIHSS + 

24hNIHSS + 5dNIHSS + 90dNIHSS + Hypercholesterolemia + Hypertension + Diabetes + Group + Age 

+ Sex + εi. Group was either tPA or combined treatment of tPA and eptifibatide. Baseline NIHSS is 

NIHSS at first draw (within 3h of stroke onset); 24hNIHSS, 5dNIHSS and 90dNIHSS are the NIHSS at 

24h, 5 days and 90 days, respectively. 

 

Weighted Gene Co-Expression Network Construction and Analysis 

Networks were generated using the Weighted Gene Co-Expression Network Analysis (WGCNA) 

package [27]. Separate weighted gene co-expression networks were generated for ≤3, 5, and 24h gene 

expression following the methods in our recent studies [28]. The details of the analysis for this study are 

provided in the Supplementary Methods (WGCNA-1).  

 

Identifying IS Outcome-Associated Modules 



Module-outcome associations for Good and Poor outcomes were determined using ANCOVA 

models in Partek Genomics Suite using the module’s eigengene values. The details of these methods are 

provided in Supplementary Methods (WGCNA-2).   

 

Network Visualization and Hub Gene Identification 

The visantPrepOverall R function within WGCNA generated a list of intramodular gene 

connections with parameters numint=10,000 and signed=TRUE [29,30]. These connections were then 

imported into Cytoscape for network visualization [31,32]. Nodes represent genes within the module and 

edges the connections between genes. Minimum weight cut-off for edges was adjusted for each network 

to generate a figure with a visually distinguishable number of nodes and connections.  

 

Cell-Specific Gene Involvement 

To identify enrichment in blood cell type-specific genes, differentially expressed gene lists and 

module gene lists were overlapped with lists of blood cell type-specific genes [33,34]. The significance of 

list overlaps was assessed using hypergeometric probability testing (R function phyper; P < 0.05 

considered significant). 

 

Pathway and Gene Ontology Analyses 

Ingenuity Pathway Analysis (IPA®, QIAGEN) was performed on all probe set lists as previously 

described [35] with P < 0.05 being considered significant.  Details of the Pathway and Gene Ontology 

Analyses are provided in the Supplementary Methods (Pathway Analyses).  

 

Predicting 90-day Outcome from Changes in Gene Expression from ≤3h to 24h after IS 

To identify early genes to predict long-term IS outcome, we engineered a new variable for each 

probe set by calculating the change in gene expression between 24h and 3h post IS. Subjects were divided 



into a training set (n=25) and a validation set (n=11). Because of the small sample size, we undertook a 

two-prong approach. First, genes were excluded which upon 1-way ANOVAs were significant for Age, 

Sex, Hypertension, Diabetes, Hyperlipidemia, and/or Treatment Group. After excluding probe sets 

significant at P<0.05 for any of these variables, ANOVA was performed (Y = μ + 24hNIHSS + 

Binned_mRS + ε) on the remaining 30,565 probe sets. Probe sets with P<0.005 for Poor vs. Good mRS 

outcome were considered significant. Second, we overlapped the findings from the training set of 25 

subjects with the ones from the entire set of 36 and found 10 overlapping probe sets. The 10 probe sets 

(features) were input into logistic regression and support vector machines (SVM) models with parameters 

varied as implemented in the scikit-learn package [36]. The classifier was generated from the training set 

and the best predictive model was deployed on the validation set. The validation set was used to evaluate 

the performance of the predictors by calculating the sensitivity, specificity, and Receiver Operating 

Characteristic (ROC) Area Under the Curve (AUC). 

 

Results 

Subject Demographics 

There were no statistically significant differences in age, sex, race, and vascular risk factors 

between IS subjects and vascular risk factor controls (VRFC) (P<0.05, Table 1). The median NIHSS was 

10.5, 7.5, 6, 4, and 2 for ≤ 3h, 5h, 24h, 5 days and 90 days post IS. The median mRS at 90d was 2 (Q1=1, 

Q3=3, range: (0-5)). 26 subjects had good 90-day mRS outcome (0-2), and 10 had Poor 90-day outcome 

(3-5). No subject had a 90-day mRS of 6 (deceased). Of two subjects with symptomatic hemorrhagic 

infarction at 24h by CT brain scan, one had a good outcome and one bad.  

 
Association of Gene Expression ≤3h of Stroke with 90-day mRS IS Outcome  
 

3h-Gene Expression Associated with Poor 90-day Functional Outcome (mRS) 



 Six hundred forty-four probe sets (representing 467 genes) were differentially expressed at ≤3h in 

subjects with poor 90-day outcome compared to VRFC (FDR-corrected P<0.05, fold change (FC)> |2|) 

(Figure 1a). Of these, 409 probe sets were upregulated and 235 down-regulated (Figure 1a, Table S1A). 

The 644 probe sets were overrepresented in 47 pathways. Top activated pathways included p38 MAPK, 

IL-6, IL-1 and STAT3. LXR/RXR was suppressed (Figure 2a, Table S2A). Top over-represented GO 

terms included B cell receptor signaling, phagocytosis, and immunoglobulin receptor binding, including 

Immunoglobin Heavy Constant genes such as IGHG1, IGHG3, IGHA1, IGHA2, IGHD, IGHM, and 

IGHV3-23 (FDR < 0.05) (Table S3A). There was a significant enrichment with neutrophil-specific genes 

(63/467 genes (13.5%), P(overlap)�<�1E-16) and T cell-specific genes (12/467 genes (2.6%), 

P(overlap)�=�0.007) (Figure 3a). Most neutrophil-specific genes (60/63) were up-regulated and T cell-

specific genes down-regulated in subjects with poor 90-day outcomes.   

 

3h-Gene Expression Associated with Good 90-day Functional Outcomes (mRS) 

Eighty probe sets (representing 49 genes) were differentially expressed at ≤ 3h post IS in subjects 

with good outcome compared to VRFC (FDR-corrected P<0.05, FC> |2|) (Figure 1a, Table S1A). Of 

these, 20 probe sets were up-regulated and 60 down-regulated (Figure 1a, Table S1A). The 80 probe sets 

were overrepresented in 12 pathways (Figure 2a, Table S2A) with significant enrichment in Erythroblast-

specific genes (3/49 genes (6.1%), P(overlap)�=�0.03) (Figure 3a).   

 

Differential Expression ≤ 3h Post IS for Poor vs. Good 90-day Functional Outcome (mRS) 

The data from these analyses is described in Supplementary Results (Poor vs. Good – 3h) and in 

Figures 1b, 3a, 4, and Tables S1A, S2A.  

 

≤3h Gene Expression Correlated with 90-day Outcome (NIHSS) 



 Six hundred seventy-one probe sets (538 genes) at <3h after IS were associated with 90d NIHSS 

(P<0.005). 469 probe sets negatively correlated and 202 positively correlated with 90d NIHSS (Figure 1c, 

Table S1A). The 671 probe sets were over-represented in 34 pathways (Figure S1, Table S2A) with 

significant enrichment with T helper cell-specific, T cell and T cell receptor signaling-specific genes 

(5/538 genes (0.9%), P(overlap)�= 1E-04; 21/538 (3.9%), P(overlap) = 8E-07; and 13/538 (2.4%), 

P(overlap) = 2E-03, respectively) (Figure 3A). All T cell receptor genes except OSBPL10 negatively 

correlated with 90d NIHSS.  

 

Association of Gene Expression at 5h after IS with 90-day Stroke Outcome (mRS) 

 

5h-Gene Expression Associated with Poor 90-day Functional Outcome (mRS) 

 Seven hundred fifteen probe sets (526 genes) were differentially expressed at 5h in subjects with 

poor outcome compared to VRFC (FDR-corrected P<0.05, FC> |2| (Figure 1a). Of these, 431 probe sets 

were upregulated and 284 down-regulated (Figure 1a, Table S1B). The 715 probe sets were 

overrepresented in 106 pathways (Table S2B). Activated pathways included iNOS, Toll-like Receptor, 

IL-1, -6 and -7, NF-kB and STAT3 signaling; and regulation of IL-2 Expression was suppressed (Figure 

2b, Table S2). There was enrichment in neutrophil-specific genes (76/526 genes (14.5%), P(overlap)�< 

1E-16); in T helper cell and T cell receptor signaling-specific genes (5/526 genes (1.0%), P(overlap)=1E-

04 and 14/526 genes (2.7%), P(overlap)=5E-04, respectively); and in B cell-specific genes (15/526 genes 

(2.9%), P(overlap)=6E-04) (Figure 3a). Most neutrophil-specific genes were up-regulated (74/76), while 

T cell- (14/19) and B cell-specific genes (14/15) were down-regulated in poor outcome subjects.   

 

5h-Gene Expression Associated with Good 90-day Functional Outcomes (mRS) 

 One hundred forty-six probe sets (100 genes) were differentially expressed at 5h after IS between 

good outcome and VRFC subjects (FDR-corrected P<0.05, FC > |2| (Figure 1a). Of these, 29 probe sets 



were up-regulated and 117 down-regulated (Figure 1a, Table S1B). The 146 probe sets were 

overrepresented in 9 pathways (Figure 2b, Table S2B), such as NRF2- Oxidative Stress Response and 

RhoGDI Signaling with significant enrichment in Erythroblast-specific genes (7/100 genes (7.0%), 

P(overlap)=7E-04) and Megakaryocyte-specific genes (4/100 (4.0%), P(overlap)=4E-02) (Figure 3a).  

 

Expression at 5h Post IS for Poor vs. Good 90-day Functional Outcome (mRS) 

 The data from these analyses is described in Supplementary Results (Poor vs. Good – 5h) and in 

Figures 1b, 3a, 4, and Tables S1B, S2B.  

 

5h Gene Expression Correlated with 90-day Outcome (NIHSS) 

Two hundred fifty-six probe sets (197 genes) at 5h after IS correlated with 90-day NIHSS 

(P<0.005). Of these 205 probe sets were negatively correlated and 51 were positively correlated (Figure 

1c, Table S1B). The 256 probe sets were over-represented in 24 pathways with two suppressed pathways 

including Autophagy, and Regulation of IL-2 Expression in T Lymphocytes (Figure S1, Table S2B). 

There was a significant enrichment in T helper-specific and T cell-specific genes (3/197 genes (1.5%), 

P(overlap)=8E-04 and 11/197 (5.6%), P(overlap)=2E-05), respectively (Figure 3a).  T cell pathways 

negatively correlated with the 90-day NIHSS.  

 

Association of Gene Expression at 24h after IS with 90-day Stroke Outcome  

 The data for these analyses is provided in Supplementary Results (24h Correlation with 90-day 

mRS and NIHSS) and in Figures 1a, 1b, 1c, 2c, 3a, 4, S1 and Tables S1C-S2C.    

 
Weighted Gene Co-Expression Network Analysis Revealed Specific Gene Expression Modules 

Associated with Poor and Good 90-Day Outcomes Following IS  

WGCNA was run on 28,686 Affymetrix probe sets for 36 IS subjects, with separate WGCNA runs 

generated for each time-point (≤3h, 5h, and 24h). Modules significantly associated with IS outcome such 



as 3hPurple, 3hRoyalBlue, 5hCyan, 24hYellow and 24hGreenYellow, and the canonical pathways 

significantly enriched in each module are presented in Figures 3b, 5a, 5b, S2, 6a, and 6b. Table 2 lists the 

hub genes for each of the modules and each of the time points.  

 

Co-Expressed Gene Modules at ≤3h after IS Associated with 90-Day Outcome 

Twenty-eight co-expressed probe set modules were identified for the ≤ 3h network (data not 

shown). Eight modules associated with 90-day Good and Poor outcomes (mRS) and/or 90-day NIHSS 

(Figure 3b). Six negatively correlated with 90-day outcome, including 3hRoyalBlue (Figure 3b and Figure 

5b), 3hMidnightBlue and 3hDarkGrey which were significant for 90d mRS and 90d NIHSS; 3hPink for 

90d mRS; and 3hGreen for 90d NIHSS (Figure 3b). The other two outcome-significant modules, 

3hPurple (Figure 3b, Figure 5a) and 3hOrange, positively correlated with 90d mRS. Pathway analyses for 

each outcome-significant module are presented in Tables S4A. Most outcome-significant modules and/or 

their hubs (Table 2) were enriched in Neutrophil-, Monocyte-, T cell-, and/or NK cell-specific genes 

(Figure 3b). Neutrophil genes were enriched in positive-beta modules and/or hubs, while most T cell-

genes and/or their hubs were enriched in negative-beta modules (Figure 3b).  

The pathways over-represented in the T-cell receptor and other T-cell-specific hub genes at≤ 3h 

included T-cell pathways, calcium-induced T lymphocyte apoptosis, VEGF, NGF, neurotrophin/TRK and 

GDNF Signaling (Table S5A). Neutrophil-specific hub genes (3hPurple module) were enriched in 39 

significant pathways such as IL-2, -6 and -7, and JAK/STAT Signaling (Table S5A). About half of the 

pathways (19/39) over-represented in neutrophil-specific hubs were also over-represented in the 108 

pathways for T-cell specific hubs. However, the T-cell- and Neutrophil-specific hubs correlated in 

opposite directions with 90-day outcome (Figure 3b).  

Figure 5a shows a 3h module enriched with neutrophil-specific genes (3hPurple) and Figure 5b for 

a 3h module enriched with T-cell specific genes (3hRoyalBlue) and their top over-represented pathways 

(right side of the figure). The 3hPurple module (TableS4A) for good vs. poor 90d mRS outcomes showed 



suppression of the PPARα/RXRα pathway which regulates NF-kB signaling. For the 3hRoyalBlue 

module T Cell Receptor pathways, IL-2 Regulation in T Lymphocytes, PKCθ Signaling in T 

Lymphocytes, and NFAT Regulation of Immune Responses were suppressed in Poor vs. Good outcome 

(Figure 5b, Table S4A). 

 

Co-Expressed Gene Modules at 5h After IS Associated with 90-day Outcome 

Thirty-two modules of co-expressed probe sets were identified within the 5h network (data not 

shown). Eight modules were associated with 90d Binned mRS and/or NIHSS (Figure 3b). Significant 

modules and/or their hubs were enriched in Neutrophil-, T cell-, NK cell-, and/or B cell-specific genes 

(Figure 3b). Notably, the four modules and their hubs enriched in neutrophil-specific genes 

(5hLightYellow, 5hCyan, 5hLightCyan, and 5hDarkRed) were positively associated with Poor vs. Good 

90-day outcome (Figure 3b). The 5hCyan module, enriched in Neutrophil cell-specific genes and hub 

genes (Figure S2), was associated with 97 pathways (Figure S2 Right panel – top 20 relevant pathways, 

Table S4B). Among the top pathways were iNOS, B Cell Receptor, IL-7, ERK5 and FLT3 Signaling 

(Figure S2 Right panel). Also, the 5hLightGreen and 5hGreenYellow modules were enriched in T cell-

specific genes that negatively correlated with 90d NIHSS had many associated pathways (Figure 3b, 

Table S4B). Pathway analysis of T cell specific hub genes showed 23 significant pathways including Th1, 

Th2, T Helper Cell Differentiation, and T Cell Exhaustion Signaling (Table S5B). Hub genes from 

modules positively correlated with 90-d mRS outcomes were enriched in neutrophil-specific genes 

(Figure 3b) with pathways including PI3K/AKT, JAK1, JAK2 and TYK2 in Interferon Signaling, STAT3, 

apoptosis and chemokine signaling (Table S5B). Inflammatory response disease functions including 

leukocyte migration at 5h were activated in Poor vs. Good outcome (data not shown). Ten hub genes 

including ALOX5AP, DYSF, IFNAR1, IL17RA, MCL1, MYO1F, PELI1, PTAFR, RAF1, and RNASEL 

were involved in the inflammatory response.  

 



Co-Expressed Gene Modules at 24h After IS Associated with 90-day Outcome 

Twenty-nine modules of co-expressed probe sets were identified in the 24h network (data not 

shown). Four were associated with 90d Binned mRS and/or NIHSS (Figure 3b). The significant modules 

and/or their hubs were enriched in Neutrophil-, Monocyte-, T cell-, NK cell and/or Megakaryocyte-

specific genes (Figure 3b) and pathways (Table S4C). T cell-specific hub genes had 99 significant 

pathways including T Cell, Fc Epsilon RI, GP6, and ErbB4 signaling (Table S5C). The 24hYellow 

module was positively associated with 90-day mRS and was significantly enriched in neutrophil-specific 

genes (Figure 3b) and pathways (Table S4C). Pathway analysis of the Neutrophils-specific hub genes 

showed 76 significant pathways (Table S5C). The genes from 24hPink, 24hYellow and Hubs from 

24hYellow were enriched in monocyte-specific genes. Monocyte specific hub genes showed 31 

significant pathways including LPS/IL-1 Mediated Inhibition of RXR Function, IL-10, Macropinocytosis, 

HIF1α and mTOR signaling (Table S5C). The 24hYellow module is shown in Figure 6a along with 20 of 

its 88 significant pathways (Table S4C). Among the top relevant pathways, STAT3, Th1, FGF, ErbB4 

and NF-κB Signaling were activated. The 24hGreenYellow module is shown in Figure 6b along with the 

top 20 of its 53 significant pathways (Table S4C).  

 

Predicting 90d Outcome from Changes in Gene Expression between 3h and 24h after IS  

Since changes in gene expression over time may be more predictive of long-term outcome than 

gene expression at a single time point, we calculated the difference in gene expression between 24h and 

3h (Δ(24h-3h)) post-IS. We derived ten genes (Table S6) that predicted 100% of good (n=18/18) and poor 

outcomes (n=7/7) in the training set. They also predicted 8/8 good 90-day mRS outcomes and 2/3 poor 

outcomes in the validation set (n=11; ROC-AUC= 0.88) (Figure 7). Thus, the 10 genes predicted 26/26 

good outcomes and 9/10 poor outcomes overall.  

Discussion 



 Expression of genes and gene co-expression modules in peripheral blood at early times after IS 

correlates with 90d outcomes. Upregulation of genes in neutrophils and down-regulation in monocytes, T 

cells and B cells may play a role in mediating damage and repair following stroke and ultimately affect 

long-term outcomes [37–39]. The findings expand our understanding of the transcriptomic changes in 

immune and clotting systems associated with outcome following human ischemic stroke. The identified 

genes may be novel targets for modulating outcome, and a subset of genes may predict outcome.  

 

Early Up-Regulated Immune/Inflammatory Genes/Pathways and Neutrophil-Specific Genes 

Associate with Poor 90-day Outcome 

 Inflammation plays a critical role in damage and repair following stroke [40]. Specific 

inflammatory blood markers correlate with outcomes after stroke [41], including pro-inflammatory 

cytokines like IL-1, IL-6, TNF, as well as anti-inflammatory cytokines like TGF and IL-10 [40–42]. 

Increases in matrix metalloproteinases (MMPs) including MMP-9 derived mainly from neutrophils are 

reported to cause BBB (blood-brain-barrier) damage [43,44] and hemorrhagic complications [45–48]. 

MMP-9 levels correlate with infarct volume, stroke severity, and functional outcomes [46,48]. In our 

study, MMP9 expression (≤3h) was up-regulated 2.4 fold in subjects with poor 90d outcomes, which is 

consistent with other studies showing blood MMP-9 levels correlate with poor 90d IS outcomes [49,50].  

S100A12 mRNA, which is highly expressed by neutrophils, was up-regulated in this study at 3h in 

peripheral blood of subjects with poor 90d IS outcome (FC=2.1). Elevated S100A12 plasma levels at 

admission following IS have previously been associated with poor mRS outcome at 90-days [51]. In 

addition, S100A12 serum levels increase after traumatic brain injury (TBI) and intracerebral hemorrhage 

(ICH) [52,53]. 

The STAT3 pathway was up-regulated at all three time-points, and several interleukin (IL)-related 

pathways (including IL-6 at 3h and 5h) were activated in subjects with poor IS outcomes. STAT3 

promotes inflammatory responses [54] and IL-6 promotes phosphorylation of JAK2/STAT3 [55]. Serum 



IL-6 levels have previously been associated with poor long term IS outcomes [56,57]. p38 MAPK, also 

significantly activated in subjects with poor 90-day IS outcome, modulates proinflammatory cytokines 

(IL-1β, TNF-α and IL-6) [58] and has been proposed as a therapeutic IS target [59]. 

 SMAD4 was up-regulated in IS subjects with poor 90d outcome at all three time points.   

SMAD4 has been implicated in inflammation and hypercoagulation in ischemic stroke [60], has been 

associated with BBB disruption [61] and in our previous study was up-regulated in IS subjects who later 

developed hemorrhagic transformation [60]. We have previously observed higher expression of SMAD4 

after IS, and particularly higher in individuals with the GG allele of rs975903 [62]. This could relate in 

part to post-translational regulation of SMAD proteins in response to TGF-β signaling [63]. 

Specific cytokine/chemokines such as SPRED2, OSM and IL1A (at all three time points), and 

CXCL6 (at 3h post IS) were up-regulated in subjects with poor outcome, while FLT3LG and CCR7 (at all 

three time points) were down-regulated. SPRED proteins modulate angiogenesis, vascular repair [64] and 

autophagy [65]. Thrombin aggravates astrocyte injury following IS by SPRED2 activation of autophagy 

pathways [65]. OSM (oncostatin M), an IL-6 cytokine family member, modulates inflammatory responses 

[66] and experimental stroke outcomes [66–68]. CXCL6 (C-X-C motif Chemokine Ligand 6), a 

chemoattractant for neutrophils and other granulocytes, is elevated following experimental ischemia-

reperfusion injury [69]. FLT3LG (aka FLT-3L), down-regulated in 90d poor outcomes in our study, 

promotes differentiation of multiple hematopoietic cell lineages [70]. Low FLT3LF serum levels within 

72 hours of stroke onset has been observed in severe stroke [70]. CCR7 (C-C motif Chemokine Receptor 

7), also down-regulated in poor outcomes, activates B and T lymphocytes and regulates T cell migration 

to sites of inflammation and stimulates dendritic cell maturation [71,72].  

Space precludes discussing most of the neutrophil genes also identified in the comparisons of poor 

vs. good outcomes, the WGCNA modules, and the hub genes associated with neutrophils. Overall, our 

findings in peripheral blood support the notion of complex effects of cytokines/chemokines on stroke 

pathophysiology and outcome. The early IS transcriptomic response in peripheral blood suggested a 



strong neutrophil response and activated inflammatory pathways associated with poor long-term outcome. 

However, inflammation has been shown to have detrimental as well as beneficial roles following IS that 

are highly time-dependent [73].   

Down-Regulation of Lymphocyte-Specific Genes Associated with Poor 90-day Outcome 

 Lymphocytes modulate ischemic stroke in a time-dependent manner [73], and the peripheral 

transcriptome responses of lymphocytes to ischemic stroke is fairly unique compared to other conditions 

[74]. In this study, we show enrichment in lymphocyte-specific genes for T cells, B cells and Natural 

Killer (NK) cells in the per-gene and WGCNA analyses. Most of these genes were down-regulated in 

poor 90-day outcome subjects.  

 Several over-represented T cell pathways were found in the outcome-significant WGCNA 

modules. Those included PKCθ Signaling in T Lymphocytes, CD28 Signaling in T Helper Cells, iCOS-

iCOSL Signaling in T Helper Cells, Calcium-Induced T Lymphocyte Apoptosis, and the Th1 Pathway. T 

cell-specific hub genes in the modules included Cluster of Differentiation (CD2, CD3E, CD5, and CD6), 

LAT, STAT3, STAT4, ZAP70, GZMM, PLEKHF1, PRKCH, TGFBR3, YME1L1, SPTAN1, DOK2, 

UBASH3A, and SKAP1. Several of these genes have been implicated in stroke. For example, SKAP1 (Src 

kinase associated phosphoprotein 1) interacts with Src Family Kinases (SFKs) and stimulates T cell 

antigen receptors to activate integrins [75,76]. The T cell-specific hub genes from the 3h WGCNA 

modules were enriched in pathways such as T Cell-Receptor Signaling and were predicted to be 

suppressed in subjects with poor 90-day outcomes. The T cell-specific hub genes included genes 

associated with stroke and ones important for repair after stroke (e.g., AQP3, CD40LG, CD28, CAMK4, 

DNMT3A, EVL, KCNA3, LCK, MAL, PDE4D, SPTAN1, ARHGEF7, CBL, PLCG1, PRKCB, STAT1, 

STAT3, STAT5B) [77]. LCK whose expression at 3h significantly associated with poor 90d mRS and 

NIHSS, is a member of SFK gene family expressed in T cells [33] and modulates outcomes in 

experimental ischemic stroke [78]. The cytokine CD40LG (CD40 ligand), also down-regulated in poor 



outcomes, is a target of the FDA-approved drug Letolizumab (PubChem BMS-986004). Our results could 

indicate that up-regulation of T cells and their genes might modulate long-term outcomes.  

 A brief discussion of the B cell and NK cell results is provided in the Supplementary Discussion 

(B cells and NK cells). Our data imply that down-regulation of lymphocyte-specific genes was associated 

within poor 90-day outcome. However, this is complicated by the fact that various studies have shown 

decreases of lymphocytes in blood of humans following stroke, thus partly accounting for decreases in 

expression. Moreover, since we investigated the changes in the transcriptome in whole blood, we can only 

infer cell-type specificity from known cell-specific gene expression and cannot decipher the entire 

transcriptomes of the specific lymphocyte cell types. Thus, additional studies of isolated peripheral blood 

cell types are needed to further refine the contribution of each cell type to the post-stroke response and its 

association with outcome. 

 

Coagulation, Platelet, and Cardiovascular Pathways Associated with Outcome IS 

 Coagulation and platelet activation are involved in causing IS and may play a role in long-term 

outcomes [79,80]. In our study poor 90d outcomes were associated with enrichment of Thrombin 

pathways at 5h and 24h, Thrombopoietin Signaling at 5h and the Intrinsic Prothrombin Activation 

Pathway at 24h after stroke. Thrombopoietin (TPO), protective in experimental focal stroke [81], 

stimulates the production and differentiation of megakaryocytes and regulates platelet formation. In 

addition, several coagulation factors such as Factor 5 (F5, coagulation factor V; causative gene in Factor 

V Leiden thrombophilia), F8 and F12, which are part of the Intrinsic Prothrombin Activation Pathway, 

were up-regulated at 24h in IS subjects with poor 90d outcomes. These findings support suggestions 

coagulation and fibrinolysis biomarkers are predictive of thrombolysis treatment outcome after IS [82]. 

Though our results provide evidence that early activation of peripheral coagulation pathways associate 

with long-term outcome, it is unclear whether this relates only to early fibrinolysis or to other effects on 



brain repair during recovery. Thus, further studies into their potential usefulness as treatment targets are 

warranted. 

 Cardiovascular function pathways activated at 5h post stroke that correlated with 90d outcomes 

included Adrenomedullin signaling pathway, Renin-Angiotensin Signaling and HIF1α Signaling. Plasma 

Adrenomedullin levels increase following IS and are an independent predictor of 3-month IS outcomes 

[83,84]. HIF1α Signaling, also activated at 5h in poor mRS outcome, regulates most hypoxia responsive 

genes [85]. HIF1α serum levels correlate with worse IS outcomes [86]. Renin-Angiotensin Signaling, 

modulated at 3h, 5h and 24h, was associated with 90d poor outcome subjects. Renin-angiotensin (RAS) 

contributes to increased arterial pressure and has been associated with local cerebrovascular dysfunction 

[87]. In ischemic stroke there may be an imbalance in the two opposing axes of RAS – a ‘classical axis’ 

and ‘alternative axis’ mediated by Angiotensin II and Angiotensin-(1–7), respectively [88]. Modulating 

RAS influences experimental stroke outcomes [89]. Thus, our human data suggest early changes of 

coagulation and cardiovascular function pathways are associated with poor long-term outcomes, and thus 

may be therapeutic targets. 

 

Growth Factor Signaling  

Several growth factor signaling pathways were enriched in subjects with poor mRS outcomes, 

including Erythropoietin, Fibroblast Growth Factor (FGF), Transforming growth factor-β (TGF-β), 

Growth Hormone, Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF), Hepatic Growth 

Factor (HGF), VEGF and VEGF Family Ligand-Receptor signaling. Several studies have found levels of 

certain growth factors correlate with good outcomes after IS [90–92]. However, growth factors can have 

pleiotropic and sometimes opposing effects [93,94]. For example, higher VEGF levels exacerbated 

hemorrhage after experimental brain arteriovenous malformations [94] and can worsen edema in 

experimental IS [95]. Another study showed high blood levels of FGF23 increased the risk for 

cardiovascular disease and stroke [93]. We previously found several growth factor signaling pathways 



associated with larger ICH volumes and peri-hematomal edema volumes [28]. Further studies are needed 

to better understand the association between early changes in growth factor signaling and long-term 

outcome. 

 

Module Hubs 

Hubs, the most inter-connected genes in each co-expression module defined in WGCNA, are 

potential master regulators of gene expression. Five outcome-significant modules are highlighted in 

Figures 5, 6 and S2: two modules being enriched with T-cell specific genes and three with neutrophil-

specific genes.  

Hub genes in neutrophil modules included AGO4 (Argonaute RISC Component 4) and PTEN 

(Phosphatase And Tensin Homolog). These have been implicated in immune-related pathways and brain 

injury [96–98]. The Argonaute RISC Component family responds to hypoxia [96] which can contribute to 

poor functional outcome [97]. PTEN protects against cerebral ischemia [98]. Another neutrophil hub 

gene, PELI2, which contributes to microglial activation following subarachnoid hemorrhage [99], could 

have a similar role in IS. MEGF9, a neutrophil-specific hub gene, could also impact IS outcome [100]. 

PPP1R3B, also a neutrophil-specific hub gene, has polymorphisms associated with serum LDL-C levels 

that contribute to coronary artery and IS disease risk [101]. 

T cell-specific hub genes included ZAP70, LAT, SKAP1, PLCG1, and CD3E. LAT protein is 

phosphorylated by ZAP70/Syk protein tyrosine kinases following activation of the T-cell antigen receptor 

(TCR) transduction pathway [102]. ZAP70 is differentially expressed at 3h and 24h in poor outcome 

subjects, and is up-regulated in ICH patients [103]. PLCG2 is expressed in human and mouse brain 

microglia. PLC enzymes like PLCG1 are key elements in signal transduction networks, with the PLCG2 

P522R variant being protective against AD [104]. SKAP1 encodes a T cell adapter protein that promotes 

adhesion and degranulation, which stimulates T cell antigen receptors to activate integrins. Given the 



large number of hub genes identified across multiple cell types, however, there is a need to develop 

approaches for determining which might be the best treatment targets.  

 

Predicting 90-day Outcome from Gene Expression Following IS 

Though a previous study showed that gene expression surrogates could predict improvement in 

NIHSS from admission to discharge [5], this is the first study to use early gene expression to predict 90d 

mRS and NIHSS. We engineered a new feature of change of expression between 24h and 3h to predict 

90d outcomes. We identified 10 genes which predicted 18/18 good outcome and 7/7 poor 90d outcomes 

in a training set, and 8/8 good outcome and 2/3 poor 90d mRS outcomes in a validation set. Among the 10 

predictors were AVPR1A (arginine vasopressin receptor 1A), a receptor for arginine vasopressin (AVP), 

which mediates platelet aggregation and release of coagulation factors, exacerbates brain inflammatory 

responses to injury and promotes BBB disruption and increases cerebral edema in brain injury. AVPR1A 

increases in injured brain, plasma and cerebrospinal fluid in IS, ICH, subarachnoid hemorrhage and TBI 

patients [105]. A SNP in another gene in the 10-gene predictor set, MSRB3, is associated with increased 

odds of stroke in Alzheimer’s Disease [106]. Another predictor was APCDD1, a Wnt/β-catenin Signaling 

inhibitor, which coordinates vascular remodeling and barrier maturation of retina blood vessels [107]. 

Another gene was HIPK2, which is a serine/threonine-protein kinase involved in the hypoxia response as 

a transcriptional co-suppressor of HIF1A [108]. Silencing the circular RNA form of HIPK2 in neural stem 

cells improved functional recovery post IS [108]. The top over-represented pathway in the 10-classifier 

gene set was p53 Signaling which is implicated in the regulation of cell death in stroke [109,110].  

Our approach of calculating the change in gene expression between 3h and 24h post IS improved 

sensitivity compared to 24h alone (data not shown). Though the accuracy for predicting good 90-day 

outcome is excellent, the accuracy for predicting poor outcome in the validation set was modest due to 

very small sample size. Nevertheless, in this study the classifier consisting of gene expression data alone 

had a significantly higher accuracy than a classifier where age, sex and 24h NIHSS [111] were used as 



predictors (data not shown). A model consisting of gene expression plus age, sex and 24h NIHSS did not 

improve the 90d outcome prediction in comparison to using gene expression alone (data not shown). The 

results demonstrate feasibility of developing gene predictors of IS outcome, though the best predictors 

may differ somewhat once large sample sizes are analyzed.  

 

Limitations  

 The findings from this study need to be validated in larger cohorts. The cell-specific genes used 

here [33,34] were identified in healthy subjects and may change expression pattern with disease. In 

addition, since changes in cell count of specific peripheral blood cell types have been reported following 

ischemic stroke, some of the outcome differences of expression in this study could be due to changes in 

different proportions of cells.  

The study included repeat blood draws of ischemic stroke subjects at pre-treatment (3h) and post-

treatment (5h, 24h) time points. Since no IS subjects were untreated, the results cannot tease out the 

contribution of treatment to outcome. Nevertheless, the results provide interesting insights. First, genes at 

times pre- and post-treatment correlated with 90d outcomes, with the greatest number of genes identified 

pretreatment (3h). Second, comparison of the outcome genes to our previous study of tPA responsive 

genes in blood of rats with strokes from Jickling et al. [112] shows very little overlap except for 5h good 

outcome vs. VRFC genes, suggesting most of 5h and 24h outcome genes were not related to tPA 

administration (Overlap genes in Table S7). Third, the best predictor of 90d IS outcome was the change of 

gene expression from the pre-treatment time point (3h) to the 24h post-treatment time point, suggesting 

gene expression both before and after treatment have predictive value. Indeed, future clinical trials might 

use the model here where gene expression in blood both prior to and after treatment could be used to 

predict 90d outcomes. 
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Figure Legends 

 

Fig.1 Numbers of up- and down-regulated Differentially Expressed Genes (DEGs) across the three 

time points ≤3 hours, 5 hours and 24 hours after ischemic stroke. (a) Ischemic Stroke (IS) was compared 

Vascular Risk Factor Controls (Control) for the Poor Outcome subjects (mRS of 3-5 at 90d) and for the 

Good Outcome subjects (mRS of 0-2 at 90d). (b) IS Poor Outcome subjects were compared to the IS 

Good Outcome subjects. (c) Numbers of DEGs that correlated with the 90d NIHSS. The genes from the 

list for (a) passed FDR-corrected P value <0.05 and a fold change (FC)> |2|. The list for the DEGs in (b) 

had a P value <0.05 and a fold change (FC)> |1.3|. The list of the DEGs in (c) had P value <0.05. Yellow 

represents numbers of up-regulated DEGs. Blue represents numbers of down-regulated DEGs. IS – 

ischemic stroke; mRS – modified Rankin score; NIHSS – National Institutes of Health Stroke Scale. 

 

Fig.2 Pathway enrichment for Differentially Expressed Genes (DEGs) for Poor Outcomes (mRS 

3-5) compared to Vascular Risk Factor Controls (Poor vs. VRFC) and for Good Outcomes (mRS 0-2) 

compared to Vascular Risk Factor Controls (Good vs. VRFC). The top 20 most significant activation or 

suppression relevant pathways for these two comparisons are shown for the three time points after stroke: 

(a) ≤3h, (b) 5h and (c) and 24h. Blue bars indicate pathway suppression (negative Z-score), and orange 

indicates activation (positive Z-score), with darker colors representing larger |Z-score|. ↑ (up arrow) 

represents Z ≥ 2 significant activation in the poor or good 90d mRS IS outcome compared to VRF 

controls. ↓ (down arrow) represents Z ≤ -2, significant suppression in the poor or good 90d mRS IS 

outcome compared to VRF controls. The asterisk * represents significantly enriched pathway (P<0.05). 

White cells represent non-significant functions and/or activity pattern prediction Z=0. Grey represents no 

activity pattern available for the pathway in the IPA knowledge base. Reg. – Regulation; GFs. – Growth 

Factors; Expr. – Expression; Lymph. – Lymphocytes.  



Fig.3 Enrichment in cell-type specific gene lists for the per-gene lists (a) and WGCNA modules 

(b). Purple shading represents –log10(P value) where 1.3 corresponds to a P value of 0.05. A higher –

log10(p value) corresponds to lower (more significant - darker shades) P value. Non-significant 

hypergeometric probabilities are displayed as white cells. In panel (a) the results are based on genes 

differentially expressed in poor 90d mRS IS outcome vs. VRF controls, good 90d mRS IS outcome vs. 

VRF control, and genes correlating with 90d NIHSS. In panel (b) modules significant to 90d outcome 

(mRS poor vs. good, and NIHSS) are presented for the <3h Network, 5h Network, and 24h Network. Blue 

indicates down-regulated and red up-regulated expression with worse outcomes via the beta coefficient 

for outcome in a linear regression on the module eigengene. Grey indicates modules not significantly 

associated with the outcome measure. Enrichment of hub gene lists in cell-type specific lists are presented 

at the bottom. The single asterisk * indicates cell type list from Watkins et al. [34] and the double asterisk 

** indicates the cell type list was from Chtanova et al. [33]. Some of the identified Neutrophil genes 

might be expressed by other granulocytes, i.e., basophils and eosinophils. 

 

Fig.4 Pathway enrichment for Differentially Expressed Genes (DEGs) at ≤3h, 5h and 24h between 

subjects with poor 90-day mRS IS outcome compared to good 90d mRS IS outcome. The top 20 most 

significant activation or suppression relevant pathways are displayed. Blue bars indicate suppression / 

negative Z-score, and orange bars indicate activation / positive Z-score. Darker colors represent larger |Z-

score|. ↑ (up arrow) represents Z ≥ 2, for the poor 90-day mRS IS outcome compared to good 90-day 

mRS IS outcome. ↓ (down arrow) represents Z ≤ -2 significant suppression in the poor 90-day mRS IS 

outcome compared to good 90-day mRS IS outcome. The asterisk * represents a statistically significant 

pathway (P<0.05). White cells represent non-significant functions and/or activity pattern prediction Z=0. 

Reg. – Regulation; Expr. – Expression; Lymph. – Lymphocytes.  

 



Fig.5 Network diagram (a left panel) and Pathway Enrichment (a right panel) for the outcome-

significant (mRS poor vs. good) for the 3hPurple module. In the (a) left panel, the network diagram shows 

the connectivity of hubs and genes within the module. Nodes represent genes within the module and 

edges represent connections based on co-expression between genes. Larger nodes with large labels are 

hub genes, representing potential master regulators. Genes are grey by default and colored if they are cell 

type specific. In the (a) right panel, the top 20 most significant relevant pathways are displayed. The 

significance threshold (P = 0.05) corresponds to the vertical black line. Blue shading indicates 

suppression and orange activation with darker colors representing larger |Z-score|. Grey represents no 

activity pattern available for the pathway in the IPA knowledge base. An asterisk * represents statistically 

significant activation or suppression (Z ≥ 2 or Z ≤ -2) in poor outcome compared to good outcome.  

  In (b) the Network diagram (b. left panel) and Pathway Enrichment (b. right panel) for the 

outcome-significant (mRS poor vs. good, 90-day NIHSS) for the 3hRoyalBlue module. The LAT gene is 

colored as T cell-specific though it is expressed in megakaryocytes and T Cells. White bars represent non-

significant functions and/or activity pattern prediction Z=0. Other details of this figure are identical to 

those in (a). Reg. – Regulation; GFs. – Growth Factors; Expr. – Expression; Lymph. – Lymphocytes.  

 

Fig. 6 Network diagram (a left panel) and Pathway Enrichment (a right panel) for the outcome-

significant (mRS poor vs. good) for the 24hYellow module. In the left panel, the network diagram shows 

the connectivity of hubs and genes within the module. Larger nodes with large labels are hub genes, 

representing potential master regulators. Genes are grey by default and colored if they are cell type 

specific. In the right panel, the top 20 most relevant significant pathways are displayed. The significance 

threshold (P= 0.05) corresponds to the vertical black line. Blue shading represents suppression and orange 

activation with darker colors representing larger |Z-score|. An asterisk * represents statistically significant 

activity pattern prediction with Z ≥ 2 or Z ≤ -2. 



In (b) the Network diagram (b left panel) and Pathway Enrichment (b right panel) for the outcome-

significant (90-day NIHSS) for the 24hGreenYellow module. IL2RB and CD247 are colored as T cell-

specific but are also expressed in NK cells. LAT is colored as T cell specific, but also expressed in 

megakaryocytes. White bars represent non-significant functions and/or activity pattern prediction Z=0. 

Grey represents no activity pattern available for the pathway in the IPA knowledge base. Other aspects of 

this figure are identical to that described for panel (a). Cyt. – Cytotoxic; Reg. – Regulation; Expr. – 

Expression; Lymph. – Lymphocytes; Comm. – Communication.  

 

Fig.7 ROC Curve for Prediction of 90-day mRS outcome following Ischemic Stroke (IS). X-axis 

indicates the false positive rate, and the Y-axis indicates the True positive rate on the validation set. We 

used the difference in gene expression between 24 hours and 3 hours after IS in a logistic regression 

model to predict 90-day IS outcome. 10 genes predicted all subjects with good 90-day mRS outcome (8/8) 

and 2 out of the 3 subjects with poor outcome in the validation set (ROC-AUC= 0.88). 

 

  



Supplemental Figures 

Fig.S1 Pathway enrichment presented for genes whose expression correlates with 90-day NIHSS 

at ≤3h, 5h and 24h. The top 20 most significant activation or suppression relevant pathways are displayed. 

Blue shading indicates suppression (negative Z-score), orange indicates activation (positive Z-score), and 

darker colors represent larger |Z-score|. ↑ (up arrow) represents Z ≥ 2, significant activation and ↓ (down 

arrow) represents Z ≤ -2 significant suppression in subjects with worse outcome compared to subjects 

with better 90-day outcome. The asterisk * represents a statistically significant pathway (P<0.05 is 

significant). White cells represent non-significant functions and/or activity pattern prediction Z=0. Grey 

represents no activity pattern available for the pathway in the IPA knowledge base. Reg. – Regulation; 

Expr. – Expression; Lymph. – Lymphocytes; Cyt. – Cytotoxic.  

 

 

Fig.S2 Network diagram (left panel) and Pathway Enrichment (right panel) for the 5hCyan 

module which is significant for association with 90-day mRS. The left panel network diagram shows the 

connectivity of hubs and genes within the module. Larger nodes with large labels are hub genes, 

representing potential master regulators. Genes are grey by default and colored if they are cell type 

specific. In the right panel, the top 20 relevant significant pathways are displayed, with the vertical line 

indicating a P=0.05. Blue shading indicates suppression (negative Z-score) and orange indicates 

activation (positive Z-score), and darker color represents larger |Z-score|. The asterisk * represents Z ≥ 2 

or Z ≤ -2 in poor outcome compared to good outcome. Signal. – Signaling.  

 

 

 

 

 



Table Legends 
 
Table 1. Demographic and clinical characteristics of ischemic stroke (IS) patients and Vascular Risk 
Factor Controls (Control) subjects. 
 
Table 2. Hub genes in the outcome-significant modules. The probe sets without annotated genes are 
excluded.  
 
Supplementary Tables 
 
Table S1A. Gene expression of genes at ≤3 hours of ischemic stroke (IS) onset that associates with 90-
day outcome 

• 467 Genes significantly differentially expressed between Poor 90-day mRS IS Outcome and 
Vascular Risk Factor (VRF) control (FDR <0.05, |FC|>2) 

• 49 Genes significantly differentially expressed between Good 90-day mRS IS Outcome and VRF 
control (FDR <0.05, |FC|>2) 

• 709 Genes (at ≤3 hours) significantly differentially expressed between subjects with Poor 90-day 
mRS IS Outcome and subjects with Good 90-day mRS Outcome (P<0.05, |FC|>1.3) 

• 538 Genes significantly associated with 90-day NIHSS Outcome (P<0.005) 
 
Table S1B. Gene expression of genes at 5 hours of IS onset that associates with 90-day outcome 

• 526 Genes significantly differentially expressed between Poor 90-day mRS IS Outcome and VRF 
control (FDR <0.05, |FC|>2) 

• 100 Genes significantly differentially expressed between Good 90-day mRS IS Outcome and VRF 
control (FDR <0.05, |r|>2) 

• 658 Genes significantly differentially expressed between Poor 90-day mRS IS Outcome and Good 
90-day mRS Outcome (P<0.05, |FC|>1.3) 

• 197 Genes significantly associated with 90-day NIHSS Outcome (p <0.005) 
 
Table S1C. Gene expression of genes at 24 hours of IS onset that associates with 90-day outcome 

• 571 Genes significantly differentially expressed between Poor 90-day mRS IS Outcome and VRF 
control (FDR <0.05, |FC|>2) 

• 35 Genes significantly differentially expressed between Good 90-day mRS IS Outcome and VRF 
control at 24 hours (FDR<0.05, |FC|>2) 

• 363 Genes significantly differentially expressed between Poor 90-day mRS IS Outcome and Good 
90-day mRS IS Outcome (P<0.05, |FC|>1.3) 

• 147 Genes significantly associated with 90-day NIHSS Outcome (p<0.005) 
 
Table S2A. IPA Canonical Pathway Enrichment (P<0.05) for gene expression at ≤3 hours of ischemic 
stroke (IS) onset that associates with 90-day outcome 

• IPA Canonical Pathway Enrichment for 467 Genes Significant to Poor 90-day mRS Outcome as 
compared to VRF Controls 

• IPA Canonical Pathway Enrichment for 49 Genes Significant to Good 90-day mRS Outcome as 
compared to VRF Controls 

• IPA Canonical Pathway Enrichment for 709 Genes Significant to Poor 90-day mRS Outcome vs. 
Good 90-day mRS Outcome  

• IPA Canonical Pathway Enrichment for 538 genes associated with 90-day NIHSS Outcome 
Table S2B. IPA Canonical Pathway Enrichment (P<0.05) for gene expression at 5 hours of IS onset that 
associates with 90-day outcome 



• IPA Canonical Pathway Enrichment for 526 Genes Significant to Poor 90-day mRS Outcome as 
compared to VRF Controls 

• IPA Canonical Pathway Enrichment for 100 Genes Significant to Good 90-day mRS Outcome as 
compared to VRF Controls 

• IPA Canonical Pathway Enrichment for 658 Genes Significant to Poor 90-day mRS Outcome vs. 
Good 90-day mRS Outcome 

• IPA Canonical Pathway Enrichment for 197 genes associated with 90-day NIHSS Outcome 
 
Table S2C. IPA Canonical Pathway Enrichment (P<0.05) for gene expression at 24 hours of IS onset 
that associates with 90-day outcome 

• IPA Canonical Pathway Enrichment for the 571 Genes Significant to Poor 90-day mRS Outcome 
as compared to VRF Controls 

• IPA Canonical Pathway Enrichment for the 35 Genes Significant to Good 90-day mRS Outcome 
as compared to VRF Controls 

• IPA Canonical Pathway Enrichment for the 363 Genes Significant to Poor 90-day mRS Outcome 
vs. Good 90-day mRS Outcome 

• IPA Canonical Pathway Enrichment for the 147 genes associated with 90-day NIHSS Outcome 
 
Table S3A. DAVID Gene Ontology Enrichment (FDR P<0.05) for the 467 Genes (at ≤3 hours) 
Significant to Poor 90-day Outcome as compared to VRF Controls 
 
Table S3B. DAVID Gene Ontology Enrichment (FDR P<0.05) for the 571 Genes (at 24 hours) 
Significant to Poor 90-day Outcome as compared to VRF Controls 
 
Table S4A. IPA Canonical Pathway Enrichment (P<0.05) for outcome-significant WGCNA modules 
using gene expression at ≤3 hours from IS onset 

• 3hDarkGrey Significant to NIHSS at 90day 
• 3hDarkGrey Significant to mRS at 90day 
• 3hGreen Significant to NIHSS at 90day 
• 3hMidnightBlue Significant to NIHSS at 90day 
• 3hMidnightBlue Significant to mRS at 90day 
• 3hOrange Significant to mRS at 90day 
• 3hPink Significant to mRS at 90day 
• 3hPurple Significant to mRS at 90day 
• 3hRed Significant to mRS at 90day 
• 3hRoyalBlue Significant to mRS at 90day 
• 3hRoyalBlue Significant to NIHSS at 90day 

 
Table S4B. IPA Canonical Pathway Enrichment (P<0.05) for outcome-significant WGCNA modules 
using gene expression at 5 hours from IS onset 

• 5hCyan Significant to mRS at 90day 
• 5hDarkOrange Significant to mRS at 90day 
• 5hDarkRed Significant to mRS at 90day 
• 5hGreenYellow Significant to NIHSS at 90day 
• 5hLightCyan Significant to mRS at 90day 
• 5hLightGreen Significant to NIHSS at 90day 
• 5hLightYellow Significant to mRS at 90day 
• 5hRed Significant to NIHSS at 90day 



Table S4C. IPA Canonical Pathway Enrichment (P<0.05) for outcome-significant WGCNA modules 
using gene expression at 24 hours from IS onset 

• 24hGreenYellow Significant to NIHSS at 90day 
• 24hOrange Significant to NIHSS at 90day 
• 24hPink Significant to NIHSS at 90day 
• 24hYellow Significant to mRS at 90day 

 
Table S5A. IPA Canonical Pathway Enrichment (P<0.05) for some cell specific WGCNA hubs at ≤ 3 
hours  

• T cell receptor and other T cell-specific Hub Genes  
• Neutrophil-specific Hub Genes  

 
Table S5B. IPA Canonical Pathway Enrichment (P<0.05) for some cell specific WGCNA hubs at 5 
hours 

• T cell receptor and other T cell-specific Hub Genes 
• Neutrophil cell-specific Hub Genes  

 
Table S5C. IPA Canonical Pathway Enrichment (P<0.05) for some cell specific WGCNA hubs at 24 
hours 

• T cell receptor and other T cell-specific Hub Genes  
• Neutrophil cell-specific Hub Genes  
• Monocyte cell-specific Hub Genes  

 
Table S6. The 10 genes used as predictors of Poor and Good 90-day mRS Outcomes  
 
Table S7. Genes regulated by tPA in a rat stroke model (Jickling et al., 2010) overlapped with the 5h and 
24h outcome genes in this study. The only significant overlap of tPA genes with outcomes genes was for 
5h good outcome vs VRFC (P=0.005).  
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Fig. 7 ROC Curve for Predication of 90-day mRS Outcome Following Ischemic Stroke
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Table 1. Demographic and clinical characteristics of ischemic stroke (IS) patients and 
vascular risk factor controls (VRFC). 
 
 

 Ischemic Stroke Patients (n= 36) Vascular Risk Factor Controls n=18 P value 

Age (years; Mean�±�SD) 64.3±13 58.1±5.6 0.06 

Women, n (%) 16 (44.5) 12 (66.7) 0.15 

Race (%)   0.70 

White 83.3 88.9  

Black 16.7 11.1  

Hypertension no. (%) 23 (63.9%) 12 (66.7%) 1 

Diabetes no. (%) 5 (13.9%) 6 (33.3%) 0.15 

Hypercholesterolemia no. (%) 7 (19.5%) 8 (44.5%) 0.1 

NIHSS 3-hours, median, (Q1, Q3) 10.5 (6,15.5) -  

NIHSS 5-hours, median, (Q1, Q3) 7.5 (5, 12) -  

NIHSS 24-hours, median, (Q1, Q3) 6 (3, 10) -  

NIHSS 5-day, median, (Q1, Q3) 4 (1, 7.5) -  

NIHSS 90-day, median, (Q1, Q3) 2 (0, 4) -  

 
P values represent the comparison between IS and control using a two-tailed t-test. 
NIHSS, National Institutes of Health Stroke Scale; Q, quartile. 



Table 2 Hub Genes in Outcome-associated co-expression modules  
 
≤ 3h from Stroke Onset 
3hRoyalBlue LAT, ABHD14A, ANAPC1, CCT4, CD2, CD3E, CD6, CORO1B, ECHDC2, EIF2B5, EMG1, FAM159A, FBXO44, LAT, ITGB7, 

LOC728743, MARCH9, OCIAD2, PLCG1, SKAP1, UTP4, WDR54, ZAP70, ZNF783 
3hGreen 
 

AIFM2, ANKRD40, ARL4C, ARPC5L, ASXL1, BZRAP1-AS1, C11orf31, C2orf44, CBLB, CD6, CLUHP3, CLYBL, COQ10A, COQ6, 
DLG3, ENO2, ESYT2, EXOSC7, FASTKD2, FBXO21, GCSAM, GGA2, GGT7, GIMAP1-GIMAP5, GPAM, GPR171, HUWE1, 
INPP5E, KLRC4-KLRK1, LOC100422781, LOC101243545, LOC101929718, LOC105372392, MARCH9, MCM3AP-AS1, MCOLN2, 
MLLT3, MPHOSPH9, MROH7-TTC4, MRPS27, NASP, NFATC2, NIPAL3, NOL9, PARP15, PDP2, PHC1, PHF10, POU6F1, PPIA, 
PPM1K, PPP2R5E, PRKCH, PRPS1, PSMD11, PTPN4, PWAR6, QRICH1, RAD51-AS1, RBBP4, RBBP7, RBM19, RORA, RPL13, 
SAMD3, SEPT6, SLC1A4, SLC25A15, SLC25A25-AS1, SLC26A11, SLC35F2, SMYD2, SNHG12, SNHG15, SRSF11, ST6GAL1, 
STAT4, STMN3, SYNRG, TAMM41, TEX10, TGFBR3, TRG-AS1, TTC5, UBASH3A, ULK3, WNT10B, YME1L1, ZFP90, ZNF275, 
ZNF286A, ZNF331, ZNF337, ZSWIM5 

3hMidnightBlue 
 

RRN3, LAG3, TTC16, PLEKHF1, NKG7, PDZD4, NFATC2IP, EBP, IL12RB1, PRR5L, FABP3, ZNF767P, S1PR5, CCL5, CYP4F35P, 
CAPN1, SLC25A45, CARD11, GZMM, LINC00685 

3hDarkGrey ATP5G3, C19orf60, DANCR, GNB2L1, HAX1, ICT1, MRPL24, NME1-NME2, PHB2, RPL18A, SEPW1, ZNF511 

3hPink ABCF1, ANKRD52, ATIC, C7orf26, CAD, CCAR2, CCDC92, CD5, CDIP1, COG8, CXXC1, DHDDS, DVL2, DYNC1H1, FARSA, 
FBXO31, FIZ1, FTSJ3, GALT, GOT2, HEG1, IGSF8, IPO13, IPO9, KMT2A, MAPRE2, MICALL1, NBAS, NCDN, NF2, NUP188, 
PIP4K2B, POLA2, PRR12, PYGO2, RPUSD3, RUBCN, SAMD1, SLC25A22, SMARCD1, SPTAN1, TATDN2, TERF2, TESK1, 
TMEM198B, TMEM229B, TRIM26, TXLNA, USP11, VPS26B, VPS72, ZMIZ2, ZNF142, ZNF317, ZNF444 

3hPurple AGO4, AGTPBP1, APPL2, ATP6V1A, CACUL1, CLEC4D, CMTM6, CPD, DLGAP1-AS2, DNAJC3, DOCK5, DPP8, FAM126B, 
GNAQ, IGF1R, KBTBD2, KBTBD7, KIAA0232, KLF7, MARCKS, MBOAT1, MCL1, MTMR10, MXD1, PCNX, PELI1, PELI2, 
PPP1R3D, PTBP3, PTEN, PTPRE, RC3H1, RNASEL, SBF2, SLC37A3, SLC6A6, SOS2, ST8SIA4, STX7, TET3, TGFBR2, TM6SF1, 
TMCO3, WDFY3, YIPF4, YTHDF3, ZBTB34, ZNF592, ZNF746 

3hOrange CLEC7A, LOC101927770 

3hRed ABI3, AKR7A2, ARFGAP2, ATG101, ATP5B, ATP6V1F, B3GAT3, BST2, C12orf10, C9orf69, CCDC12, CCDC22, CDK2AP2, 
COMMD9, COX6B1, CSRP1, CYC1, DAP3, DDX49, DOK2, DRAP1, DUSP23, EDF1, EIF3G, EIF4EBP1, ERI3, ETFB, FKBP2, 
G6PC3, GPKOW, GSTP1, GTF3C5, HCFC1R1, HSD17B10, ILK, IRF2BP1, JMJD8, JOSD2, KCP, KCTD17, KEAP1, LAMTOR2, 
MADD, MBD3, MOB2, MPDU1, MRPL37, MRPL38, MRPS18A, MRPS34, MTDH, MYO1G, NAA10, NDOR1, NDUFS2, NFKBIE, 
NTMT1, ORAI1, PCGF1, PES1, PIP5K1C, PLEKHJ1, PMM1, POLD2, POLR2L, PPIB, PPM1G, PPP2R1A, PSMB10, PSMC4, 
PSMD3, PSMD8, PTGES2, R3HCC1, RANGAP1, RBM17, RNF25, RNPEPL1, RUVBL2, SARS, SASH3, SCNM1, SERTAD1, 
SLC35A4, SMG9, SNAPC2, SNF8, SPNS1, SYMPK, TMEM205, TMEM219, TSR3, VAC14, VPS26B, VPS4A, VPS51, WDR83OS, 
XAB2, YIF1A 

 
 
 
 
 



5h from Stroke Onset 
5hDarkOrange ALG5, C14orf166, CCT4, CD52, EIF3M, EMG1, GLO1, GPN1, MDH1, MRPL15, NDUFAF4, NIT2, PCNA, SNRPD2, SNRPF 

5hLightYellow ABHD12B, ABHD17B, ABHD5, ACOXL, AGO2, AHCTF1, AKAP13, AKNA, ALOX15B, AMACR, ANP32A, APC, ARID4B, ARL11, 
ARMC12, ARPC5, ASB7, ASCC1, ATG16L2, ATP11A-AS1, ATXN7, AVIL, BAGE2, BBIP1, BCL6, BIN3-IT1, BRD3, BRD8, 
BTN2A1, C11orf95, C1orf226, C3orf62, CABP7, CALCOCO2, CARS2, CBX4, CD44, CD53, CDC42-IT1, CDC42SE1, CDC5L, 
CDK19, CDS2, CFLAR, CFLAR-AS1, CLASP1, CLIP1, CLMP, CNTNAP3P2, COA1, COTL1, CREBRF, CRISP3, CRKL, CSAD, 
CTNNB1, CYYR1, DAPK2, DCUN1D3, DDX17, DICER1, DIP2B, DLEU2, DNM2, EBLN2, EEPD1, EPS15L1, ESR2, ETV3, 
EXTL3-AS1, FAM13A-AS1, FAM205BP, FAM49B, FBXL20, FCGR3B, FKBP15, FRY, GCM1, GLTSCR1L, GPATCH2L, GPX3, 
GRAMD1A, GRB10, GSK3B, GTDC1, H2AFY, HAUS4, HBP1, HERPUD2, HSDL2, HTR1F, IAH1, IDS, IFNGR1, IGF1R, IKZF5, 
ITGAX, ITPK1, ITPK1-AS1, JAK1, JMJD1C, KAT6A, KCNH7, KCNQ1OT1, KDM4B, KDM5A, KIAA0825, KIAA1109, KIAA1551, 
KIAA1614-AS1, KIF13A, KIZ, KLHL36, KMT2E-AS1, LHX4, LINC00265, LINC00282, LITAF, LOC100130476, LOC100288893, 
LOC100505664, LOC100506860, LOC100507006, LOC101928143, LOC101928317, LOC101928386, LOC101928461, 
LOC101928673, LOC101928988, LOC105374297, LOC105374775, LOC105375361, LOC105375531, LOC105376037, 
LOC105376896, LOC105377320, LOC285819, LOC285847, LOC646014, LRRC17, LRRFIP1, MAP3K2, MAP3K3, MAP4K4, 
MARCH7, MCTP1, MCTS1, MDM2, METTL20, MINOS1P1, MLKL, MPP7, MTMR10, MYL6, MYLIP, MYO5A, NBR1, NCOA2, 
NCOA6, NEDD9, NEK4, NGLY1, NIPBL, NPL, NPTN-IT1, NSFL1C, NSMAF, NTRK3, NUMB, NUP58, OSBPL9, PABPC1L, 
PARP16, PARP4, PDE4B, PDK3, PELI1, PHF20L1, PHF21A, PHF8, PIGV, PLXDC2, PNMA6A, POLA2, PPFIA1, PPP1R12B, 
PPP1R21, PRKCB, PRKCZ, PRO2852, PRPH2, PRR7-AS1, PSEN1, PSMD6, PTCSC1, PTPN1, PXK, RAB18, RAB5A, RAB7A, 
RAF1, RALGAPA2, RBM47, RBM48, RBPJ, RNASE6, RNASET2, RNF213, RTN4, SAMD4B, SAP30L, SBF2-AS1, SEC14L1, 
SETX, SLC1A3, SLC31A1, SLITRK5, SMCHD1, SNAP23, SNTB2, SOD2, SORL1, SP1, SPAG9, SPATA1, SRGAP2B, SRRM2, 
STK19, STK38, STX6, STXBP3, SYF2, TAF8, TBC1D1, TBRG1, TCP11L2, TEK, TENM1, TET2, TIRAP, TLN1, TMEM43, 
TNRC6B, TOX4, TRIM33, TRIOBP, TRPM6, U2AF1, UBE2B, UBE3B, USP3, USP34, VAPA, VPS13B, WDFY2, WDR1, ZBTB37, 
ZCCHC6, ZDHHC18, ZHX2, ZKSCAN1, ZMIZ1, ZNF207, ZNF333, ZNF445, ZNF669, ZNF81, ZNF814, ZSCAN9 

5hCyan ABHD5, ACOX1, ADAM19, ALOX5AP, ANKS1A, CELF2, CHST15, DENND3, EPOR, FGD4, FKBP5, FRAT1, HAL, IL17RA, 
ITPRIP, JDP2, KLHL21, LRP10, LTB4R, MAP4K4, MCL1, MEGF9, MTMR3, MXD1, N4BP1, PACSIN2, RALGAPA2, SLC9A8, 
SNN, SNX27, TBXAS1, TLR2 

5hLightCyan ALPK1, ATP6V1C1, CSRNP1, CYSTM1, DNAH17, FRAT2, GMPR2, HRH2, IFNAR1, KIF1B, LIMK2, LIN7A, MCEMP1, MTHFS, 
NLRC4, PGS1, PLD1, PTPRJ, SERPINB1, SLC30A6, TMED8, TRIM25, ZNF438 

5hDarkRed ARAP1, B9D2, C10orf54, C6orf89, CACUL1, CDA, DHTKD1, DYSF, ITPRIP, LRP10, MAST3, MYO1F, NFAM1, PFKFB4, 
PLEKHM1, PLPPR2, PTAFR, REPS2, RNASEL, RPS6KA1, SENCR, SLC43A2, TLE3, TP53I11, WAS 

5hGreenYellow ACVR2A, AKAP1, ALG9, ARL10, CDC23, COQ10A, DDX1, DGKE, FAM98A, GMPS, GNPNAT1, INPP4B, IPO7, KMT2A, 
LOC101060521, MDN1, METTL23, MPHOSPH10, MRPS35, MRS2, MYO9A, ORC5, PPP3CC, RBL1, RHOH, RRP1B, SEPHS1, 
SET, SLAMF1, SMAD3, SYNCRIP, TBC1D24, TRA2B, TTC19, TTC39C, WDR89, ZNF121, ZNF286A, ZNHIT6 

5hLightGreen ANAPC1, ANKS6, C3orf18, CCAR1, CD6, CLUHP3, ELK4, FAHD2A, FASTKD2, IL21R, ITFG2, KCTD7, LPIN1, MCPH1, 
MRPS30, NFATC2, NFX1, NIPAL3, SETD6, SLC41A1, UTP20, YME1L1, ZNF286A 

5hRed C12orf75, CD247, CLCF1, DDX3Y, EIF1AY, ELP2, FAR2P2, GPALPP1, GPR22, GZMA, GZMH, HEATR9, IKZF3, ITPRIPL1, 
JAKMIP1, KIAA1671, KLRC4-KLRK1, KLRG1, LOC100132319, LOC100505501, LOC102724985, LOC105373495, LOC153682, 
MAF, PDCD5, PIK3R3, PLA2G16, PRKY, PRR5L, PSMB2, PTGDR, PTPN4, PYHIN1, RMDN3, RPS4Y1, SAMD3, SLAMF6, 
STAT4, TBX21, TGFBR3, TIGIT, TTTY10, TTTY14, TTTY15, TULP4, TXLNGY, USP9Y, UTY, YME1L1, ZFY 

  



24h from Stroke Onset 
24hYellow AGO4, AGTPBP1, ANTXR2, ARHGAP26, ATP11B, AZIN1, BCL6, C16orf72, CD58, CFLAR, CLEC4D, CMTM6, CNIH4, CPD, 

CPEB4, CR1, DNAJC3, DNAJC3-AS1, DPY19L3, ENTPD1, EXOC6, FAM126B, FAM200B, FCAR, FNIP1, FYB, GAB1, GNAQ, 
GNG10, GPR160, GPR27, HDAC4, HIPK3, HSDL2, IRAK3, KBTBD7, KCNE3, KIDINS220, KLF7, LAMTOR5, LATS2, LIN7A, 
LINC01094, LOC100129550, LOC105372881, LOC285147, LOC645513, LRRN1, MAN1A1, MAP3K2, MAP3K5, MBOAT2, 
MCTP2, MEF2A, METTL9, MOSPD2, MPP7, NSUN7, NUFIP2, PCNX, PDZD8, PLIN5, PLXNC1, PPP1R3B, PPP1R3D, PXK, 
RASSF3, RC3H1, REPS2, SAMD8, SBF2, SLC37A3, SLC40A1, SLC6A6, SOS2, STK17B, TGFA, TM6SF1, TMCO3, TMED8, 
TMEM260, TMEM71, TRIQK, UBE2D1, UBXN4, VAV3, WDFY3, YTHDF3, ZBTB34 

24hGreenYellow AGFG2, AMIGO1, ANAPC1, BCL9L, BZRAP1-AS1, CCDC84, CD2, CD6, ENO2, FAM102A, HKR1, HN1L, IL24, LAT, 
LOC101243545, METTL16, MLLT3, MLLT6, MSTO1, NFATC2, NOL9, OGFOD1, P2RY10, PIK3C2B, PLCG1, PPP1R16B, 
QRICH1, RASA3, RBBP7, RHOH, RPS19, RSAD1, SARM1, SFXN2, SGK223, SIT1, SKAP1, SLC41A1, SMYD5, STMN3, TRAC, 
ZNF783 

24hPink AATBC, ADAMTS5, AIFM3, ALDH2, ANAPC15, BLVRA, C10orf11, CATSPER1, CCDC149, CD14, CD33, CD86, CSF1R, CST3, 
DIAPH2, DLG4, DUSP3, DYM, ECRP, EMILIN2, FAM129B, FBP1, FCN1, FXYD6, FZD2, GNA15, GPBAR1, GSTO1, HMOX1, 
IQSEC2, ITPRIPL2, KCNK6, KCTD12, LILRB4, LOC105372824, MARVELD1, MS4A6A, NAGA, OAF, PECAM1, PLXND1, PVR, 
RAB34, RASSF4, RPS6KA4, SAT2, SLC27A1, SLC37A2, SLC46A2, SNX21, SOX4, SPR, STAB1, TNFRSF8, TRIM14, TRIM7, 
VENTX 

24hOrange CLEC7A, DDIT3, FAM223A, HEBP2, HIST1H4E, LINC-PINT, LINC00282, LOC101927974, NF1, SPIDR, TOR1AIP2, ZNF487 

 


